slab: add sheaf support for batching kfree_rcu() operations

Extend the sheaf infrastructure for more efficient kfree_rcu() handling.
For caches with sheaves, on each cpu maintain a rcu_free sheaf in
addition to main and spare sheaves.

kfree_rcu() operations will try to put objects on this sheaf. Once full,
the sheaf is detached and submitted to call_rcu() with a handler that
will try to put it in the barn, or flush to slab pages using bulk free,
when the barn is full. Then a new empty sheaf must be obtained to put
more objects there.

It's possible that no free sheaves are available to use for a new
rcu_free sheaf, and the allocation in kfree_rcu() context can only use
GFP_NOWAIT and thus may fail. In that case, fall back to the existing
kfree_rcu() implementation.

Expected advantages:
- batching the kfree_rcu() operations, that could eventually replace the
  existing batching
- sheaves can be reused for allocations via barn instead of being
  flushed to slabs, which is more efficient
  - this includes cases where only some cpus are allowed to process rcu
    callbacks (CONFIG_RCU_NOCB_CPU)

Possible disadvantage:
- objects might be waiting for more than their grace period (it is
  determined by the last object freed into the sheaf), increasing memory
  usage - but the existing batching does that too.

Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny
implementation favors smaller memory footprint over performance.

Also for now skip the usage of rcu sheaf for CONFIG_PREEMPT_RT as the
contexts where kfree_rcu() is called might not be compatible with taking
a barn spinlock or a GFP_NOWAIT allocation of a new sheaf taking a
spinlock - the current kfree_rcu() implementation avoids doing that.

Teach kvfree_rcu_barrier() to flush all rcu_free sheaves from all caches
that have them. This is not a cheap operation, but the barrier usage is
rare - currently kmem_cache_destroy() or on module unload.

Add CONFIG_SLUB_STATS counters free_rcu_sheaf and free_rcu_sheaf_fail to
count how many kfree_rcu() used the rcu_free sheaf successfully and how
many had to fall back to the existing implementation.

Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This commit is contained in:
Vlastimil Babka
2025-09-03 14:59:46 +02:00
parent 2d517aa09b
commit ec66e0d599
3 changed files with 295 additions and 2 deletions

View File

@@ -435,6 +435,9 @@ static inline bool is_kmalloc_normal(struct kmem_cache *s)
return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
}
bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj);
void flush_all_rcu_sheaves(void);
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \

View File

@@ -1608,6 +1608,27 @@ static void kfree_rcu_work(struct work_struct *work)
kvfree_rcu_list(head);
}
static bool kfree_rcu_sheaf(void *obj)
{
struct kmem_cache *s;
struct folio *folio;
struct slab *slab;
if (is_vmalloc_addr(obj))
return false;
folio = virt_to_folio(obj);
if (unlikely(!folio_test_slab(folio)))
return false;
slab = folio_slab(folio);
s = slab->slab_cache;
if (s->cpu_sheaves)
return __kfree_rcu_sheaf(s, obj);
return false;
}
static bool
need_offload_krc(struct kfree_rcu_cpu *krcp)
{
@@ -1952,6 +1973,9 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr)
if (!head)
might_sleep();
if (!IS_ENABLED(CONFIG_PREEMPT_RT) && kfree_rcu_sheaf(ptr))
return;
// Queue the object but don't yet schedule the batch.
if (debug_rcu_head_queue(ptr)) {
// Probable double kfree_rcu(), just leak.
@@ -2026,6 +2050,8 @@ void kvfree_rcu_barrier(void)
bool queued;
int i, cpu;
flush_all_rcu_sheaves();
/*
* Firstly we detach objects and queue them over an RCU-batch
* for all CPUs. Finally queued works are flushed for each CPU.

268
mm/slub.c
View File

@@ -367,6 +367,8 @@ enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
FREE_PCS, /* Free to percpu sheaf */
FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
FREE_FASTPATH, /* Free to cpu slab */
FREE_SLOWPATH, /* Freeing not to cpu slab */
FREE_FROZEN, /* Freeing to frozen slab */
@@ -461,6 +463,7 @@ struct slab_sheaf {
struct rcu_head rcu_head;
struct list_head barn_list;
};
struct kmem_cache *cache;
unsigned int size;
void *objects[];
};
@@ -469,6 +472,7 @@ struct slub_percpu_sheaves {
local_trylock_t lock;
struct slab_sheaf *main; /* never NULL when unlocked */
struct slab_sheaf *spare; /* empty or full, may be NULL */
struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
};
/*
@@ -2531,6 +2535,8 @@ static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
if (unlikely(!sheaf))
return NULL;
sheaf->cache = s;
stat(s, SHEAF_ALLOC);
return sheaf;
@@ -2655,6 +2661,43 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
sheaf->size = 0;
}
static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
struct slab_sheaf *sheaf)
{
bool init = slab_want_init_on_free(s);
void **p = &sheaf->objects[0];
unsigned int i = 0;
while (i < sheaf->size) {
struct slab *slab = virt_to_slab(p[i]);
memcg_slab_free_hook(s, slab, p + i, 1);
alloc_tagging_slab_free_hook(s, slab, p + i, 1);
if (unlikely(!slab_free_hook(s, p[i], init, true))) {
p[i] = p[--sheaf->size];
continue;
}
i++;
}
}
static void rcu_free_sheaf_nobarn(struct rcu_head *head)
{
struct slab_sheaf *sheaf;
struct kmem_cache *s;
sheaf = container_of(head, struct slab_sheaf, rcu_head);
s = sheaf->cache;
__rcu_free_sheaf_prepare(s, sheaf);
sheaf_flush_unused(s, sheaf);
free_empty_sheaf(s, sheaf);
}
/*
* Caller needs to make sure migration is disabled in order to fully flush
* single cpu's sheaves
@@ -2667,7 +2710,7 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
static void pcs_flush_all(struct kmem_cache *s)
{
struct slub_percpu_sheaves *pcs;
struct slab_sheaf *spare;
struct slab_sheaf *spare, *rcu_free;
local_lock(&s->cpu_sheaves->lock);
pcs = this_cpu_ptr(s->cpu_sheaves);
@@ -2675,6 +2718,9 @@ static void pcs_flush_all(struct kmem_cache *s)
spare = pcs->spare;
pcs->spare = NULL;
rcu_free = pcs->rcu_free;
pcs->rcu_free = NULL;
local_unlock(&s->cpu_sheaves->lock);
if (spare) {
@@ -2682,6 +2728,9 @@ static void pcs_flush_all(struct kmem_cache *s)
free_empty_sheaf(s, spare);
}
if (rcu_free)
call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
sheaf_flush_main(s);
}
@@ -2698,6 +2747,11 @@ static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
free_empty_sheaf(s, pcs->spare);
pcs->spare = NULL;
}
if (pcs->rcu_free) {
call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
pcs->rcu_free = NULL;
}
}
static void pcs_destroy(struct kmem_cache *s)
@@ -2723,6 +2777,7 @@ static void pcs_destroy(struct kmem_cache *s)
*/
WARN_ON(pcs->spare);
WARN_ON(pcs->rcu_free);
if (!WARN_ON(pcs->main->size)) {
free_empty_sheaf(s, pcs->main);
@@ -3780,7 +3835,7 @@ static bool has_pcs_used(int cpu, struct kmem_cache *s)
pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
return (pcs->spare || pcs->main->size);
return (pcs->spare || pcs->rcu_free || pcs->main->size);
}
/*
@@ -3840,6 +3895,74 @@ static void flush_all(struct kmem_cache *s)
cpus_read_unlock();
}
static void flush_rcu_sheaf(struct work_struct *w)
{
struct slub_percpu_sheaves *pcs;
struct slab_sheaf *rcu_free;
struct slub_flush_work *sfw;
struct kmem_cache *s;
sfw = container_of(w, struct slub_flush_work, work);
s = sfw->s;
local_lock(&s->cpu_sheaves->lock);
pcs = this_cpu_ptr(s->cpu_sheaves);
rcu_free = pcs->rcu_free;
pcs->rcu_free = NULL;
local_unlock(&s->cpu_sheaves->lock);
if (rcu_free)
call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
}
/* needed for kvfree_rcu_barrier() */
void flush_all_rcu_sheaves(void)
{
struct slub_flush_work *sfw;
struct kmem_cache *s;
unsigned int cpu;
cpus_read_lock();
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
if (!s->cpu_sheaves)
continue;
mutex_lock(&flush_lock);
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
/*
* we don't check if rcu_free sheaf exists - racing
* __kfree_rcu_sheaf() might have just removed it.
* by executing flush_rcu_sheaf() on the cpu we make
* sure the __kfree_rcu_sheaf() finished its call_rcu()
*/
INIT_WORK(&sfw->work, flush_rcu_sheaf);
sfw->s = s;
queue_work_on(cpu, flushwq, &sfw->work);
}
for_each_online_cpu(cpu) {
sfw = &per_cpu(slub_flush, cpu);
flush_work(&sfw->work);
}
mutex_unlock(&flush_lock);
}
mutex_unlock(&slab_mutex);
cpus_read_unlock();
rcu_barrier();
}
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
@@ -5413,6 +5536,138 @@ bool free_to_pcs(struct kmem_cache *s, void *object)
return true;
}
static void rcu_free_sheaf(struct rcu_head *head)
{
struct slab_sheaf *sheaf;
struct node_barn *barn;
struct kmem_cache *s;
sheaf = container_of(head, struct slab_sheaf, rcu_head);
s = sheaf->cache;
/*
* This may remove some objects due to slab_free_hook() returning false,
* so that the sheaf might no longer be completely full. But it's easier
* to handle it as full (unless it became completely empty), as the code
* handles it fine. The only downside is that sheaf will serve fewer
* allocations when reused. It only happens due to debugging, which is a
* performance hit anyway.
*/
__rcu_free_sheaf_prepare(s, sheaf);
barn = get_node(s, numa_mem_id())->barn;
/* due to slab_free_hook() */
if (unlikely(sheaf->size == 0))
goto empty;
/*
* Checking nr_full/nr_empty outside lock avoids contention in case the
* barn is at the respective limit. Due to the race we might go over the
* limit but that should be rare and harmless.
*/
if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
stat(s, BARN_PUT);
barn_put_full_sheaf(barn, sheaf);
return;
}
stat(s, BARN_PUT_FAIL);
sheaf_flush_unused(s, sheaf);
empty:
if (data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
barn_put_empty_sheaf(barn, sheaf);
return;
}
free_empty_sheaf(s, sheaf);
}
bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
{
struct slub_percpu_sheaves *pcs;
struct slab_sheaf *rcu_sheaf;
if (!local_trylock(&s->cpu_sheaves->lock))
goto fail;
pcs = this_cpu_ptr(s->cpu_sheaves);
if (unlikely(!pcs->rcu_free)) {
struct slab_sheaf *empty;
struct node_barn *barn;
if (pcs->spare && pcs->spare->size == 0) {
pcs->rcu_free = pcs->spare;
pcs->spare = NULL;
goto do_free;
}
barn = get_barn(s);
empty = barn_get_empty_sheaf(barn);
if (empty) {
pcs->rcu_free = empty;
goto do_free;
}
local_unlock(&s->cpu_sheaves->lock);
empty = alloc_empty_sheaf(s, GFP_NOWAIT);
if (!empty)
goto fail;
if (!local_trylock(&s->cpu_sheaves->lock)) {
barn_put_empty_sheaf(barn, empty);
goto fail;
}
pcs = this_cpu_ptr(s->cpu_sheaves);
if (unlikely(pcs->rcu_free))
barn_put_empty_sheaf(barn, empty);
else
pcs->rcu_free = empty;
}
do_free:
rcu_sheaf = pcs->rcu_free;
/*
* Since we flush immediately when size reaches capacity, we never reach
* this with size already at capacity, so no OOB write is possible.
*/
rcu_sheaf->objects[rcu_sheaf->size++] = obj;
if (likely(rcu_sheaf->size < s->sheaf_capacity))
rcu_sheaf = NULL;
else
pcs->rcu_free = NULL;
/*
* we flush before local_unlock to make sure a racing
* flush_all_rcu_sheaves() doesn't miss this sheaf
*/
if (rcu_sheaf)
call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
local_unlock(&s->cpu_sheaves->lock);
stat(s, FREE_RCU_SHEAF);
return true;
fail:
stat(s, FREE_RCU_SHEAF_FAIL);
return false;
}
/*
* Bulk free objects to the percpu sheaves.
* Unlike free_to_pcs() this includes the calls to all necessary hooks
@@ -6909,6 +7164,11 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
struct kmem_cache_node *n;
flush_all_cpus_locked(s);
/* we might have rcu sheaves in flight */
if (s->cpu_sheaves)
rcu_barrier();
/* Attempt to free all objects */
for_each_kmem_cache_node(s, node, n) {
if (n->barn)
@@ -8284,6 +8544,8 @@ STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_PCS, free_cpu_sheaf);
STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
@@ -8382,6 +8644,8 @@ static struct attribute *slab_attrs[] = {
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
&free_cpu_sheaf_attr.attr,
&free_rcu_sheaf_attr.attr,
&free_rcu_sheaf_fail_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,