Merge pull request #7812 from DougGregor/self-derived-constraints

[GenericSignatureBuilder] Remove self-derived same-type-to-concrete constraints.
This commit is contained in:
Doug Gregor
2017-02-28 11:22:18 -08:00
committed by GitHub
10 changed files with 781 additions and 456 deletions

View File

@@ -31,6 +31,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/TrailingObjects.h"
#include <functional>
#include <memory>
@@ -56,313 +57,6 @@ class TypeRepr;
class ASTContext;
class DiagnosticEngine;
/// Describes how a generic signature determines a requirement, from its origin
/// in some requirement written in the source, inferred through a path of
/// other implications (e.g., introduced by a particular protocol).
///
/// Requirement sources are uniqued within a generic signature builder.
class RequirementSource : public llvm::FoldingSetNode {
public:
enum Kind : uint8_t {
/// A requirement stated explicitly, e.g., in a where clause or type
/// parameter declaration.
///
/// Explicitly-stated requirement can be tied to a specific requirement
/// in a 'where' clause (which stores a \c RequirementRepr), a type in an
/// 'inheritance' clause (which stores a \c TypeRepr), or can be 'abstract',
/// , e.g., due to canonicalization, deserialization, or other
/// source-independent formulation.
///
/// This is a root requirement source.
Explicit,
/// A requirement inferred from part of the signature of a declaration,
/// e.g., the type of a generic function. For example:
///
/// func f<T>(_: Set<T>) { } // infers T: Hashable
///
/// This is a root requirement source, which can be described by a
/// \c TypeRepr.
Inferred,
/// A requirement for the creation of the requirement signature of a
/// protocol.
///
/// This is a root requirement source, which is described by the protocol
/// whose requirement signature is being computed.
RequirementSignatureSelf,
/// The requirement came from two nested types of the equivalent types whose
/// names match.
///
/// This is a root requirement source.
NestedTypeNameMatch,
/// The requirement is a protocol requirement.
///
/// This stores the protocol that introduced the requirement.
ProtocolRequirement,
/// A requirement that was resolved via a superclass requirement.
///
/// This stores the \c ProtocolConformance* used to resolve the
/// requirement.
Superclass,
/// A requirement that was resolved for a nested type via its parent
/// type.
Parent,
/// A requirement that was resolved for a nested type via a same-type-to-
/// concrete constraint.
///
/// This stores the \c ProtocolConformance* used to resolve the
/// requirement.
Concrete,
};
/// The kind of requirement source.
const Kind kind;
private:
/// The kind of storage we have.
enum class StorageKind : uint8_t {
None,
TypeRepr,
RequirementRepr,
ProtocolDecl,
ProtocolConformance,
};
/// The kind of storage we have.
const StorageKind storageKind;
/// The actual storage, described by \c storageKind.
union {
/// The type representation describing where the requirement came from.
const TypeRepr *typeRepr;
/// Where a requirement came from.
const RequirementRepr *requirementRepr;
/// The protocol being described.
ProtocolDecl *protocol;
/// A protocol conformance used to satisfy the requirement.
ProtocolConformance *conformance;
} storage;
/// Determines whether we have been provided with an acceptable storage kind
/// for the given requirement source kind.
static bool isAcceptableStorageKind(Kind kind, StorageKind storageKind);
/// Retrieve the opaque storage as a single pointer, for use in uniquing.
const void *getOpaqueStorage() const;
/// Whether this kind of requirement source is a root.
static bool isRootKind(Kind kind) {
switch (kind) {
case Explicit:
case Inferred:
case RequirementSignatureSelf:
case NestedTypeNameMatch:
return true;
case ProtocolRequirement:
case Superclass:
case Parent:
case Concrete:
return false;
}
}
public:
/// The "parent" of this requirement source.
///
/// The chain of parent requirement sources will eventually terminate in a
/// requirement source with one of the "root" kinds.
const RequirementSource * const parent;
RequirementSource(Kind kind, const RequirementSource *parent)
: kind(kind), storageKind(StorageKind::None), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
// Prevent uninitialized memory.
storage.typeRepr = nullptr;
}
RequirementSource(Kind kind, const RequirementSource *parent,
const TypeRepr *typeRepr)
: kind(kind), storageKind(StorageKind::TypeRepr), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.typeRepr = typeRepr;
}
RequirementSource(Kind kind, const RequirementSource *parent,
const RequirementRepr *requirementRepr)
: kind(kind), storageKind(StorageKind::RequirementRepr), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.requirementRepr = requirementRepr;
}
RequirementSource(Kind kind, const RequirementSource *parent,
ProtocolDecl *protocol)
: kind(kind), storageKind(StorageKind::ProtocolDecl), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.protocol = protocol;
}
RequirementSource(Kind kind, const RequirementSource *parent,
ProtocolConformance *conformance)
: kind(kind), storageKind(StorageKind::ProtocolConformance),
parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.conformance = conformance;
}
public:
/// Retrieve an abstract requirement source.
static const RequirementSource *forAbstract(GenericSignatureBuilder &builder);
/// Retrieve a requirement source representing an explicit requirement
/// stated in an 'inheritance' clause.
static const RequirementSource *forExplicit(GenericSignatureBuilder &builder,
const TypeRepr *typeRepr);
/// Retrieve a requirement source representing an explicit requirement
/// stated in an 'where' clause.
static const RequirementSource *forExplicit(GenericSignatureBuilder &builder,
const RequirementRepr *requirementRepr);
/// Retrieve a requirement source representing a requirement that is
/// inferred from some part of a generic declaration's signature, e.g., the
/// parameter or result type of a generic function.
static const RequirementSource *forInferred(GenericSignatureBuilder &builder,
const TypeRepr *typeRepr);
/// Retrieve a requirement source representing the requirement signature
/// computation for a protocol.
static const RequirementSource *forRequirementSignature(
GenericSignatureBuilder &builder,
ProtocolDecl *protocol);
/// Retrieve a requirement source for nested type name matches.
static const RequirementSource *forNestedTypeNameMatch(
GenericSignatureBuilder &builder);
/// A requirement source that describes that a requirement comes from a
/// requirement of the given protocol described by the parent.
const RequirementSource *viaAbstractProtocolRequirement(
GenericSignatureBuilder &builder,
ProtocolDecl *protocol) const;
/// A requirement source that describes that a requirement that is resolved
/// via a superclass requirement.
const RequirementSource *viaSuperclass(
GenericSignatureBuilder &builder,
ProtocolConformance *conformance) const;
/// A requirement source that describes that a requirement that is resolved
/// via a same-type-to-concrete requirement.
const RequirementSource *viaConcrete(GenericSignatureBuilder &builder,
ProtocolConformance *conformance) const;
/// A constraint source that describes that a constraint that is resolved
/// for a nested type via a constraint on its parent.
const RequirementSource *viaParent(GenericSignatureBuilder &builder) const;
/// Whether the requirement can be derived from something in its path.
///
/// Derived requirements will not be recorded in a minimized generic
/// signature, because the information can be re-derived by following the
/// path.
bool isDerivedRequirement() const;
/// Whether the requirement is derived via some concrete conformance, e.g.,
/// a concrete type's conformance to a protocol or a superclass's conformance
/// to a protocol.
bool isDerivedViaConcreteConformance() const;
/// Retrieve a source location that corresponds to the requirement.
SourceLoc getLoc() const;
/// Compare two requirement sources to determine which has the more
/// optimal path.
///
/// \returns -1 if the \c this is better, 1 if the \c other is better, and 0
/// if they are equivalent in length.
int compare(const RequirementSource *other) const;
/// Retrieve the type representation for this requirement, if there is one.
const TypeRepr *getTypeRepr() const {
if (storageKind != StorageKind::TypeRepr) return nullptr;
return storage.typeRepr;
}
/// Retrieve the requirement representation for this requirement, if there is
/// one.
const RequirementRepr *getRequirementRepr() const {
if (storageKind != StorageKind::RequirementRepr) return nullptr;
return storage.requirementRepr;
}
/// Retrieve the protocol for this requirement, if there is one.
ProtocolDecl *getProtocolDecl() const;
/// Retrieve the protocol conformance for this requirement, if there is one.
ProtocolConformance *getProtocolConformance() const {
if (storageKind != StorageKind::ProtocolConformance) return nullptr;
return storage.conformance;
}
/// Profiling support for \c FoldingSet.
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, kind, parent, getOpaqueStorage());
}
/// Profiling support for \c FoldingSet.
static void Profile(llvm::FoldingSetNodeID &ID, Kind kind,
const RequirementSource *parent, const void *storage) {
ID.AddInteger(kind);
ID.AddPointer(parent);
ID.AddPointer(storage);
}
LLVM_ATTRIBUTE_DEPRECATED(
void dump() const,
"only for use within the debugger");
/// Dump the requirement source.
void dump(llvm::raw_ostream &out, SourceManager *SrcMgr,
unsigned indent) const;
LLVM_ATTRIBUTE_DEPRECATED(
void print() const,
"only for use within the debugger");
/// Print the requirement source (shorter form)
void print(llvm::raw_ostream &out, SourceManager *SrcMgr) const;
};
/// \brief Collects a set of requirements of generic parameters, both explicitly
/// stated and inferred, and determines the set of archetypes for each of
/// the generic parameters.
@@ -378,6 +72,10 @@ public:
using RequirementRHS =
llvm::PointerUnion3<Type, PotentialArchetype *, LayoutConstraint>;
class RequirementSource;
class FloatingRequirementSource;
/// Describes a constraint that is bounded on one side by a concrete type.
struct ConcreteConstraint {
PotentialArchetype *archetype;
@@ -471,7 +169,7 @@ public:
/// previous example).
bool
addSameTypeRequirement(ResolvedType paOrT1, ResolvedType paOrT2,
const RequirementSource *Source,
FloatingRequirementSource Source,
llvm::function_ref<void(Type, Type)> diagnoseMismatch);
/// \brief Add a new same-type requirement between two fully resolved types
@@ -479,14 +177,14 @@ public:
///
/// The two types must not be incompatible concrete types.
bool addSameTypeRequirement(ResolvedType paOrT1, ResolvedType paOrT2,
const RequirementSource *Source);
FloatingRequirementSource Source);
/// \brief Add a new same-type requirement between two unresolved types.
///
/// The types are resolved with \c GenericSignatureBuilder::resolve, and must
/// not be incompatible concrete types.
bool addSameTypeRequirement(UnresolvedType paOrT1, UnresolvedType paOrT2,
const RequirementSource *Source);
FloatingRequirementSource Source);
/// \brief Add a new same-type requirement between two unresolved types.
///
@@ -495,7 +193,7 @@ public:
/// types.
bool
addSameTypeRequirement(UnresolvedType paOrT1, UnresolvedType paOrT2,
const RequirementSource *Source,
FloatingRequirementSource Source,
llvm::function_ref<void(Type, Type)> diagnoseMismatch);
private:
@@ -523,7 +221,7 @@ private:
/// \param diagnoseMismatch Callback invoked when the types in the same-type
/// requirement mismatch.
bool addSameTypeRequirementBetweenConcrete(
Type T1, Type T2, const RequirementSource *Source,
Type T1, Type T2, FloatingRequirementSource Source,
llvm::function_ref<void(Type, Type)> diagnoseMismatch);
/// Add the requirements placed on the given type parameter
@@ -599,11 +297,16 @@ public:
///
/// \returns true if this requirement makes the set of requirements
/// inconsistent, in which case a diagnostic will have been issued.
bool addRequirement(const Requirement &req, const RequirementSource *source);
bool addRequirement(const Requirement &req, FloatingRequirementSource source);
bool addRequirement(const Requirement &req, const RequirementSource *source,
bool addRequirement(const Requirement &req, FloatingRequirementSource source,
llvm::SmallPtrSetImpl<ProtocolDecl *> &Visited);
/// \brief Add a new requirement.
///
/// \returns true if this requirement makes the set of requirements
/// inconsistent, in which case a diagnostic will have been issued.
bool addLayoutRequirement(PotentialArchetype *PAT,
LayoutConstraint Layout,
const RequirementSource *Source);
@@ -695,6 +398,435 @@ public:
void dump(llvm::raw_ostream &out);
};
/// Describes how a generic signature determines a requirement, from its origin
/// in some requirement written in the source, inferred through a path of
/// other implications (e.g., introduced by a particular protocol).
///
/// Requirement sources are uniqued within a generic signature builder.
class GenericSignatureBuilder::RequirementSource final
: public llvm::FoldingSetNode,
private llvm::TrailingObjects<RequirementSource, PotentialArchetype *> {
public:
enum Kind : uint8_t {
/// A requirement stated explicitly, e.g., in a where clause or type
/// parameter declaration.
///
/// Explicitly-stated requirement can be tied to a specific requirement
/// in a 'where' clause (which stores a \c RequirementRepr), a type in an
/// 'inheritance' clause (which stores a \c TypeRepr), or can be 'abstract',
/// , e.g., due to canonicalization, deserialization, or other
/// source-independent formulation.
///
/// This is a root requirement source.
Explicit,
/// A requirement inferred from part of the signature of a declaration,
/// e.g., the type of a generic function. For example:
///
/// func f<T>(_: Set<T>) { } // infers T: Hashable
///
/// This is a root requirement source, which can be described by a
/// \c TypeRepr.
Inferred,
/// A requirement for the creation of the requirement signature of a
/// protocol.
///
/// This is a root requirement source, which is described by the protocol
/// whose requirement signature is being computed.
RequirementSignatureSelf,
/// The requirement came from two nested types of the equivalent types whose
/// names match.
///
/// This is a root requirement source.
NestedTypeNameMatch,
/// The requirement is a protocol requirement.
///
/// This stores the protocol that introduced the requirement.
ProtocolRequirement,
/// A requirement that was resolved via a superclass requirement.
///
/// This stores the \c ProtocolConformance* used to resolve the
/// requirement.
Superclass,
/// A requirement that was resolved for a nested type via its parent
/// type.
Parent,
/// A requirement that was resolved for a nested type via a same-type-to-
/// concrete constraint.
///
/// This stores the \c ProtocolConformance* used to resolve the
/// requirement.
Concrete,
};
/// The kind of requirement source.
const Kind kind;
private:
/// The kind of storage we have.
enum class StorageKind : uint8_t {
RootArchetype,
TypeRepr,
RequirementRepr,
ProtocolDecl,
ProtocolConformance,
AssociatedTypeDecl,
};
/// The kind of storage we have.
const StorageKind storageKind;
/// The actual storage, described by \c storageKind.
union {
/// The root archetype.
PotentialArchetype *rootArchetype;
/// The type representation describing where the requirement came from.
const TypeRepr *typeRepr;
/// Where a requirement came from.
const RequirementRepr *requirementRepr;
/// The protocol being described.
ProtocolDecl *protocol;
/// A protocol conformance used to satisfy the requirement.
ProtocolConformance *conformance;
/// An associated type to which a requirement is being applied.
AssociatedTypeDecl *assocType;
} storage;
friend TrailingObjects;
/// The trailing potential archetype, for
size_t numTrailingObjects(OverloadToken<PotentialArchetype *>) const {
switch (kind) {
case RequirementSignatureSelf:
return 1;
case Explicit:
case Inferred:
return storageKind == StorageKind::RootArchetype ? 0 : 1;
case NestedTypeNameMatch:
case ProtocolRequirement:
case Superclass:
case Parent:
case Concrete:
return 0;
}
}
/// Determines whether we have been provided with an acceptable storage kind
/// for the given requirement source kind.
static bool isAcceptableStorageKind(Kind kind, StorageKind storageKind);
/// Retrieve the opaque storage as a single pointer, for use in uniquing.
const void *getOpaqueStorage() const;
/// Retrieve the extra opaque storage as a single pointer, for use in
/// uniquing.
const void *getExtraOpaqueStorage() const;
/// Whether this kind of requirement source is a root.
static bool isRootKind(Kind kind) {
switch (kind) {
case Explicit:
case Inferred:
case RequirementSignatureSelf:
case NestedTypeNameMatch:
return true;
case ProtocolRequirement:
case Superclass:
case Parent:
case Concrete:
return false;
}
}
public:
/// The "parent" of this requirement source.
///
/// The chain of parent requirement sources will eventually terminate in a
/// requirement source with one of the "root" kinds.
const RequirementSource * const parent;
RequirementSource(Kind kind, const RequirementSource *parent,
PotentialArchetype *rootArchetype)
: kind(kind), storageKind(StorageKind::RootArchetype), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.rootArchetype = rootArchetype;
}
RequirementSource(Kind kind, const RequirementSource *parent,
const TypeRepr *typeRepr)
: kind(kind), storageKind(StorageKind::TypeRepr), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.typeRepr = typeRepr;
}
RequirementSource(Kind kind, const RequirementSource *parent,
const RequirementRepr *requirementRepr)
: kind(kind), storageKind(StorageKind::RequirementRepr), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.requirementRepr = requirementRepr;
}
RequirementSource(Kind kind, const RequirementSource *parent,
ProtocolDecl *protocol)
: kind(kind), storageKind(StorageKind::ProtocolDecl), parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.protocol = protocol;
}
RequirementSource(Kind kind, const RequirementSource *parent,
ProtocolConformance *conformance)
: kind(kind), storageKind(StorageKind::ProtocolConformance),
parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.conformance = conformance;
}
RequirementSource(Kind kind, const RequirementSource *parent,
AssociatedTypeDecl *assocType)
: kind(kind), storageKind(StorageKind::AssociatedTypeDecl),
parent(parent) {
assert((static_cast<bool>(parent) != isRootKind(kind)) &&
"Root RequirementSource should not have parent (or vice versa)");
assert(isAcceptableStorageKind(kind, storageKind) &&
"RequirementSource kind/storageKind mismatch");
storage.assocType = assocType;
}
public:
/// Retrieve an abstract requirement source.
static const RequirementSource *forAbstract(PotentialArchetype *root);
/// Retrieve a requirement source representing an explicit requirement
/// stated in an 'inheritance' clause.
static const RequirementSource *forExplicit(PotentialArchetype *root,
const TypeRepr *typeRepr);
/// Retrieve a requirement source representing an explicit requirement
/// stated in an 'where' clause.
static const RequirementSource *forExplicit(
PotentialArchetype *root,
const RequirementRepr *requirementRepr);
/// Retrieve a requirement source representing a requirement that is
/// inferred from some part of a generic declaration's signature, e.g., the
/// parameter or result type of a generic function.
static const RequirementSource *forInferred(PotentialArchetype *root,
const TypeRepr *typeRepr);
/// Retrieve a requirement source representing the requirement signature
/// computation for a protocol.
static const RequirementSource *forRequirementSignature(
PotentialArchetype *root,
ProtocolDecl *protocol);
/// Retrieve a requirement source for nested type name matches.
static const RequirementSource *forNestedTypeNameMatch(
PotentialArchetype *root);
/// A requirement source that describes that a requirement comes from a
/// requirement of the given protocol described by the parent.
const RequirementSource *viaAbstractProtocolRequirement(
GenericSignatureBuilder &builder,
ProtocolDecl *protocol) const;
/// A requirement source that describes that a requirement that is resolved
/// via a superclass requirement.
const RequirementSource *viaSuperclass(
GenericSignatureBuilder &builder,
ProtocolConformance *conformance) const;
/// A requirement source that describes that a requirement that is resolved
/// via a same-type-to-concrete requirement.
const RequirementSource *viaConcrete(GenericSignatureBuilder &builder,
ProtocolConformance *conformance) const;
/// A constraint source that describes that a constraint that is resolved
/// for a nested type via a constraint on its parent.
///
/// \param assocType the associated type that
const RequirementSource *viaParent(GenericSignatureBuilder &builder,
AssociatedTypeDecl *assocType) const;
/// Retrieve the potential archetype at the root.
PotentialArchetype *getRootPotentialArchetype() const;
/// Whether the requirement can be derived from something in its path.
///
/// Derived requirements will not be recorded in a minimized generic
/// signature, because the information can be re-derived by following the
/// path.
bool isDerivedRequirement() const;
/// Whether the requirement is derived via some concrete conformance, e.g.,
/// a concrete type's conformance to a protocol or a superclass's conformance
/// to a protocol.
bool isDerivedViaConcreteConformance() const;
/// Determine whether the given derived requirement \c source, when rooted at
/// the potential archetype \c pa, is actually derived from the same
/// requirement. Such "self-derived" requirements do not make the original
/// requirement redundant, because without said original requirement, the
/// derived requirement ceases to hold.
bool isSelfDerivedSource(PotentialArchetype *pa) const;
/// Retrieve a source location that corresponds to the requirement.
SourceLoc getLoc() const;
/// Compare two requirement sources to determine which has the more
/// optimal path.
///
/// \returns -1 if the \c this is better, 1 if the \c other is better, and 0
/// if they are equivalent in length.
int compare(const RequirementSource *other) const;
/// Retrieve the type representation for this requirement, if there is one.
const TypeRepr *getTypeRepr() const {
if (storageKind != StorageKind::TypeRepr) return nullptr;
return storage.typeRepr;
}
/// Retrieve the requirement representation for this requirement, if there is
/// one.
const RequirementRepr *getRequirementRepr() const {
if (storageKind != StorageKind::RequirementRepr) return nullptr;
return storage.requirementRepr;
}
/// Retrieve the protocol for this requirement, if there is one.
ProtocolDecl *getProtocolDecl() const;
/// Retrieve the protocol conformance for this requirement, if there is one.
ProtocolConformance *getProtocolConformance() const {
if (storageKind != StorageKind::ProtocolConformance) return nullptr;
return storage.conformance;
}
/// Retrieve the associated type declaration for this requirement, if there
/// is one.
AssociatedTypeDecl *getAssociatedType() const {
if (storageKind != StorageKind::AssociatedTypeDecl) return nullptr;
return storage.assocType;
}
/// Profiling support for \c FoldingSet.
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, kind, parent, getOpaqueStorage(), getExtraOpaqueStorage());
}
/// Profiling support for \c FoldingSet.
static void Profile(llvm::FoldingSetNodeID &ID, Kind kind,
const RequirementSource *parent, const void *storage,
const void *extraStorage) {
ID.AddInteger(kind);
ID.AddPointer(parent);
ID.AddPointer(storage);
ID.AddPointer(extraStorage);
}
LLVM_ATTRIBUTE_DEPRECATED(
void dump() const,
"only for use within the debugger");
/// Dump the requirement source.
void dump(llvm::raw_ostream &out, SourceManager *SrcMgr,
unsigned indent) const;
LLVM_ATTRIBUTE_DEPRECATED(
void print() const,
"only for use within the debugger");
/// Print the requirement source (shorter form)
void print(llvm::raw_ostream &out, SourceManager *SrcMgr) const;
};
/// A requirement source that potentially lacks a root \c PotentialArchetype.
/// The root will be supplied as soon as the appropriate dependent type is
/// resolved.
class GenericSignatureBuilder::FloatingRequirementSource {
enum Kind {
/// A fully-resolved requirement source, which does not need a root.
Resolved,
/// An explicit requirement source lacking a root.
Explicit,
/// An inferred requirement source lacking a root.
Inferred
} kind;
using Storage =
llvm::PointerUnion3<const RequirementSource *, const TypeRepr *,
const RequirementRepr *>;
Storage storage;
FloatingRequirementSource(Kind kind, Storage storage)
: kind(kind), storage(storage) { }
public:
/// Implicit conversion from a resolved requirement source.
FloatingRequirementSource(const RequirementSource *source)
: FloatingRequirementSource(Resolved, source) { }
static FloatingRequirementSource forAbstract() {
return { Explicit, Storage() };
}
static FloatingRequirementSource forExplicit(const TypeRepr *typeRepr) {
return { Explicit, typeRepr };
}
static FloatingRequirementSource forExplicit(
const RequirementRepr *requirementRepr) {
return { Explicit, requirementRepr };
}
static FloatingRequirementSource forInferred(const TypeRepr *typeRepr) {
return { Inferred, typeRepr };
}
/// Retrieve the complete requirement source rooted at the given potential
/// archetype.
const RequirementSource *getSource(PotentialArchetype *pa) const;
/// Retrieve the source location for this requirement.
SourceLoc getLoc() const;
};
class GenericSignatureBuilder::PotentialArchetype {
/// The parent of this potential archetype (for a nested type) or the
/// generic signature builder in which this root resides.