#!/usr/bin/env python # License: GPL v3 Copyright: 2017, Kovid Goyal # Imports {{{ import json import os import re import subprocess import sys from collections import defaultdict from collections.abc import Generator, Hashable, Iterable from contextlib import contextmanager from functools import lru_cache, partial from html.entities import html5 from io import StringIO from math import ceil, log from typing import Callable, DefaultDict, Iterator, Literal, NamedTuple, Optional, Protocol, Sequence, TypedDict, TypeVar, Union from urllib.request import urlopen if __name__ == '__main__' and not __package__: import __main__ __main__.__package__ = 'gen' sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # }}} # Fetching data {{{ non_characters = frozenset(range(0xfffe, 0x10ffff, 0x10000)) non_characters |= frozenset(range(0xffff, 0x10ffff + 1, 0x10000)) non_characters |= frozenset(range(0xfdd0, 0xfdf0)) if len(non_characters) != 66: raise SystemExit('non_characters table incorrect') emoji_skin_tone_modifiers = frozenset(range(0x1f3fb, 0x1F3FF + 1)) def fetch_url(url: str) -> str: bn = os.path.basename(url) local = os.path.join('/tmp', bn) if os.path.exists(local): with open(local, 'rb') as f: data = f.read() else: data = urlopen(url).read() with open(local, 'wb') as f: f.write(data) return data.decode() def get_data(fname: str, folder: str = 'UCD') -> Iterable[str]: url = f'https://www.unicode.org/Public/{folder}/latest/{fname}' for line in fetch_url(url).splitlines(): line = line.strip() if line and not line.startswith('#'): yield line @lru_cache(maxsize=2) def unicode_version() -> tuple[int, int, int]: for line in get_data("ReadMe.txt"): m = re.search(r'Version\s+(\d+)\.(\d+)\.(\d+)', line) if m is not None: return int(m.group(1)), int(m.group(2)), int(m.group(3)) raise ValueError('Could not find Unicode Version') # }}} # Parsing Unicode databases {{{ # Map of class names to set of codepoints in class class_maps: dict[str, set[int]] = {} all_symbols: set[int] = set() name_map: dict[int, str] = {} word_search_map: DefaultDict[str, set[int]] = defaultdict(set) soft_hyphen = 0xad flag_codepoints = frozenset(range(0x1F1E6, 0x1F1E6 + 26)) # See https://github.com/harfbuzz/harfbuzz/issues/169 marks = set(emoji_skin_tone_modifiers) | flag_codepoints not_assigned = set(range(0, sys.maxunicode)) property_maps: dict[str, set[int]] = defaultdict(set) grapheme_segmentation_maps: dict[str, set[int]] = defaultdict(set) grapheme_break_as_int: dict[str, int] = {} int_as_grapheme_break: tuple[str, ...] = () incb_as_int: dict[str, int] = {} int_as_incb: tuple[str, ...] = () incb_map: dict[str, set[int]] = defaultdict(set) extended_pictographic: set[int] = set() def parse_prop_list() -> None: global marks for line in get_data('ucd/PropList.txt'): if line.startswith('#'): continue cp_or_range, rest = line.split(';', 1) chars = parse_range_spec(cp_or_range.strip()) name = rest.strip().split()[0] property_maps[name] |= chars # see https://www.unicode.org/faq/unsup_char.html#3 marks |= property_maps['Other_Default_Ignorable_Code_Point'] def parse_ucd() -> None: def add_word(w: str, c: int) -> None: if c <= 32 or c == 127 or 128 <= c <= 159: return if len(w) > 1: word_search_map[w.lower()].add(c) first: Optional[int] = None for word, c in html5.items(): if len(c) == 1: add_word(word.rstrip(';'), ord(c)) word_search_map['nnbsp'].add(0x202f) for line in get_data('ucd/UnicodeData.txt'): parts = [x.strip() for x in line.split(';')] codepoint = int(parts[0], 16) name = parts[1] or parts[10] if name == '': name = parts[10] if name: name_map[codepoint] = name for word in name.lower().split(): add_word(word, codepoint) category = parts[2] s = class_maps.setdefault(category, set()) desc = parts[1] codepoints: Union[tuple[int, ...], Iterable[int]] = (codepoint,) if first is None: if desc.endswith(', First>'): first = codepoint continue else: codepoints = range(first, codepoint + 1) first = None for codepoint in codepoints: s.add(codepoint) not_assigned.discard(codepoint) if category.startswith('M'): marks.add(codepoint) elif category.startswith('S'): all_symbols.add(codepoint) elif category == 'Cf': # we add Cf to marks as it contains things like tags and zero # width chars. Not sure if *all* of Cf should be treated as # combining chars, might need to add individual exceptions in # the future. marks.add(codepoint) gndata = fetch_url('https://raw.githubusercontent.com/ryanoasis/nerd-fonts/refs/heads/master/glyphnames.json') for name, val in json.loads(gndata).items(): if name != 'METADATA': codepoint = int(val['code'], 16) category, sep, name = name.rpartition('-') name = name or category name = name.replace('_', ' ') if name and codepoint not in name_map: name_map[codepoint] = name.upper() for word in name.lower().split(): add_word(word, codepoint) # Some common synonyms word_search_map['bee'] |= word_search_map['honeybee'] word_search_map['lambda'] |= word_search_map['lamda'] word_search_map['lamda'] |= word_search_map['lambda'] word_search_map['diamond'] |= word_search_map['gem'] def parse_range_spec(spec: str) -> set[int]: spec = spec.strip() if '..' in spec: chars_ = tuple(map(lambda x: int(x, 16), filter(None, spec.split('.')))) chars = set(range(chars_[0], chars_[1] + 1)) else: chars = {int(spec, 16)} return chars def split_two(line: str) -> tuple[set[int], str]: spec, rest = line.split(';', 1) spec, rest = spec.strip(), rest.strip().split(' ', 1)[0].strip() return parse_range_spec(spec), rest all_emoji: set[int] = set() emoji_presentation_bases: set[int] = set() narrow_emoji: set[int] = set() wide_emoji: set[int] = set() flags: dict[int, list[int]] = {} def parse_basic_emoji(spec: str) -> None: parts = list(filter(None, spec.split())) has_emoji_presentation = len(parts) < 2 chars = parse_range_spec(parts[0]) all_emoji.update(chars) emoji_presentation_bases.update(chars) (wide_emoji if has_emoji_presentation else narrow_emoji).update(chars) def parse_keycap_sequence(spec: str) -> None: base, fe0f, cc = list(filter(None, spec.split())) chars = parse_range_spec(base) all_emoji.update(chars) emoji_presentation_bases.update(chars) narrow_emoji.update(chars) def parse_flag_emoji_sequence(spec: str) -> None: a, b = list(filter(None, spec.split())) left, right = int(a, 16), int(b, 16) chars = {left, right} all_emoji.update(chars) wide_emoji.update(chars) emoji_presentation_bases.update(chars) flags.setdefault(left, []).append(right) def parse_emoji_tag_sequence(spec: str) -> None: a = int(spec.split()[0], 16) all_emoji.add(a) wide_emoji.add(a) emoji_presentation_bases.add(a) def parse_emoji_modifier_sequence(spec: str) -> None: a, b = list(filter(None, spec.split())) char, mod = int(a, 16), int(b, 16) mod all_emoji.add(char) wide_emoji.add(char) emoji_presentation_bases.add(char) def parse_emoji() -> None: for line in get_data('emoji-sequences.txt', 'emoji'): parts = [x.strip() for x in line.split(';')] if len(parts) < 2: continue data, etype = parts[:2] if etype == 'Basic_Emoji': parse_basic_emoji(data) elif etype == 'Emoji_Keycap_Sequence': parse_keycap_sequence(data) elif etype == 'RGI_Emoji_Flag_Sequence': parse_flag_emoji_sequence(data) elif etype == 'RGI_Emoji_Tag_Sequence': parse_emoji_tag_sequence(data) elif etype == 'RGI_Emoji_Modifier_Sequence': parse_emoji_modifier_sequence(data) doublewidth: set[int] = set() ambiguous: set[int] = set() def parse_eaw() -> None: global doublewidth, ambiguous seen: set[int] = set() for line in get_data('ucd/EastAsianWidth.txt'): chars, eaw = split_two(line) if eaw == 'A': ambiguous |= chars seen |= chars elif eaw in ('W', 'F'): doublewidth |= chars seen |= chars doublewidth |= set(range(0x3400, 0x4DBF + 1)) - seen doublewidth |= set(range(0x4E00, 0x9FFF + 1)) - seen doublewidth |= set(range(0xF900, 0xFAFF + 1)) - seen doublewidth |= set(range(0x20000, 0x2FFFD + 1)) - seen doublewidth |= set(range(0x30000, 0x3FFFD + 1)) - seen def parse_grapheme_segmentation() -> None: global extended_pictographic, grapheme_break_as_int, incb_as_int, int_as_grapheme_break, int_as_incb global seg_props_from_int, seg_props_as_int grapheme_segmentation_maps['AtStart'] # this is used by the segmentation algorithm, no character has it grapheme_segmentation_maps['None'] # this is used by the segmentation algorithm, no character has it for line in get_data('ucd/auxiliary/GraphemeBreakProperty.txt'): chars, category = split_two(line) grapheme_segmentation_maps[category] |= chars grapheme_segmentation_maps['Private_Expecting_RI'] # this is used by the segmentation algorithm, no character has it grapheme_break_as_int = {x: i for i, x in enumerate(grapheme_segmentation_maps)} int_as_grapheme_break = tuple(grapheme_break_as_int) incb_map['None'] # used by segmentation algorithm no character has it for line in get_data('ucd/DerivedCoreProperties.txt'): spec, rest = line.split(';', 1) category = rest.strip().split(' ', 1)[0].strip().rstrip(';') chars = parse_range_spec(spec.strip()) if category == 'InCB': # Most InCB chars also have a GBP categorization, but not all, # there exist some InCB chars that do not have a GBP category subcat = rest.strip().split(';')[1].strip().split()[0].strip() incb_map[subcat] |= chars incb_as_int = {x: i for i, x in enumerate(incb_map)} int_as_incb = tuple(incb_as_int) for line in get_data('ucd/emoji/emoji-data.txt'): chars, category = split_two(line) if 'Extended_Pictographic#' == category: extended_pictographic |= chars seg_props_from_int = {'grapheme_break': int_as_grapheme_break, 'indic_conjunct_break': int_as_incb} seg_props_as_int = {'grapheme_break': grapheme_break_as_int, 'indic_conjunct_break': incb_as_int} class GraphemeSegmentationTest(TypedDict): data: tuple[str, ...] comment: str grapheme_segmentation_tests: list[GraphemeSegmentationTest] = [] def parse_test_data() -> None: for line in get_data('ucd/auxiliary/GraphemeBreakTest.txt'): t, comment = line.split('#') t = t.lstrip('÷').strip().rstrip('÷').strip() chars: list[list[str]] = [[]] for x in re.split(r'([÷×])', t): x = x.strip() match x: case '÷': chars.append([]) case '×': pass case '': pass case _: ch = chr(int(x, 16)) chars[-1].append(ch) c = tuple(''.join(c) for c in chars) grapheme_segmentation_tests.append({'data': c, 'comment': comment.strip()}) grapheme_segmentation_tests.append({ 'data': (' ', '\xad', ' '), 'comment': '÷ [0.2] SPACE (Other) ÷ [0.4] SOFT HYPHEN ÷ [999.0] SPACE (Other) ÷ [0.3]' }) grapheme_segmentation_tests.append({ 'data': ('\U0001f468\u200d\U0001f469\u200d\U0001f467\u200d\U0001f466',), 'comment': '÷ [0.2] MAN × [9.0] ZERO WIDTH JOINER × [11.0] WOMAN × [9.0] ZERO WIDTH JOINER × [11.0] GIRL × [9.0] ZERO WIDTH JOINER × [11.0] BOY ÷ [0.3]' }) # }}} def write_case(spec: Union[tuple[int, ...], int], p: Callable[..., None], for_go: bool = False) -> None: if isinstance(spec, tuple): if for_go: v = ', '.join(f'0x{x:x}' for x in range(spec[0], spec[1] + 1)) p(f'\t\tcase {v}:') else: p('\t\tcase 0x{:x} ... 0x{:x}:'.format(*spec)) else: p(f'\t\tcase 0x{spec:x}:') @contextmanager def create_header(path: str, include_data_types: bool = True) -> Generator[Callable[..., None], None, None]: with open(path, 'w') as f: p = partial(print, file=f) p('// Unicode data, built from the Unicode Standard', '.'.join(map(str, unicode_version()))) p(f'// Code generated by {os.path.basename(__file__)}, DO NOT EDIT.', end='\n\n') if path.endswith('.h'): p('#pragma once') if include_data_types: p('#include "data-types.h"\n') p('START_ALLOW_CASE_RANGE') p() yield p p() if include_data_types: p('END_ALLOW_CASE_RANGE') def gen_names() -> None: aliases_map: dict[int, set[str]] = {} for word, codepoints in word_search_map.items(): for cp in codepoints: aliases_map.setdefault(cp, set()).add(word) if len(name_map) > 0xffff: raise Exception('Too many named codepoints') with open('tools/unicode_names/names.txt', 'w') as f: print(len(name_map), len(word_search_map), file=f) for cp in sorted(name_map): name = name_map[cp] words = name.lower().split() aliases = aliases_map.get(cp, set()) - set(words) end = '\n' if aliases: end = '\t' + ' '.join(sorted(aliases)) + end print(cp, *words, end=end, file=f) def gofmt(*files: str) -> None: subprocess.check_call(['gofmt', '-w', '-s'] + list(files)) def gen_rowcolumn_diacritics() -> None: # codes of all row/column diacritics codes = [] with open("gen/rowcolumn-diacritics.txt") as file: for line in file.readlines(): if line.startswith('#'): continue code = int(line.split(";")[0], 16) codes.append(code) go_file = 'tools/utils/images/rowcolumn_diacritics.go' with create_header('kitty/rowcolumn-diacritics.c') as p, create_header(go_file, include_data_types=False) as g: p('int diacritic_to_num(char_type code) {') p('\tswitch (code) {') g('package images') g(f'var NumberToDiacritic = [{len(codes)}]rune''{') g(', '.join(f'0x{x:x}' for x in codes) + ',') g('}') range_start_num = 1 range_start = 0 range_end = 0 def print_range() -> None: if range_start >= range_end: return write_case((range_start, range_end), p) p('\t\treturn code - ' + hex(range_start) + ' + ' + str(range_start_num) + ';') for code in codes: if range_end == code: range_end += 1 else: print_range() range_start_num += range_end - range_start range_start = code range_end = code + 1 print_range() p('\t}') p('\treturn 0;') p('}') gofmt(go_file) def gen_test_data() -> None: with open('kitty_tests/GraphemeBreakTest.json', 'wb') as f: f.write(json.dumps(grapheme_segmentation_tests, indent=2, ensure_ascii=False).encode()) def getsize(data: Iterable[int]) -> Literal[1, 2, 4]: # return smallest possible integer size for the given array maxdata = max(data) if maxdata < 256: return 1 if maxdata < 65536: return 2 return 4 def mask_for(bits: int) -> int: return ~((~0) << bits) HashableType = TypeVar('HashableType', bound=Hashable) def splitbins(t: tuple[HashableType, ...], property_size: int, use_fixed_shift: int = 0) -> tuple[list[int], list[int], list[HashableType], int]: if use_fixed_shift: candidates = range(use_fixed_shift, use_fixed_shift + 1) else: n = len(t)-1 # last valid index maxshift = 0 # the most we can shift n and still have something left if n > 0: while n >> 1: n >>= 1 maxshift += 1 candidates = range(maxshift + 1) t3: list[HashableType] = [] tmap: dict[HashableType, int] = {} seen = set() for x in t: if x not in seen: seen.add(x) tmap[x] = len(t3) t3.append(x) t_int = tuple(tmap[x] for x in t) bytesz = sys.maxsize def memsize() -> int: ans = len(t1)*getsize(t1) sz3 = len(t3)*property_size + len(t2)*getsize(t2) sz2 = len(t2) * property_size return ans + min(sz2, sz3) for shift in candidates: t1: list[int] = [] t2: list[int] = [] size = 2**shift bincache: dict[tuple[int, ...], int] = {} for i in range(0, len(t_int), size): bin = t_int[i:i+size] index = bincache.get(bin) if index is None: index = len(t2) bincache[bin] = index t2.extend(bin) t1.append(index >> shift) # determine memory size b = memsize() if b < bytesz: best = t1, t2, shift bytesz = b t1, t2, shift = best return t1, t2, t3, shift class Property(Protocol): @property def as_c(self) -> str: return '' @property def as_go(self) -> str: return '' @classmethod def bitsize(cls) -> int: return 0 def get_types(sz: int) -> tuple[str, str]: sz *= 8 return f'uint{sz}_t', f'uint{sz}' def gen_multistage_table( c: Callable[..., None], g: Callable[..., None], t1: Sequence[int], t2: Sequence[int], t3: Sequence[Property], shift: int, input_max_val: int ) -> None: t1_type_sz = getsize(t1) ctype_t1, gotype_t1 = get_types(t1_type_sz) mask = mask_for(shift) name = t3[0].__class__.__name__ t2_type_sz = getsize(tuple(range(len(t3)))) ctype_t2, gotype_t2 = get_types(t2_type_sz) t3_type_sz = t3[0].bitsize() // 8 lname = name.lower() input_type = get_types(getsize((input_max_val,)))[1] # Output t1 c(f'static const char_type {name}_mask = {mask}u;') c(f'static const char_type {name}_shift = {shift}u;') c(f'static const {ctype_t1} {name}_t1[{len(t1)}] = ''{') c(f'\t{", ".join(map(str, t1))}') c('};') g(f'const {lname}_mask = {mask}') g(f'const {lname}_shift = {shift}') g(f'var {lname}_t1 = [{len(t1)}]{gotype_t1}''{') g(f'\t{", ".join(map(str, t1))},') g('}') bytesz = len(t1) * t1_type_sz if t3_type_sz > t2_type_sz: # needs 3 levels bytesz += len(t2) * t2_type_sz + len(t3) * t3_type_sz c(f'static const {ctype_t2} {name}_t2[{len(t2)}] = ''{') c(f'\t{", ".join(map(str, t2))}') c('};') items = '\n\t'.join(x.as_c + f', // {i}' for i, x in enumerate(t3)) c(f'static const {name} {name}_t3[{len(t3)}] = ''{') c(f'\t{items}') c('};') g(f'var {lname}_t2 = [{len(t2)}]{gotype_t2}''{') g(f'\t{", ".join(map(str, t2))},') g('}') items = '\n\t'.join(x.as_go + f', // {i}' for i, x in enumerate(t3)) g(f'var {lname}_t3 = [{len(t3)}]{name}''{') g(f'\t{items}') g('}') g(f''' // Array accessor function that avoids bounds checking func {lname}_for(x {input_type}) {name} {{ t1 := uintptr(*(*{gotype_t1})(unsafe.Pointer(uintptr(unsafe.Pointer(&{lname}_t1[0])) + uintptr(x>>{lname}_shift)*{t1_type_sz}))) t1_shifted := (t1 << {lname}_shift) + (uintptr(x) & {lname}_mask) t2 := uintptr(*(*{gotype_t2})(unsafe.Pointer(uintptr(unsafe.Pointer(&{lname}_t2[0])) + t1_shifted*{t2_type_sz}))) return *(*{name})(unsafe.Pointer(uintptr(unsafe.Pointer(&{lname}_t3[0])) + t2*{t3_type_sz})) }} ''') else: t3 = tuple(t3[i] for i in t2) bytesz += len(t3) * t3_type_sz items = '\n\t'.join(x.as_c + ',' for x in t3) c(f'static const {name} {name}_t2[{len(t3)}] = ''{') c(f'\t{items}') c('};') items = '\n\t'.join(x.as_go + ',' for x in t3) g(f'var {lname}_t2 = [{len(t3)}]{name}''{') g(f'\t{items}') g('}') g(f''' // Array accessor function that avoids bounds checking func {lname}_for(x {input_type}) {name} {{ t1 := uintptr(*(*{gotype_t1})(unsafe.Pointer(uintptr(unsafe.Pointer(&{lname}_t1[0])) + uintptr(x>>{lname}_shift)*{t1_type_sz}))) t1_shifted := (t1 << {lname}_shift) + (uintptr(x) & {lname}_mask) return *(*{name})(unsafe.Pointer(uintptr(unsafe.Pointer(&{lname}_t2[0])) + t1_shifted*{t3_type_sz})) }} ''') print(f'Size of {name} table: {ceil(bytesz/1024)}KB with {shift} bit shift') width_shift = 4 def bitsize(maxval: int) -> int: # number of bits needed to store maxval return ceil(log(maxval, 2)) def clamped_bitsize(val: int) -> int: if val <= 8: return 8 if val <= 16: return 16 if val <= 32: return 32 if val <= 64: return 64 raise ValueError('Too many fields') def bitfield_from_int( fields: dict[str, int], x: int, int_to_str: dict[str, tuple[str, ...]] ) -> dict[str, str | bool]: # first field is least significant, last field is most significant args: dict[str, str | bool] = {} for f, shift in fields.items(): mask = mask_for(shift) val = x & mask if shift == 1: args[f] = bool(val) else: args[f] = int_to_str[f][val] x >>= shift return args def bitfield_as_int( fields: dict[str, int], vals: Sequence[bool | str], str_maps: dict[str, dict[str, int]] ) -> int: # first field is least significant, last field is most significant ans = shift = 0 for i, (f, width) in enumerate(fields.items()): qval = vals[i] if isinstance(qval, str): val = str_maps[f][qval] else: val = int(qval) ans |= val << shift shift += width return ans seg_props_from_int: dict[str, tuple[str, ...]] = {} seg_props_as_int: dict[str, dict[str, int]] = {} class GraphemeSegmentationProps(NamedTuple): grapheme_break: str = '' # set at runtime indic_conjunct_break: str = '' # set at runtime is_extended_pictographic: bool = True @classmethod def used_bits(cls) -> int: return sum(int(cls._field_defaults[f]) for f in cls._fields) @classmethod def bitsize(cls) -> int: return clamped_bitsize(cls.used_bits()) @classmethod def fields(cls) -> dict[str, int]: return {f: int(cls._field_defaults[f]) for f in cls._fields} @classmethod def from_int(cls, x: int) -> 'GraphemeSegmentationProps': args = bitfield_from_int(cls.fields(), x, seg_props_from_int) return cls(**args) # type: ignore def __int__(self) -> int: return bitfield_as_int(self.fields(), self, seg_props_as_int) control_grapheme_breaks = 'CR', 'LF', 'Control' linker_or_extend = 'Linker', 'Extend' def bitfield_declaration_as_c(name: str, fields: dict[str, int], *alternate_fields: dict[str, int]) -> str: base_size = clamped_bitsize(sum(fields.values())) base_type = f'uint{base_size}_t' ans = [f'// {name}Declaration: uses {sum(fields.values())} bits {{''{{', f'typedef union {name} {{'] def struct(fields: dict[str, int]) -> Iterator[str]: if not fields: return empty = base_size - sum(fields.values()) yield ' struct __attribute__((packed)) {' yield '#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__' for f, width in reversed(fields.items()): yield f' uint{clamped_bitsize(width)}_t {f} : {width};' if empty: yield f' uint{clamped_bitsize(empty)}_t : {empty};' yield '#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__' if empty: yield f' uint{clamped_bitsize(empty)}_t : {empty};' for f, width in fields.items(): yield f' uint{clamped_bitsize(width)}_t {f} : {width};' yield '#else' yield '#error "Unsupported endianness"' yield '#endif' yield ' };' ans.extend(struct(fields)) for fields in alternate_fields: ans.extend(struct(fields)) ans.append(f' {base_type} val;') ans.append(f'}} {name};') ans.append(f'static_assert(sizeof({name}) == sizeof({base_type}), "Fix the ordering of {name}");') ans.append(f'// End{name}Declaration }}''}}') return '\n'.join(ans) class GraphemeSegmentationState(NamedTuple): grapheme_break: str = '' # set at runtime # True if the last character ends a sequence of Indic_Conjunct_Break values: consonant {extend|linker}* incb_consonant_extended: bool = True # True if the last character ends a sequence of Indic_Conjunct_Break values: consonant {extend|linker}* linker incb_consonant_extended_linker: bool = True # True if the last character ends a sequence of Indic_Conjunct_Break values: consonant {extend|linker}* linker {extend|linker}* incb_consonant_extended_linker_extended: bool = True # True if the last character ends an emoji modifier sequence \p{Extended_Pictographic} Extend* emoji_modifier_sequence: bool = True # True if the last character was immediately preceded by an emoji modifier sequence \p{Extended_Pictographic} Extend* emoji_modifier_sequence_before_last_char: bool = True @classmethod def make(cls) -> 'GraphemeSegmentationState': return GraphemeSegmentationState('AtStart', False, False, False, False, False) @classmethod def fields(cls) -> dict[str, int]: return {f: int(cls._field_defaults[f]) for f in cls._fields} @classmethod def from_int(cls, x: int) -> 'GraphemeSegmentationState': args = bitfield_from_int(cls.fields(), x, {'grapheme_break': int_as_grapheme_break}) return cls(**args) # type: ignore def __int__(self) -> int: return bitfield_as_int(self.fields(), self, seg_props_as_int) @classmethod def c_declaration(cls) -> str: return bitfield_declaration_as_c(cls.__name__, cls.fields()) @classmethod def used_bits(cls) -> int: return sum(int(cls._field_defaults[f]) for f in cls._fields) @classmethod def bitsize(cls) -> int: return clamped_bitsize(cls.used_bits()) def add_to_current_cell(self, p: GraphemeSegmentationProps) -> 'GraphemeSegmentationResult': prev = self.grapheme_break prop = p.grapheme_break incb = p.indic_conjunct_break add_to_cell = False if self.grapheme_break == 'AtStart': add_to_cell = True if prop == 'Regional_Indicator': prop = 'Private_Expecting_RI' else: # No break between CR and LF (GB3). if prev == 'CR' and prop == 'LF': add_to_cell = True # Break before and after controls (GB4, GB5). elif prev in control_grapheme_breaks or prop in control_grapheme_breaks: pass # No break between Hangul syllable sequences (GB6, GB7, GB8). elif ( (prev == 'L' and prop in ('L', 'V', 'LV', 'LVT')) or (prev in ('LV', 'V') and prop in ('V', 'T')) or (prev in ('LVT', 'T') and prop == 'T') ): add_to_cell = True # No break before: extending characters or ZWJ (GB9), SpacingMarks (GB9a), Prepend characters (GB9b). elif prop in ('Extend', 'ZWJ', 'SpacingMark') or prev == 'Prepend': add_to_cell = True # No break within certain combinations of Indic_Conjunct_Break values # Between consonant {extend|linker}* linker {extend|linker}* and consonant (GB9c). elif self.incb_consonant_extended_linker_extended and incb == 'Consonant': add_to_cell = True # No break within emoji modifier sequences or emoji zwj sequences (GB11). elif prev == 'ZWJ' and self.emoji_modifier_sequence_before_last_char and p.is_extended_pictographic: add_to_cell = True # No break between RI if there is an odd number of RI characters before (GB12, GB13). elif prop == 'Regional_Indicator': if prev == 'Private_Expecting_RI': add_to_cell = True else: prop = 'Private_Expecting_RI' # Break everywhere else GB999 incb_consonant_extended_linker = self.incb_consonant_extended and incb == 'Linker' incb_consonant_extended_linker_extended = incb_consonant_extended_linker or ( self.incb_consonant_extended_linker_extended and incb in linker_or_extend) incb_consonant_extended = incb == 'Consonant' or ( self.incb_consonant_extended and incb in linker_or_extend) emoji_modifier_sequence_before_last_char = self.emoji_modifier_sequence emoji_modifier_sequence = (self.emoji_modifier_sequence and prop == 'Extend') or p.is_extended_pictographic return GraphemeSegmentationResult(GraphemeSegmentationState( grapheme_break=prop, incb_consonant_extended=incb_consonant_extended, incb_consonant_extended_linker=incb_consonant_extended_linker, incb_consonant_extended_linker_extended=incb_consonant_extended_linker_extended, emoji_modifier_sequence=emoji_modifier_sequence, emoji_modifier_sequence_before_last_char=emoji_modifier_sequence_before_last_char ), add_to_cell) def split_into_graphemes(props: Sequence[GraphemeSegmentationProps], text: str) -> Iterator[str]: s = GraphemeSegmentationState.make() pos = 0 for i, ch in enumerate(text): p = props[ord(ch)] s, add_to_cell = s.add_to_current_cell(p) if not add_to_cell: yield text[pos:i] pos = i if pos < len(text): yield text[pos:] def split_into_graphemes_with_table( props: Sequence['GraphemeSegmentationProps'], table: Sequence['GraphemeSegmentationResult'], text: str, ) -> Iterator[str]: s = GraphemeSegmentationResult.make() pos = 0 for i, ch in enumerate(text): k = int(GraphemeSegmentationKey(s.new_state, props[ord(ch)])) s = table[k] if not s.add_to_current_cell: yield text[pos:i] pos = i if pos < len(text): yield text[pos:] def test_grapheme_segmentation(split_into_graphemes: Callable[[str], Iterator[str]]) -> None: for test in grapheme_segmentation_tests: expected = test['data'] actual = tuple(split_into_graphemes(''.join(test['data']))) if expected != actual: def as_codepoints(text: str) -> str: return ' '.join(hex(ord(x))[2:] for x in text) qe = tuple(map(as_codepoints, expected)) qa = tuple(map(as_codepoints, actual)) raise SystemExit(f'Failed to split graphemes for: {test["comment"]}\n{expected!r} {qe} != {actual!r} {qa}') class GraphemeSegmentationKey(NamedTuple): state: GraphemeSegmentationState char: GraphemeSegmentationProps @classmethod def from_int(cls, x: int) -> 'GraphemeSegmentationKey': shift = GraphemeSegmentationProps.used_bits() mask = mask_for(shift) state = GraphemeSegmentationState.from_int(x >> shift) char = GraphemeSegmentationProps.from_int(x & mask) return GraphemeSegmentationKey(state, char) def __int__(self) -> int: shift = GraphemeSegmentationProps.used_bits() return int(self.state) << shift | int(self.char) def result(self) -> 'GraphemeSegmentationResult': return self.state.add_to_current_cell(self.char) @classmethod def code_to_convert_to_int(cls, for_go: bool = False) -> str: lines: list[str] = [] a = lines.append shift = GraphemeSegmentationProps.used_bits() if for_go: base_type = f'uint{GraphemeSegmentationState.bitsize()}' a(f'func grapheme_segmentation_key(r GraphemeSegmentationResult, ch CharProps) ({base_type}) ''{') a(f'\treturn (r.State() << {shift}) | ch.GraphemeSegmentationProperty()') a('}') else: base_type = f'uint{GraphemeSegmentationState.bitsize()}_t' a(f'static inline {base_type} {cls.__name__}(GraphemeSegmentationResult r, CharProps ch)' '{') a(f'\treturn (r.state << {shift}) | ch.grapheme_segmentation_property;') a('}') return '\n'.join(lines) class GraphemeSegmentationResult(NamedTuple): new_state: GraphemeSegmentationState = GraphemeSegmentationState() add_to_current_cell: bool = True @classmethod def used_bits(cls) -> int: return sum(int(GraphemeSegmentationState._field_defaults[f]) for f in GraphemeSegmentationState._fields) + 1 @classmethod def bitsize(cls) -> int: return clamped_bitsize(cls.used_bits()) @classmethod def make(cls) -> 'GraphemeSegmentationResult': return GraphemeSegmentationResult(GraphemeSegmentationState.make(), False) @classmethod def go_fields(cls) -> Sequence[str]: ans = [] ans.append('add_to_current_cell 1') for f, width in reversed(GraphemeSegmentationState.fields().items()): ans.append(f'{f} {width}') return tuple(ans) @property def as_go(self) -> str: shift = 0 parts = [] for f in reversed(GraphemeSegmentationResult.go_fields()): f, _, w = f.partition(' ') bits = int(w) if f != 'add_to_current_cell': x = getattr(self.new_state, f) if f == 'grapheme_break': x = f'GraphemeSegmentationResult(GBP_{x})' else: x = int(x) else: x = int(self.add_to_current_cell) mask = '0b' + '1' * bits parts.append(f'(({x} & {mask}) << {shift})') shift += bits return ' | '.join(parts) @classmethod def go_extra(cls) -> str: bits = GraphemeSegmentationState.used_bits() base_type = f'uint{GraphemeSegmentationState.bitsize()}' return f''' func (r GraphemeSegmentationResult) State() (ans {base_type}) {{ return {base_type}(r) & {mask_for(bits)} }} ''' @property def as_c(self) -> str: parts = [] for f in GraphemeSegmentationState._fields: x = getattr(self.new_state, f) match f: case 'grapheme_break': x = f'GBP_{x}' case _: x = int(x) parts.append(f'.{f}={x}') parts.append(f'.add_to_current_cell={int(self.add_to_current_cell)}') return '{' + ', '.join(parts) + '}' @classmethod def c_declaration(cls) -> str: fields = {'add_to_current_cell': 1} sfields = GraphemeSegmentationState.fields() fields.update(sfields) bits = sum(sfields.values()) # dont know if the alternate state access works in big endian return bitfield_declaration_as_c('GraphemeSegmentationResult', fields, {'state': bits}) class CharProps(NamedTuple): width: int = 3 is_emoji: bool = True category: str = '' # set at runtime is_emoji_presentation_base: bool = True # derived properties for fast lookup is_invalid: bool = True is_non_rendered: bool = True is_symbol: bool = True is_combining_char: bool = True is_word_char: bool = True is_punctuation: bool = True # needed for grapheme segmentation set as LSB bits for easy conversion to GraphemeSegmentationProps grapheme_break: str = '' # set at runtime indic_conjunct_break: str = '' # set at runtime is_extended_pictographic: bool = True @classmethod def bitsize(cls) -> int: ans = sum(int(cls._field_defaults[f]) for f in cls._fields) return clamped_bitsize(ans) @classmethod def go_fields(cls) -> Sequence[str]: ans = [] for f in cls._fields: bits = int(cls._field_defaults[f]) if f == 'width': f = 'shifted_width' ans.append(f'{f} {bits}') return tuple(ans) @property def as_go(self) -> str: shift = 0 parts = [] for f in reversed(self.go_fields()): f, _, w = f.partition(' ') if f == 'shifted_width': f = 'width' x = getattr(self, f) match f: case 'width': x += width_shift case 'grapheme_break': x = f'CharProps(GBP_{x})' case 'indic_conjunct_break': x = f'CharProps(ICB_{x})' case 'category': x = f'CharProps(UC_{x})' case _: x = int(x) bits = int(w) mask = '0b' + '1' * bits parts.append(f'(({x} & {mask}) << {shift})') shift += bits return ' | '.join(parts) @classmethod def go_extra(cls) -> str: base_type = f'uint{GraphemeSegmentationState.bitsize()}' f = GraphemeSegmentationProps.fields() s = f['grapheme_break'] + f['indic_conjunct_break'] return f''' func (s CharProps) Width() int {{ return int(s.Shifted_width()) - {width_shift} }} func (s CharProps) GraphemeSegmentationProperty() {base_type} {{ return {base_type}(s.Grapheme_break() | (s.Indic_conjunct_break() << {f["grapheme_break"]}) | (s.Is_extended_pictographic() << {s})) }} ''' @property def as_c(self) -> str: parts = [] for f in self._fields: x = getattr(self, f) match f: case 'width': x += width_shift f = 'shifted_width' case 'grapheme_break': x = f'GBP_{x}' case 'indic_conjunct_break': x = f'ICB_{x}' case 'category': x = f'UC_{x}' case _: x = int(x) parts.append(f'.{f}={x}') return '{' + ', '.join(parts) + '}' @classmethod def fields(cls) -> dict[str, int]: return {'shifted_width' if f == 'width' else f: int(cls._field_defaults[f]) for f in cls._fields} @classmethod def c_declaration(cls) -> str: # Dont know if grapheme_segmentation_property in alternate works on big endian alternate = { 'grapheme_segmentation_property': sum(int(cls._field_defaults[f]) for f in GraphemeSegmentationProps._fields) } return bitfield_declaration_as_c(cls.__name__, cls.fields(), alternate) def generate_enum(p: Callable[..., None], gp: Callable[..., None], name: str, *items: str, prefix: str = '') -> None: p(f'typedef enum {name} {{') # }} gp(f'type {name} uint8\n') gp('const (') # ) for i, x in enumerate(items): x = prefix + x p(f'\t{x},') if i == 0: gp(f'{x} {name} = iota') else: gp(x) p(f'}} {name};') gp(')') p('') gp('') def category_set(predicate: Callable[[str], bool]) -> set[int]: ans = set() for c, chs in class_maps.items(): if predicate(c): ans |= chs return ans def top_level_category(q: str) -> set[int]: return category_set(lambda x: x[0] in q) def patch_declaration(name: str, decl: str, raw: str) -> str: begin = f'// {name}Declaration' end = f'// End{name}Declaration }}''}}' return re.sub(rf'{begin}.+?{end}', decl.rstrip(), raw, flags=re.DOTALL) def gen_char_props() -> None: CharProps._field_defaults['grapheme_break'] = str(bitsize(len(grapheme_segmentation_maps))) CharProps._field_defaults['indic_conjunct_break'] = str(bitsize(len(incb_map))) CharProps._field_defaults['category'] = str(bitsize(len(class_maps) + 1)) GraphemeSegmentationProps._field_defaults['grapheme_break'] = CharProps._field_defaults['grapheme_break'] GraphemeSegmentationProps._field_defaults['indic_conjunct_break'] = CharProps._field_defaults['indic_conjunct_break'] GraphemeSegmentationState._field_defaults['grapheme_break'] = GraphemeSegmentationProps._field_defaults['grapheme_break'] invalid = class_maps['Cc'] | class_maps['Cs'] | non_characters non_printing = invalid | class_maps['Cf'] non_rendered = non_printing | property_maps['Other_Default_Ignorable_Code_Point'] | set(range(0xfe00, 0xfe0f + 1)) is_word_char = top_level_category('LN') is_punctuation = top_level_category('P') width_map: dict[int, int] = {} cat_map: dict[int, str] = {} for cat, chs in class_maps.items(): for ch in chs: cat_map[ch] = cat def aw(s: Iterable[int], width: int) -> None: nonlocal width_map d = dict.fromkeys(s, width) d.update(width_map) width_map = d aw(flag_codepoints, 2) aw(doublewidth, 2) aw(wide_emoji, 2) aw(marks | {0}, 0) aw(non_printing, -1) aw(ambiguous, -2) aw(class_maps['Co'], -3) # Private use aw(not_assigned, -4) gs_map: dict[int, str] = {} icb_map: dict[int, str] = {} for name, cps in grapheme_segmentation_maps.items(): gs_map.update(dict.fromkeys(cps, name)) for name, cps in incb_map.items(): icb_map.update(dict.fromkeys(cps, name)) prop_array = tuple( CharProps( width=width_map.get(ch, 1), grapheme_break=gs_map.get(ch, 'None'), indic_conjunct_break=icb_map.get(ch, 'None'), is_invalid=ch in invalid, is_non_rendered=ch in non_rendered, is_emoji=ch in all_emoji, is_symbol=ch in all_symbols, is_extended_pictographic=ch in extended_pictographic, is_emoji_presentation_base=ch in emoji_presentation_bases, is_combining_char=ch in marks, category=cat_map.get(ch, 'Cn'), is_word_char=ch in is_word_char, is_punctuation=ch in is_punctuation, ) for ch in range(sys.maxunicode + 1)) gsprops = tuple(GraphemeSegmentationProps( grapheme_break=x.grapheme_break, indic_conjunct_break=x.indic_conjunct_break, is_extended_pictographic=x.is_extended_pictographic) for x in prop_array) test_grapheme_segmentation(partial(split_into_graphemes, gsprops)) gseg_results = tuple(GraphemeSegmentationKey.from_int(i).result() for i in range(1 << 16)) test_grapheme_segmentation(partial(split_into_graphemes_with_table, gsprops, gseg_results)) t1, t2, t3, t_shift = splitbins(prop_array, CharProps.bitsize() // 8) g1, g2, g3, g_shift = splitbins(gseg_results, GraphemeSegmentationResult.bitsize() // 8) from .bitfields import make_bitfield buf = StringIO() cen = partial(print, file=buf) with create_header('kitty/char-props-data.h', include_data_types=False) as c, open('tools/wcswidth/char-props-data.go', 'w') as gof: gp = partial(print, file=gof) gp('package wcswidth') gp('import "unsafe"') gp(f'const MAX_UNICODE = {sys.maxunicode}') gp(f'const UNICODE_LIMIT = {sys.maxunicode + 1}') cen('// UCBDeclaration {{''{') cen(f'#define MAX_UNICODE ({sys.maxunicode}u)') generate_enum(cen, gp, 'GraphemeBreakProperty', *grapheme_segmentation_maps, prefix='GBP_') generate_enum(c, gp, 'IndicConjunctBreak', *incb_map, prefix='ICB_') generate_enum(cen, gp, 'UnicodeCategory', 'Cn', *class_maps, prefix='UC_') cen('// EndUCBDeclaration }}''}') gp(make_bitfield('tools/wcswidth', 'CharProps', *CharProps.go_fields(), add_package=False)[1]) gp(make_bitfield('tools/wcswidth', 'GraphemeSegmentationResult', *GraphemeSegmentationResult.go_fields(), add_package=False)[1]) gp(CharProps.go_extra()) gp(GraphemeSegmentationResult.go_extra()) gen_multistage_table(c, gp, t1, t2, t3, t_shift, len(prop_array)-1) gen_multistage_table(c, gp, g1, g2, g3, g_shift, len(gseg_results)-1) c(GraphemeSegmentationKey.code_to_convert_to_int()) c(GraphemeSegmentationState.c_declaration()) gp(GraphemeSegmentationKey.code_to_convert_to_int(for_go=True)) gofmt(gof.name) with open('kitty/char-props.h', 'r+') as f: raw = f.read() nraw = re.sub(r'\d+/\*=width_shift\*/', f'{width_shift}/*=width_shift*/', raw) nraw = patch_declaration('CharProps', CharProps.c_declaration(), nraw) nraw = patch_declaration('GraphemeSegmentationResult', GraphemeSegmentationResult.c_declaration(), nraw) nraw = patch_declaration('UCB', buf.getvalue(), nraw) if nraw != raw: f.seek(0) f.truncate() f.write(nraw) def main(args: list[str]=sys.argv) -> None: parse_ucd() parse_prop_list() parse_emoji() parse_eaw() parse_grapheme_segmentation() parse_test_data() gen_names() gen_rowcolumn_diacritics() gen_test_data() gen_char_props() if __name__ == '__main__': import runpy m = runpy.run_path(os.path.dirname(os.path.abspath(__file__))) m['main']([sys.executable, 'wcwidth'])