mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-12-22 12:17:45 +01:00
Use prefilled sheaves instead of bulk allocations. This should speed up the allocations and the return path of unused allocations. Remove the push and pop of nodes from the maple state as this is now handled by the slab layer with sheaves. Testing has been removed as necessary since the features of the tree have been reduced. Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
380 lines
8.2 KiB
C
380 lines
8.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <malloc.h>
|
|
#include <pthread.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <urcu/uatomic.h>
|
|
|
|
int nr_allocated;
|
|
int preempt_count;
|
|
int test_verbose;
|
|
|
|
void kmem_cache_set_callback(struct kmem_cache *cachep, void (*callback)(void *))
|
|
{
|
|
cachep->callback = callback;
|
|
}
|
|
|
|
void kmem_cache_set_private(struct kmem_cache *cachep, void *private)
|
|
{
|
|
cachep->private = private;
|
|
}
|
|
|
|
void kmem_cache_set_non_kernel(struct kmem_cache *cachep, unsigned int val)
|
|
{
|
|
cachep->non_kernel = val;
|
|
}
|
|
|
|
unsigned long kmem_cache_get_alloc(struct kmem_cache *cachep)
|
|
{
|
|
return cachep->size * cachep->nr_allocated;
|
|
}
|
|
|
|
unsigned long kmem_cache_nr_allocated(struct kmem_cache *cachep)
|
|
{
|
|
return cachep->nr_allocated;
|
|
}
|
|
|
|
unsigned long kmem_cache_nr_tallocated(struct kmem_cache *cachep)
|
|
{
|
|
return cachep->nr_tallocated;
|
|
}
|
|
|
|
void kmem_cache_zero_nr_tallocated(struct kmem_cache *cachep)
|
|
{
|
|
cachep->nr_tallocated = 0;
|
|
}
|
|
|
|
void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
|
|
int gfp)
|
|
{
|
|
void *p;
|
|
|
|
if (cachep->exec_callback) {
|
|
if (cachep->callback)
|
|
cachep->callback(cachep->private);
|
|
cachep->exec_callback = false;
|
|
}
|
|
|
|
if (!(gfp & __GFP_DIRECT_RECLAIM)) {
|
|
if (!cachep->non_kernel) {
|
|
if (cachep->callback)
|
|
cachep->exec_callback = true;
|
|
return NULL;
|
|
}
|
|
|
|
cachep->non_kernel--;
|
|
}
|
|
|
|
pthread_mutex_lock(&cachep->lock);
|
|
if (cachep->nr_objs) {
|
|
struct radix_tree_node *node = cachep->objs;
|
|
cachep->nr_objs--;
|
|
cachep->objs = node->parent;
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
node->parent = NULL;
|
|
p = node;
|
|
} else {
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
if (cachep->align) {
|
|
if (posix_memalign(&p, cachep->align, cachep->size) < 0)
|
|
return NULL;
|
|
} else {
|
|
p = malloc(cachep->size);
|
|
}
|
|
|
|
if (cachep->ctor)
|
|
cachep->ctor(p);
|
|
else if (gfp & __GFP_ZERO)
|
|
memset(p, 0, cachep->size);
|
|
}
|
|
|
|
uatomic_inc(&cachep->nr_allocated);
|
|
uatomic_inc(&nr_allocated);
|
|
uatomic_inc(&cachep->nr_tallocated);
|
|
if (kmalloc_verbose)
|
|
printf("Allocating %p from slab\n", p);
|
|
return p;
|
|
}
|
|
|
|
void __kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
|
|
{
|
|
assert(objp);
|
|
if (cachep->nr_objs > 10 || cachep->align) {
|
|
memset(objp, POISON_FREE, cachep->size);
|
|
free(objp);
|
|
} else {
|
|
struct radix_tree_node *node = objp;
|
|
cachep->nr_objs++;
|
|
node->parent = cachep->objs;
|
|
cachep->objs = node;
|
|
}
|
|
}
|
|
|
|
void kmem_cache_free_locked(struct kmem_cache *cachep, void *objp)
|
|
{
|
|
uatomic_dec(&nr_allocated);
|
|
uatomic_dec(&cachep->nr_allocated);
|
|
if (kmalloc_verbose)
|
|
printf("Freeing %p to slab\n", objp);
|
|
__kmem_cache_free_locked(cachep, objp);
|
|
}
|
|
|
|
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
|
|
{
|
|
pthread_mutex_lock(&cachep->lock);
|
|
kmem_cache_free_locked(cachep, objp);
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
}
|
|
|
|
void kmem_cache_free_bulk(struct kmem_cache *cachep, size_t size, void **list)
|
|
{
|
|
if (kmalloc_verbose)
|
|
pr_debug("Bulk free %p[0-%zu]\n", list, size - 1);
|
|
|
|
if (cachep->exec_callback) {
|
|
if (cachep->callback)
|
|
cachep->callback(cachep->private);
|
|
cachep->exec_callback = false;
|
|
}
|
|
|
|
pthread_mutex_lock(&cachep->lock);
|
|
for (int i = 0; i < size; i++)
|
|
kmem_cache_free_locked(cachep, list[i]);
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
}
|
|
|
|
void kmem_cache_shrink(struct kmem_cache *cachep)
|
|
{
|
|
}
|
|
|
|
int kmem_cache_alloc_bulk(struct kmem_cache *cachep, gfp_t gfp, size_t size,
|
|
void **p)
|
|
{
|
|
size_t i;
|
|
|
|
if (kmalloc_verbose)
|
|
pr_debug("Bulk alloc %zu\n", size);
|
|
|
|
pthread_mutex_lock(&cachep->lock);
|
|
if (cachep->nr_objs >= size) {
|
|
struct radix_tree_node *node;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
if (!(gfp & __GFP_DIRECT_RECLAIM)) {
|
|
if (!cachep->non_kernel)
|
|
break;
|
|
cachep->non_kernel--;
|
|
}
|
|
|
|
node = cachep->objs;
|
|
cachep->nr_objs--;
|
|
cachep->objs = node->parent;
|
|
p[i] = node;
|
|
node->parent = NULL;
|
|
}
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
} else {
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
for (i = 0; i < size; i++) {
|
|
if (!(gfp & __GFP_DIRECT_RECLAIM)) {
|
|
if (!cachep->non_kernel)
|
|
break;
|
|
cachep->non_kernel--;
|
|
}
|
|
|
|
if (cachep->align) {
|
|
if (posix_memalign(&p[i], cachep->align,
|
|
cachep->size) < 0)
|
|
break;
|
|
} else {
|
|
p[i] = malloc(cachep->size);
|
|
if (!p[i])
|
|
break;
|
|
}
|
|
if (cachep->ctor)
|
|
cachep->ctor(p[i]);
|
|
else if (gfp & __GFP_ZERO)
|
|
memset(p[i], 0, cachep->size);
|
|
}
|
|
}
|
|
|
|
if (i < size) {
|
|
size = i;
|
|
pthread_mutex_lock(&cachep->lock);
|
|
for (i = 0; i < size; i++)
|
|
__kmem_cache_free_locked(cachep, p[i]);
|
|
pthread_mutex_unlock(&cachep->lock);
|
|
if (cachep->callback)
|
|
cachep->exec_callback = true;
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
uatomic_inc(&nr_allocated);
|
|
uatomic_inc(&cachep->nr_allocated);
|
|
uatomic_inc(&cachep->nr_tallocated);
|
|
if (kmalloc_verbose)
|
|
printf("Allocating %p from slab\n", p[i]);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
struct kmem_cache *
|
|
__kmem_cache_create_args(const char *name, unsigned int size,
|
|
struct kmem_cache_args *args,
|
|
unsigned int flags)
|
|
{
|
|
struct kmem_cache *ret = malloc(sizeof(*ret));
|
|
|
|
pthread_mutex_init(&ret->lock, NULL);
|
|
ret->size = size;
|
|
ret->align = args->align;
|
|
ret->sheaf_capacity = args->sheaf_capacity;
|
|
ret->nr_objs = 0;
|
|
ret->nr_allocated = 0;
|
|
ret->nr_tallocated = 0;
|
|
ret->objs = NULL;
|
|
ret->ctor = args->ctor;
|
|
ret->non_kernel = 0;
|
|
ret->exec_callback = false;
|
|
ret->callback = NULL;
|
|
ret->private = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct slab_sheaf *
|
|
kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
|
|
{
|
|
struct slab_sheaf *sheaf;
|
|
unsigned int capacity;
|
|
|
|
if (s->exec_callback) {
|
|
if (s->callback)
|
|
s->callback(s->private);
|
|
s->exec_callback = false;
|
|
}
|
|
|
|
capacity = max(size, s->sheaf_capacity);
|
|
|
|
sheaf = calloc(1, sizeof(*sheaf) + sizeof(void *) * capacity);
|
|
if (!sheaf)
|
|
return NULL;
|
|
|
|
sheaf->cache = s;
|
|
sheaf->capacity = capacity;
|
|
sheaf->size = kmem_cache_alloc_bulk(s, gfp, size, sheaf->objects);
|
|
if (!sheaf->size) {
|
|
free(sheaf);
|
|
return NULL;
|
|
}
|
|
|
|
return sheaf;
|
|
}
|
|
|
|
int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
|
|
struct slab_sheaf **sheafp, unsigned int size)
|
|
{
|
|
struct slab_sheaf *sheaf = *sheafp;
|
|
int refill;
|
|
|
|
if (sheaf->size >= size)
|
|
return 0;
|
|
|
|
if (size > sheaf->capacity) {
|
|
sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
|
|
if (!sheaf)
|
|
return -ENOMEM;
|
|
|
|
kmem_cache_return_sheaf(s, gfp, *sheafp);
|
|
*sheafp = sheaf;
|
|
return 0;
|
|
}
|
|
|
|
refill = kmem_cache_alloc_bulk(s, gfp, size - sheaf->size,
|
|
&sheaf->objects[sheaf->size]);
|
|
if (!refill)
|
|
return -ENOMEM;
|
|
|
|
sheaf->size += refill;
|
|
return 0;
|
|
}
|
|
|
|
void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
|
|
struct slab_sheaf *sheaf)
|
|
{
|
|
if (sheaf->size)
|
|
kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
|
|
|
|
free(sheaf);
|
|
}
|
|
|
|
void *
|
|
kmem_cache_alloc_from_sheaf(struct kmem_cache *s, gfp_t gfp,
|
|
struct slab_sheaf *sheaf)
|
|
{
|
|
void *obj;
|
|
|
|
if (sheaf->size == 0) {
|
|
printf("Nothing left in sheaf!\n");
|
|
return NULL;
|
|
}
|
|
|
|
obj = sheaf->objects[--sheaf->size];
|
|
sheaf->objects[sheaf->size] = NULL;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* Test the test infrastructure for kem_cache_alloc/free and bulk counterparts.
|
|
*/
|
|
void test_kmem_cache_bulk(void)
|
|
{
|
|
int i;
|
|
void *list[12];
|
|
static struct kmem_cache *test_cache, *test_cache2;
|
|
|
|
/*
|
|
* Testing the bulk allocators without aligned kmem_cache to force the
|
|
* bulk alloc/free to reuse
|
|
*/
|
|
test_cache = kmem_cache_create("test_cache", 256, 0, SLAB_PANIC, NULL);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
kmem_cache_free(test_cache, list[i]);
|
|
assert(test_cache->nr_objs == 5);
|
|
|
|
kmem_cache_alloc_bulk(test_cache, __GFP_DIRECT_RECLAIM, 5, list);
|
|
kmem_cache_free_bulk(test_cache, 5, list);
|
|
|
|
for (i = 0; i < 12 ; i++)
|
|
list[i] = kmem_cache_alloc(test_cache, __GFP_DIRECT_RECLAIM);
|
|
|
|
for (i = 0; i < 12; i++)
|
|
kmem_cache_free(test_cache, list[i]);
|
|
|
|
/* The last free will not be kept around */
|
|
assert(test_cache->nr_objs == 11);
|
|
|
|
/* Aligned caches will immediately free */
|
|
test_cache2 = kmem_cache_create("test_cache2", 128, 128, SLAB_PANIC, NULL);
|
|
|
|
kmem_cache_alloc_bulk(test_cache2, __GFP_DIRECT_RECLAIM, 10, list);
|
|
kmem_cache_free_bulk(test_cache2, 10, list);
|
|
assert(!test_cache2->nr_objs);
|
|
|
|
|
|
}
|