[ConstraintSystem] Move FailureDiagnostic::getFunctionArgApplyInfo

into `ConstraintSystem`.
This commit is contained in:
Holly Borla
2019-12-06 15:43:39 -08:00
parent ff53718c6b
commit 1e013a02cf
5 changed files with 311 additions and 311 deletions

View File

@@ -3377,6 +3377,164 @@ ConstraintSystem::getArgumentInfo(ConstraintLocator *locator) {
return None;
}
/// Given an apply expr, returns true if it is expected to have a direct callee
/// overload, resolvable using `getChoiceFor`. Otherwise, returns false.
static bool shouldHaveDirectCalleeOverload(const CallExpr *callExpr) {
auto *fnExpr = callExpr->getDirectCallee();
// An apply of an apply/subscript doesn't have a direct callee.
if (isa<ApplyExpr>(fnExpr) || isa<SubscriptExpr>(fnExpr))
return false;
// Applies of closures don't have callee overloads.
if (isa<ClosureExpr>(fnExpr))
return false;
// No direct callee for a try!/try?.
if (isa<ForceTryExpr>(fnExpr) || isa<OptionalTryExpr>(fnExpr))
return false;
// If we have an intermediate cast, there's no direct callee.
if (isa<ExplicitCastExpr>(fnExpr))
return false;
// No direct callee for an if expr.
if (isa<IfExpr>(fnExpr))
return false;
// Assume that anything else would have a direct callee.
return true;
}
Type ConstraintSystem::resolveInterfaceType(Type type) const {
auto resolvedType = type.transform([&](Type type) -> Type {
if (auto *tvt = type->getAs<TypeVariableType>()) {
// If this type variable is for a generic parameter, return that.
if (auto *gp = tvt->getImpl().getGenericParameter())
return gp;
// Otherwise resolve its fixed type, mapped out of context.
if (auto fixed = getFixedType(tvt))
return resolveInterfaceType(fixed->mapTypeOutOfContext());
return getRepresentative(tvt);
}
if (auto *dmt = type->getAs<DependentMemberType>()) {
// For a dependent member, first resolve the base.
auto newBase = resolveInterfaceType(dmt->getBase());
// Then reconstruct using its associated type.
assert(dmt->getAssocType());
return DependentMemberType::get(newBase, dmt->getAssocType());
}
return type;
});
assert(!resolvedType->hasArchetype());
return resolvedType;
}
Optional<FunctionArgApplyInfo>
ConstraintSystem::getFunctionArgApplyInfo(ConstraintLocator *locator) {
auto *anchor = locator->getAnchor();
auto path = locator->getPath();
// Look for the apply-arg-to-param element in the locator's path. We may
// have to look through other elements that are generated from an argument
// conversion such as GenericArgument for an optional-to-optional conversion,
// and OptionalPayload for a value-to-optional conversion.
auto iter = path.rbegin();
auto applyArgElt = locator->findLast<LocatorPathElt::ApplyArgToParam>(iter);
if (!applyArgElt)
return None;
auto nextIter = iter + 1;
assert(!locator->findLast<LocatorPathElt::ApplyArgToParam>(nextIter) &&
"Multiple ApplyArgToParam components?");
// Form a new locator that ends at the apply-arg-to-param element, and
// simplify it to get the full argument expression.
auto argPath = path.drop_back(iter - path.rbegin());
auto *argLocator = getConstraintLocator(
anchor, argPath, ConstraintLocator::getSummaryFlagsForPath(argPath));
auto *argExpr = simplifyLocatorToAnchor(argLocator);
// If we were unable to simplify down to the argument expression, we don't
// know what this is.
if (!argExpr)
return None;
Optional<OverloadChoice> choice;
Type rawFnType;
auto *calleeLocator = getCalleeLocator(argLocator);
if (auto overload = findSelectedOverloadFor(calleeLocator)) {
// If we have resolved an overload for the callee, then use that to get the
// function type and callee.
choice = overload->choice;
rawFnType = overload->openedType;
} else {
// If we didn't resolve an overload for the callee, we should be dealing
// with a call of an arbitrary function expr.
if (auto *call = dyn_cast<CallExpr>(anchor)) {
assert(!shouldHaveDirectCalleeOverload(call) &&
"Should we have resolved a callee for this?");
rawFnType = getType(call->getFn());
} else {
// FIXME: ArgumentMismatchFailure is currently used from CSDiag, meaning
// we can end up a BinaryExpr here with an unresolved callee. It should be
// possible to remove this once we've gotten rid of the old CSDiag logic
// and just assert that we have a CallExpr.
auto *apply = cast<ApplyExpr>(anchor);
rawFnType = getType(apply->getFn());
}
}
// Try to resolve the function type by loading lvalues and looking through
// optional types, which can occur for expressions like `fn?(5)`.
auto *fnType = simplifyType(rawFnType)
->getRValueType()
->lookThroughAllOptionalTypes()
->getAs<FunctionType>();
if (!fnType)
return None;
// Resolve the interface type for the function. Note that this may not be a
// function type, for example it could be a generic parameter.
Type fnInterfaceType;
auto *callee = choice ? choice->getDeclOrNull() : nullptr;
if (callee && callee->hasInterfaceType()) {
// If we have a callee with an interface type, we can use it. This is
// preferable to resolveInterfaceType, as this will allow us to get a
// GenericFunctionType for generic decls.
//
// Note that it's possible to find a callee without an interface type. This
// can happen for example with closure parameters, where the interface type
// isn't set until the solution is applied. In that case, use
// resolveInterfaceType.
fnInterfaceType = callee->getInterfaceType();
// Strip off the curried self parameter if necessary.
if (hasAppliedSelf(*this, *choice))
fnInterfaceType = fnInterfaceType->castTo<AnyFunctionType>()->getResult();
if (auto *fn = fnInterfaceType->getAs<AnyFunctionType>()) {
assert(fn->getNumParams() == fnType->getNumParams() &&
"Parameter mismatch?");
(void)fn;
}
} else {
fnInterfaceType = resolveInterfaceType(rawFnType);
}
auto argIdx = applyArgElt->getArgIdx();
auto paramIdx = applyArgElt->getParamIdx();
return FunctionArgApplyInfo(getParentExpr(argExpr), argExpr, argIdx,
simplifyType(getType(argExpr)),
paramIdx, fnInterfaceType, fnType, callee);
}
bool constraints::isKnownKeyPathType(Type type) {
if (auto *BGT = type->getAs<BoundGenericType>())
return isKnownKeyPathDecl(type->getASTContext(), BGT->getDecl());