Merge branch 'master' into rename-conflicting-classes-and-methods

This commit is contained in:
Mike Ash
2018-09-24 09:43:50 -04:00
parent 49c3547449
commit 1fb165a0ea
112 changed files with 7412 additions and 5797 deletions

View File

@@ -61,7 +61,6 @@ func _deallocateUninitializedArray<Element>(
// Utility method for collections that wish to implement CustomStringConvertible
// and CustomDebugStringConvertible using a bracketed list of elements,
// like an array.
@inlinable // FIXME(sil-serialize-all)
internal func _makeCollectionDescription<C: Collection>
(for items: C, withTypeName type: String?) -> String {
var result = ""

View File

@@ -0,0 +1,336 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A simple bitmap of a fixed number of bits, implementing a sorted set of
/// small nonnegative Int values.
///
/// Because `_UnsafeBitset` implements a flat bit vector, it isn't suitable for
/// holding arbitrarily large integers. The maximal element a bitset can store
/// is fixed at its initialization.
@_fixed_layout
@usableFromInline // @testable
internal struct _UnsafeBitset {
@usableFromInline
internal let words: UnsafeMutablePointer<Word>
@usableFromInline
internal let wordCount: Int
@inlinable
@inline(__always)
internal init(words: UnsafeMutablePointer<Word>, wordCount: Int) {
self.words = words
self.wordCount = wordCount
}
}
extension _UnsafeBitset {
@inlinable
@inline(__always)
internal static func word(for element: Int) -> Int {
_sanityCheck(element >= 0)
return element / Word.capacity
}
@inlinable
@inline(__always)
internal static func bit(for element: Int) -> Int {
_sanityCheck(element >= 0)
// Note: We perform on UInts to get faster unsigned math (masking).
let element = UInt(bitPattern: element)
let capacity = UInt(bitPattern: Word.capacity)
return Int(bitPattern: element % capacity)
}
@inlinable
@inline(__always)
internal static func split(_ element: Int) -> (word: Int, bit: Int) {
return (word(for: element), bit(for: element))
}
@inlinable
@inline(__always)
internal static func join(word: Int, bit: Int) -> Int {
_sanityCheck(bit >= 0 && bit < Word.capacity)
return word * Word.capacity + bit
}
}
extension _UnsafeBitset {
@inlinable
@inline(__always)
internal static func wordCount(forCapacity capacity: Int) -> Int {
return (capacity + Word.capacity - 1) / Word.capacity
}
@inlinable
internal var capacity: Int {
@inline(__always)
get {
return wordCount * Word.capacity
}
}
@inlinable
@inline(__always)
internal func isValid(_ element: Int) -> Bool {
return element >= 0 && element <= capacity
}
@inlinable
@inline(__always)
internal func uncheckedContains(_ element: Int) -> Bool {
_sanityCheck(isValid(element))
let (word, bit) = _UnsafeBitset.split(element)
return words[word].uncheckedContains(bit)
}
@inlinable
@inline(__always)
@discardableResult
internal func uncheckedInsert(_ element: Int) -> Bool {
_sanityCheck(isValid(element))
let (word, bit) = _UnsafeBitset.split(element)
return words[word].uncheckedInsert(bit)
}
@inlinable
@inline(__always)
@discardableResult
internal func uncheckedRemove(_ element: Int) -> Bool {
_sanityCheck(isValid(element))
let (word, bit) = _UnsafeBitset.split(element)
return words[word].uncheckedRemove(bit)
}
@inlinable
@inline(__always)
internal func clear() {
words.assign(repeating: .empty, count: wordCount)
}
}
extension _UnsafeBitset: Sequence {
@usableFromInline
internal typealias Element = Int
@inlinable
internal var count: Int {
var count = 0
for w in 0 ..< wordCount {
count += words[w].count
}
return count
}
@inlinable
internal var underestimatedCount: Int {
return count
}
@inlinable
func makeIterator() -> Iterator {
return Iterator(self)
}
@usableFromInline
@_fixed_layout
internal struct Iterator: IteratorProtocol {
@usableFromInline
internal let bitset: _UnsafeBitset
@usableFromInline
internal var index: Int
@usableFromInline
internal var word: Word
@inlinable
internal init(_ bitset: _UnsafeBitset) {
self.bitset = bitset
self.index = 0
self.word = bitset.wordCount > 0 ? bitset.words[0] : .empty
}
@inlinable
internal mutating func next() -> Int? {
if let bit = word.next() {
return _UnsafeBitset.join(word: index, bit: bit)
}
while (index + 1) < bitset.wordCount {
index += 1
word = bitset.words[index]
if let bit = word.next() {
return _UnsafeBitset.join(word: index, bit: bit)
}
}
return nil
}
}
}
////////////////////////////////////////////////////////////////////////////////
extension _UnsafeBitset {
@_fixed_layout
@usableFromInline
internal struct Word {
@usableFromInline
internal var value: UInt
@inlinable
internal init(_ value: UInt) {
self.value = value
}
}
}
extension _UnsafeBitset.Word {
@inlinable
internal static var capacity: Int {
@inline(__always)
get {
return UInt.bitWidth
}
}
@inlinable
@inline(__always)
internal func uncheckedContains(_ bit: Int) -> Bool {
_sanityCheck(bit >= 0 && bit < UInt.bitWidth)
return value & (1 &<< bit) != 0
}
@inlinable
@inline(__always)
@discardableResult
internal mutating func uncheckedInsert(_ bit: Int) -> Bool {
_sanityCheck(bit >= 0 && bit < UInt.bitWidth)
let mask: UInt = 1 &<< bit
let inserted = value & mask == 0
value |= mask
return inserted
}
@inlinable
@inline(__always)
@discardableResult
internal mutating func uncheckedRemove(_ bit: Int) -> Bool {
_sanityCheck(bit >= 0 && bit < UInt.bitWidth)
let mask: UInt = 1 &<< bit
let removed = value & mask != 0
value &= ~mask
return removed
}
}
extension _UnsafeBitset.Word {
@inlinable
var minimum: Int? {
@inline(__always)
get {
guard value != 0 else { return nil }
return value.trailingZeroBitCount
}
}
@inlinable
var maximum: Int? {
@inline(__always)
get {
guard value != 0 else { return nil }
return _UnsafeBitset.Word.capacity &- 1 &- value.leadingZeroBitCount
}
}
@inlinable
var complement: _UnsafeBitset.Word {
@inline(__always)
get {
return _UnsafeBitset.Word(~value)
}
}
@inlinable
@inline(__always)
internal func subtracting(elementsBelow bit: Int) -> _UnsafeBitset.Word {
_sanityCheck(bit >= 0 && bit < _UnsafeBitset.Word.capacity)
let mask = UInt.max &<< bit
return _UnsafeBitset.Word(value & mask)
}
@inlinable
@inline(__always)
internal func intersecting(elementsBelow bit: Int) -> _UnsafeBitset.Word {
_sanityCheck(bit >= 0 && bit < _UnsafeBitset.Word.capacity)
let mask: UInt = (1 as UInt &<< bit) &- 1
return _UnsafeBitset.Word(value & mask)
}
@inlinable
@inline(__always)
internal func intersecting(elementsAbove bit: Int) -> _UnsafeBitset.Word {
_sanityCheck(bit >= 0 && bit < _UnsafeBitset.Word.capacity)
let mask = (UInt.max &<< bit) &<< 1
return _UnsafeBitset.Word(value & mask)
}
}
extension _UnsafeBitset.Word {
@inlinable
internal static var empty: _UnsafeBitset.Word {
@inline(__always)
get {
return _UnsafeBitset.Word(0)
}
}
@inlinable
internal static var allBits: _UnsafeBitset.Word {
@inline(__always)
get {
return _UnsafeBitset.Word(UInt.max)
}
}
}
// Word implements Sequence by using a copy of itself as its Iterator.
// Iteration with `next()` destroys the word's value; however, this won't cause
// problems in normal use, because `next()` is usually called on a separate
// iterator, not the original word.
extension _UnsafeBitset.Word: Sequence, IteratorProtocol {
@inlinable
internal var count: Int {
return value.nonzeroBitCount
}
@inlinable
internal var underestimatedCount: Int {
return count
}
@inlinable
internal var isEmpty: Bool {
@inline(__always)
get {
return value == 0
}
}
/// Return the index of the lowest set bit in this word,
/// and also destructively clear it.
@inlinable
internal mutating func next() -> Int? {
guard value != 0 else { return nil }
let bit = value.trailingZeroBitCount
value &= value &- 1 // Clear lowest nonzero bit.
return bit
}
}

View File

@@ -31,6 +31,7 @@ set(SWIFTLIB_ESSENTIAL
Assert.swift
AssertCommon.swift
BidirectionalCollection.swift
Bitset.swift
Bool.swift
BridgeObjectiveC.swift
BridgeStorage.swift
@@ -51,6 +52,11 @@ set(SWIFTLIB_ESSENTIAL
CTypes.swift
DebuggerSupport.swift
Dictionary.swift
DictionaryBridging.swift
DictionaryBuilder.swift
DictionaryCasting.swift
DictionaryStorage.swift
DictionaryVariant.swift
DropWhile.swift
Dump.swift
EmptyCollection.swift
@@ -68,9 +74,9 @@ set(SWIFTLIB_ESSENTIAL
# if we do so, the compiler crashes.
AnyHashable.swift
# END WORKAROUND
HashedCollectionsAnyHashableExtensions.swift
Hasher.swift
Hashing.swift
HashTable.swift
HeapBuffer.swift
ICU.swift
Indices.swift
@@ -90,6 +96,8 @@ set(SWIFTLIB_ESSENTIAL
Mirrors.swift.gyb
Misc.swift
MutableCollection.swift
NativeDictionary.swift
NativeSet.swift
NewtypeWrapper.swift
NormalizedCodeUnitIterator.swift
ObjectIdentifier.swift
@@ -116,6 +124,12 @@ set(SWIFTLIB_ESSENTIAL
SequenceWrapper.swift
Set.swift
SetAlgebra.swift
SetAnyHashableExtensions.swift
SetBridging.swift
SetBuilder.swift
SetCasting.swift
SetStorage.swift
SetVariant.swift
ShadowProtocols.swift
Shims.swift
Slice.swift
@@ -158,7 +172,6 @@ set(SWIFTLIB_ESSENTIAL
Unmanaged.swift
UnmanagedOpaqueString.swift
UnmanagedString.swift
UnsafeBitMap.swift
UnsafeBufferPointer.swift.gyb
UnsafeRawBufferPointer.swift.gyb
UnsafePointer.swift

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,758 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if _runtime(_ObjC)
import SwiftShims
/// Equivalent to `NSDictionary.allKeys`, but does not leave objects on the
/// autorelease pool.
@inlinable
internal func _stdlib_NSDictionary_allKeys(
_ nsd: _NSDictionary
) -> _HeapBuffer<Int, AnyObject> {
let count = nsd.count
let storage = _HeapBuffer<Int, AnyObject>(
_HeapBufferStorage<Int, AnyObject>.self, count, count)
nsd.getObjects(nil, andKeys: storage.baseAddress, count: count)
return storage
}
extension _NativeDictionary { // Bridging
@usableFromInline
internal func bridged() -> _NSDictionary {
// We can zero-cost bridge if our keys are verbatim
// or if we're the empty singleton.
// Temporary var for SOME type safety before a cast.
let nsDictionary: _NSDictionaryCore
if _storage === _RawDictionaryStorage.empty || count == 0 {
nsDictionary = _RawDictionaryStorage.empty
} else if _isBridgedVerbatimToObjectiveC(Key.self),
_isBridgedVerbatimToObjectiveC(Value.self) {
nsDictionary = unsafeDowncast(
_storage,
to: _DictionaryStorage<Key, Value>.self)
} else {
nsDictionary = _SwiftDeferredNSDictionary(self)
}
// Cast from "minimal NSDictionary" to "NSDictionary"
// Note that if you actually ask Swift for this cast, it will fail.
// Never trust a shadow protocol!
return unsafeBitCast(nsDictionary, to: _NSDictionary.self)
}
}
/// An NSEnumerator that works with any _NativeDictionary of
/// verbatim bridgeable elements. Used by the various NSDictionary impls.
final internal class _SwiftDictionaryNSEnumerator<Key: Hashable, Value>
: __SwiftNativeNSEnumerator, _NSEnumerator {
@nonobjc internal var base: _NativeDictionary<Key, Value>
@nonobjc internal var bridgedKeys: _BridgingHashBuffer?
@nonobjc internal var nextIndex: _NativeDictionary<Key, Value>.Index
@nonobjc internal var endIndex: _NativeDictionary<Key, Value>.Index
@objc
internal override required init() {
_sanityCheckFailure("don't call this designated initializer")
}
internal init(_ base: _NativeDictionary<Key, Value>) {
_sanityCheck(_isBridgedVerbatimToObjectiveC(Key.self))
self.base = base
self.bridgedKeys = nil
self.nextIndex = base.startIndex
self.endIndex = base.endIndex
}
@nonobjc
internal init(_ deferred: _SwiftDeferredNSDictionary<Key, Value>) {
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Key.self))
self.base = deferred.native
self.bridgedKeys = deferred.bridgeKeys()
self.nextIndex = base.startIndex
self.endIndex = base.endIndex
}
private func bridgedKey(at index: _HashTable.Index) -> AnyObject {
_sanityCheck(base.hashTable.isOccupied(index))
if let bridgedKeys = self.bridgedKeys {
return bridgedKeys[index]
}
return _bridgeAnythingToObjectiveC(base.uncheckedKey(at: index))
}
@objc
internal func nextObject() -> AnyObject? {
if nextIndex == endIndex {
return nil
}
let index = nextIndex
nextIndex = base.index(after: nextIndex)
return self.bridgedKey(at: index)
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
if nextIndex == endIndex {
state.pointee = theState
return 0
}
// Return only a single element so that code can start iterating via fast
// enumeration, terminate it, and continue via NSEnumerator.
let unmanagedObjects = _UnmanagedAnyObjectArray(objects)
unmanagedObjects[0] = self.bridgedKey(at: nextIndex)
nextIndex = base.index(after: nextIndex)
state.pointee = theState
return 1
}
}
/// This class exists for Objective-C bridging. It holds a reference to a
/// _NativeDictionary, and can be upcast to NSSelf when bridging is
/// necessary. This is the fallback implementation for situations where
/// toll-free bridging isn't possible. On first access, a _NativeDictionary
/// of AnyObject will be constructed containing all the bridged elements.
final internal class _SwiftDeferredNSDictionary<Key: Hashable, Value>
: __SwiftNativeNSDictionary, _NSDictionaryCore {
// This stored property must be stored at offset zero. We perform atomic
// operations on it.
//
// Do not access this property directly.
@nonobjc
private var _bridgedKeys_DoNotUse: AnyObject?
// This stored property must be stored at offset one. We perform atomic
// operations on it.
//
// Do not access this property directly.
@nonobjc
private var _bridgedValues_DoNotUse: AnyObject?
/// The unbridged elements.
internal var native: _NativeDictionary<Key, Value>
internal init(_ native: _NativeDictionary<Key, Value>) {
_sanityCheck(native.count > 0)
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Key.self) ||
!_isBridgedVerbatimToObjectiveC(Value.self))
self.native = native
super.init()
}
@objc
internal required init(
objects: UnsafePointer<AnyObject?>,
forKeys: UnsafeRawPointer,
count: Int
) {
_sanityCheckFailure("don't call this designated initializer")
}
@nonobjc
private var _bridgedKeysPtr: UnsafeMutablePointer<AnyObject?> {
return _getUnsafePointerToStoredProperties(self)
.assumingMemoryBound(to: Optional<AnyObject>.self)
}
@nonobjc
private var _bridgedValuesPtr: UnsafeMutablePointer<AnyObject?> {
return _bridgedKeysPtr + 1
}
/// The buffer for bridged keys, if present.
@nonobjc
private var _bridgedKeys: _BridgingHashBuffer? {
guard let ref = _stdlib_atomicLoadARCRef(object: _bridgedKeysPtr) else {
return nil
}
return unsafeDowncast(ref, to: _BridgingHashBuffer.self)
}
/// The buffer for bridged values, if present.
@nonobjc
private var _bridgedValues: _BridgingHashBuffer? {
guard let ref = _stdlib_atomicLoadARCRef(object: _bridgedValuesPtr) else {
return nil
}
return unsafeDowncast(ref, to: _BridgingHashBuffer.self)
}
/// Attach a buffer for bridged Dictionary keys.
@nonobjc
private func _initializeBridgedKeys(_ storage: _BridgingHashBuffer) {
_stdlib_atomicInitializeARCRef(object: _bridgedKeysPtr, desired: storage)
}
/// Attach a buffer for bridged Dictionary values.
@nonobjc
private func _initializeBridgedValues(_ storage: _BridgingHashBuffer) {
_stdlib_atomicInitializeARCRef(object: _bridgedValuesPtr, desired: storage)
}
@nonobjc
internal func bridgeKeys() -> _BridgingHashBuffer? {
if _isBridgedVerbatimToObjectiveC(Key.self) { return nil }
if let bridgedKeys = _bridgedKeys { return bridgedKeys }
// Allocate and initialize heap storage for bridged keys.
let bridged = _BridgingHashBuffer.allocate(
owner: native._storage,
hashTable: native.hashTable)
for index in native.hashTable {
let object = _bridgeAnythingToObjectiveC(native.uncheckedKey(at: index))
bridged.initialize(at: index, to: object)
}
// Atomically put the bridged keys in place.
_initializeBridgedKeys(bridged)
return _bridgedKeys!
}
@nonobjc
internal func bridgeValues() -> _BridgingHashBuffer? {
if _isBridgedVerbatimToObjectiveC(Value.self) { return nil }
if let bridgedValues = _bridgedValues { return bridgedValues }
// Allocate and initialize heap storage for bridged values.
let bridged = _BridgingHashBuffer.allocate(
owner: native._storage,
hashTable: native.hashTable)
for index in native.hashTable {
let object = _bridgeAnythingToObjectiveC(native.uncheckedValue(at: index))
bridged.initialize(at: index, to: object)
}
// Atomically put the bridged values in place.
_initializeBridgedValues(bridged)
return _bridgedValues!
}
@usableFromInline
internal typealias Index = _HashTable.Index
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
// Instances of this class should be visible outside of standard library as
// having `NSDictionary` type, which is immutable.
return self
}
@objc(objectForKey:)
internal func object(forKey aKey: AnyObject) -> AnyObject? {
guard let nativeKey = _conditionallyBridgeFromObjectiveC(aKey, Key.self)
else { return nil }
let (index, found) = native.find(nativeKey)
guard found else { return nil }
if let bridgedValues = bridgeValues() {
return bridgedValues[index]
}
return _bridgeAnythingToObjectiveC(native.uncheckedValue(at: index))
}
@inline(__always)
private func _key(
at index: Index,
bridgedKeys: _BridgingHashBuffer?
) -> AnyObject {
if let bridgedKeys = bridgedKeys {
return bridgedKeys[index]
}
return _bridgeAnythingToObjectiveC(native.uncheckedKey(at: index))
}
@inline(__always)
private func _value(
at index: Index,
bridgedValues: _BridgingHashBuffer?
) -> AnyObject {
if let bridgedValues = bridgedValues {
return bridgedValues[index]
}
return _bridgeAnythingToObjectiveC(native.uncheckedValue(at: index))
}
@objc
internal func keyEnumerator() -> _NSEnumerator {
if _isBridgedVerbatimToObjectiveC(Key.self) {
return _SwiftDictionaryNSEnumerator<Key, Value>(native)
}
return _SwiftDictionaryNSEnumerator<Key, Value>(self)
}
@objc(getObjects:andKeys:count:)
internal func getObjects(
_ objects: UnsafeMutablePointer<AnyObject>?,
andKeys keys: UnsafeMutablePointer<AnyObject>?,
count: Int
) {
_precondition(count >= 0, "Invalid count")
guard count > 0 else { return }
let bridgedKeys = bridgeKeys()
let bridgedValues = bridgeValues()
var i = 0 // Current position in the output buffers
let bucketCount = native._storage._bucketCount
defer { _fixLifetime(self) }
switch (_UnmanagedAnyObjectArray(keys), _UnmanagedAnyObjectArray(objects)) {
case (let unmanagedKeys?, let unmanagedObjects?):
for index in native.hashTable {
unmanagedKeys[i] = _key(at: index, bridgedKeys: bridgedKeys)
unmanagedObjects[i] = _value(at: index, bridgedValues: bridgedValues)
i += 1
guard i < count else { break }
}
case (let unmanagedKeys?, nil):
for index in native.hashTable {
unmanagedKeys[i] = _key(at: index, bridgedKeys: bridgedKeys)
i += 1
guard i < count else { break }
}
case (nil, let unmanagedObjects?):
for index in native.hashTable {
unmanagedObjects[i] = _value(at: index, bridgedValues: bridgedValues)
i += 1
guard i < count else { break }
}
case (nil, nil):
// Do nothing
break
}
}
@objc(enumerateKeysAndObjectsWithOptions:usingBlock:)
internal func enumerateKeysAndObjects(
options: Int,
using block: @convention(block) (
Unmanaged<AnyObject>,
Unmanaged<AnyObject>,
UnsafeMutablePointer<UInt8>
) -> Void) {
let bridgedKeys = bridgeKeys()
let bridgedValues = bridgeValues()
defer { _fixLifetime(self) }
var stop: UInt8 = 0
for index in native.hashTable {
let key = _key(at: index, bridgedKeys: bridgedKeys)
let value = _value(at: index, bridgedValues: bridgedValues)
block(
Unmanaged.passUnretained(key),
Unmanaged.passUnretained(value),
&stop)
if stop != 0 { return }
}
}
@objc
internal var count: Int {
return native.count
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(native.startIndex.bucket)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var index = _HashTable.Index(bucket: Int(theState.extra.0))
let endIndex = native.endIndex
_precondition(index == endIndex || native.hashTable.isOccupied(index))
var stored = 0
// Only need to bridge once, so we can hoist it out of the loop.
let bridgedKeys = bridgeKeys()
for i in 0..<count {
if index == endIndex { break }
unmanagedObjects[i] = _key(at: index, bridgedKeys: bridgedKeys)
stored += 1
index = native.index(after: index)
}
theState.extra.0 = CUnsignedLong(index.bucket)
state.pointee = theState
return stored
}
}
@usableFromInline
@_fixed_layout
internal struct _CocoaDictionary {
@usableFromInline
internal let object: _NSDictionary
@inlinable
internal init(_ object: _NSDictionary) {
self.object = object
}
}
extension _CocoaDictionary: Equatable {
@usableFromInline
internal static func ==(
lhs: _CocoaDictionary,
rhs: _CocoaDictionary
) -> Bool {
return _stdlib_NSObject_isEqual(lhs.object, rhs.object)
}
}
extension _CocoaDictionary: _DictionaryBuffer {
@usableFromInline
internal typealias Key = AnyObject
@usableFromInline
internal typealias Value = AnyObject
@inlinable
internal var startIndex: Index {
return Index(self, startIndex: ())
}
@inlinable
internal var endIndex: Index {
return Index(self, endIndex: ())
}
@inlinable
internal func index(after i: Index) -> Index {
var i = i
formIndex(after: &i)
return i
}
@usableFromInline
@_effects(releasenone)
internal func formIndex(after i: inout Index) {
_precondition(i.base.object === self.object, "Invalid index")
_precondition(i.currentKeyIndex < i.allKeys.value,
"Cannot increment endIndex")
i.currentKeyIndex += 1
}
@usableFromInline
internal func index(forKey key: Key) -> Index? {
// Fast path that does not involve creating an array of all keys. In case
// the key is present, this lookup is a penalty for the slow path, but the
// potential savings are significant: we could skip a memory allocation and
// a linear search.
if lookup(key) == nil {
return nil
}
let allKeys = _stdlib_NSDictionary_allKeys(object)
var keyIndex = -1
for i in 0..<allKeys.value {
if _stdlib_NSObject_isEqual(key, allKeys[i]) {
keyIndex = i
break
}
}
_sanityCheck(keyIndex >= 0,
"Key was found in fast path, but not found later?")
return Index(self, allKeys, keyIndex)
}
@inlinable
internal var count: Int {
return object.count
}
@inlinable
@inline(__always)
internal func contains(_ key: Key) -> Bool {
return object.object(forKey: key) != nil
}
@inlinable
@inline(__always)
internal func lookup(_ key: Key) -> Value? {
return object.object(forKey: key)
}
@inlinable
@inline(__always)
internal func lookup(_ index: Index) -> (key: Key, value: Value) {
_precondition(index.base.object === self.object, "Invalid index")
let key: Key = index.allKeys[index.currentKeyIndex]
let value: Value = index.base.object.object(forKey: key)!
return (key, value)
}
@inlinable
@inline(__always)
func key(at index: Index) -> Key {
_precondition(index.base.object === self.object, "Invalid index")
return index.allKeys[index.currentKeyIndex]
}
@inlinable
@inline(__always)
func value(at index: Index) -> Value {
_precondition(index.base.object === self.object, "Invalid index")
let key = index.allKeys[index.currentKeyIndex]
return index.base.object.object(forKey: key)!
}
}
extension _CocoaDictionary {
@inlinable
internal func mapValues<Key: Hashable, Value, T>(
_ transform: (Value) throws -> T
) rethrows -> _NativeDictionary<Key, T> {
var result = _NativeDictionary<Key, T>(capacity: self.count)
for (cocoaKey, cocoaValue) in self {
let key = _forceBridgeFromObjectiveC(cocoaKey, Key.self)
let value = _forceBridgeFromObjectiveC(cocoaValue, Value.self)
try result.insertNew(key: key, value: transform(value))
}
return result
}
}
extension _CocoaDictionary {
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
internal struct Index {
// Assumption: we rely on NSDictionary.getObjects when being
// repeatedly called on the same NSDictionary, returning items in the same
// order every time.
// Similarly, the same assumption holds for NSSet.allObjects.
/// A reference to the NSDictionary, which owns members in `allObjects`,
/// or `allKeys`, for NSSet and NSDictionary respectively.
@usableFromInline // FIXME(sil-serialize-all)
internal let base: _CocoaDictionary
// FIXME: swift-3-indexing-model: try to remove the cocoa reference, but
// make sure that we have a safety check for accessing `allKeys`. Maybe
// move both into the dictionary/set itself.
/// An unowned array of keys.
@usableFromInline // FIXME(sil-serialize-all)
internal var allKeys: _HeapBuffer<Int, AnyObject>
/// Index into `allKeys`
@usableFromInline // FIXME(sil-serialize-all)
internal var currentKeyIndex: Int
@inlinable // FIXME(sil-serialize-all)
internal init(_ base: _CocoaDictionary, startIndex: ()) {
self.base = base
self.allKeys = _stdlib_NSDictionary_allKeys(base.object)
self.currentKeyIndex = 0
}
@inlinable // FIXME(sil-serialize-all)
internal init(_ base: _CocoaDictionary, endIndex: ()) {
self.base = base
self.allKeys = _stdlib_NSDictionary_allKeys(base.object)
self.currentKeyIndex = allKeys.value
}
@inlinable // FIXME(sil-serialize-all)
internal init(
_ base: _CocoaDictionary,
_ allKeys: _HeapBuffer<Int, AnyObject>,
_ currentKeyIndex: Int
) {
self.base = base
self.allKeys = allKeys
self.currentKeyIndex = currentKeyIndex
}
}
}
extension _CocoaDictionary.Index: Equatable {
@inlinable
internal static func == (
lhs: _CocoaDictionary.Index,
rhs: _CocoaDictionary.Index
) -> Bool {
_precondition(lhs.base.object === rhs.base.object,
"Comparing indexes from different dictionaries")
return lhs.currentKeyIndex == rhs.currentKeyIndex
}
}
extension _CocoaDictionary.Index: Comparable {
@inlinable
internal static func < (
lhs: _CocoaDictionary.Index,
rhs: _CocoaDictionary.Index
) -> Bool {
_precondition(lhs.base.object === rhs.base.object,
"Comparing indexes from different dictionaries")
return lhs.currentKeyIndex < rhs.currentKeyIndex
}
}
extension _CocoaDictionary: Sequence {
@usableFromInline
final internal class Iterator {
// Cocoa Dictionary iterator has to be a class, otherwise we cannot
// guarantee that the fast enumeration struct is pinned to a certain memory
// location.
// This stored property should be stored at offset zero. There's code below
// relying on this.
internal var _fastEnumerationState: _SwiftNSFastEnumerationState =
_makeSwiftNSFastEnumerationState()
// This stored property should be stored right after
// `_fastEnumerationState`. There's code below relying on this.
internal var _fastEnumerationStackBuf = _CocoaFastEnumerationStackBuf()
internal let base: _CocoaDictionary
internal var _fastEnumerationStatePtr:
UnsafeMutablePointer<_SwiftNSFastEnumerationState> {
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
to: _SwiftNSFastEnumerationState.self)
}
internal var _fastEnumerationStackBufPtr:
UnsafeMutablePointer<_CocoaFastEnumerationStackBuf> {
return UnsafeMutableRawPointer(_fastEnumerationStatePtr + 1)
.assumingMemoryBound(to: _CocoaFastEnumerationStackBuf.self)
}
// These members have to be word-sized integers, they cannot be limited to
// Int8 just because our storage holds 16 elements: fast enumeration is
// allowed to return inner pointers to the container, which can be much
// larger.
internal var itemIndex: Int = 0
internal var itemCount: Int = 0
internal init(_ base: _CocoaDictionary) {
self.base = base
}
}
@usableFromInline
@_effects(releasenone)
internal func makeIterator() -> Iterator {
return Iterator(self)
}
}
extension _CocoaDictionary.Iterator: IteratorProtocol {
@usableFromInline
internal typealias Element = (key: AnyObject, value: AnyObject)
@usableFromInline
internal func next() -> Element? {
if itemIndex < 0 {
return nil
}
let base = self.base
if itemIndex == itemCount {
let stackBufCount = _fastEnumerationStackBuf.count
// We can't use `withUnsafeMutablePointer` here to get pointers to
// properties, because doing so might introduce a writeback storage, but
// fast enumeration relies on the pointer identity of the enumeration
// state struct.
itemCount = base.object.countByEnumerating(
with: _fastEnumerationStatePtr,
objects: UnsafeMutableRawPointer(_fastEnumerationStackBufPtr)
.assumingMemoryBound(to: AnyObject.self),
count: stackBufCount)
if itemCount == 0 {
itemIndex = -1
return nil
}
itemIndex = 0
}
let itemsPtrUP =
UnsafeMutableRawPointer(_fastEnumerationState.itemsPtr!)
.assumingMemoryBound(to: AnyObject.self)
let itemsPtr = _UnmanagedAnyObjectArray(itemsPtrUP)
let key: AnyObject = itemsPtr[itemIndex]
itemIndex += 1
let value: AnyObject = base.object.object(forKey: key)!
return (key, value)
}
}
//===--- Bridging ---------------------------------------------------------===//
extension Dictionary {
@inlinable
public func _bridgeToObjectiveCImpl() -> _NSDictionaryCore {
switch _variant {
case .native(let nativeDictionary):
return nativeDictionary.bridged()
case .cocoa(let cocoaDictionary):
return cocoaDictionary.object
}
}
/// Returns the native Dictionary hidden inside this NSDictionary;
/// returns nil otherwise.
public static func _bridgeFromObjectiveCAdoptingNativeStorageOf(
_ s: AnyObject
) -> Dictionary<Key, Value>? {
// Try all three NSDictionary impls that we currently provide.
if let deferred = s as? _SwiftDeferredNSDictionary<Key, Value> {
return Dictionary(_native: deferred.native)
}
if let nativeStorage = s as? _DictionaryStorage<Key, Value> {
return Dictionary(_native: _NativeDictionary(nativeStorage))
}
if s === _RawDictionaryStorage.empty {
return Dictionary()
}
// FIXME: what if `s` is native storage, but for different key/value type?
return nil
}
}
#endif // _runtime(_ObjC)

View File

@@ -0,0 +1,48 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// Initializes a `Dictionary` from unique members.
///
/// Using a builder can be faster than inserting members into an empty
/// `Dictionary`.
@_fixed_layout
public // SPI(Foundation)
struct _DictionaryBuilder<Key: Hashable, Value> {
@usableFromInline
internal var _target: _NativeDictionary<Key, Value>
@usableFromInline
internal let _requestedCount: Int
@inlinable
public init(count: Int) {
_target = _NativeDictionary(capacity: count)
_requestedCount = count
}
@inlinable
public mutating func add(key newKey: Key, value: Value) {
_target.insertNew(key: newKey, value: value)
}
@inlinable
public mutating func take() -> Dictionary<Key, Value> {
_precondition(_target.capacity > 0 || _requestedCount == 0,
"Cannot take the result twice")
_precondition(_target.count == _requestedCount,
"The number of members added does not match the promised count")
// Prevent taking the result twice.
var result = _NativeDictionary<Key, Value>()
swap(&result, &_target)
return Dictionary(_native: result)
}
}

View File

@@ -0,0 +1,108 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===--- Compiler conversion/casting entry points for Dictionary<K, V> ----===//
/// Perform a non-bridged upcast that always succeeds.
///
/// - Precondition: `BaseKey` and `BaseValue` are base classes or base `@objc`
/// protocols (such as `AnyObject`) of `DerivedKey` and `DerivedValue`,
/// respectively.
@inlinable
public func _dictionaryUpCast<DerivedKey, DerivedValue, BaseKey, BaseValue>(
_ source: Dictionary<DerivedKey, DerivedValue>
) -> Dictionary<BaseKey, BaseValue> {
var result = Dictionary<BaseKey, BaseValue>(minimumCapacity: source.count)
for (k, v) in source {
result[k as! BaseKey] = (v as! BaseValue)
}
return result
}
/// Called by the casting machinery.
@_silgen_name("_swift_dictionaryDownCastIndirect")
internal func _dictionaryDownCastIndirect<SourceKey, SourceValue,
TargetKey, TargetValue>(
_ source: UnsafePointer<Dictionary<SourceKey, SourceValue>>,
_ target: UnsafeMutablePointer<Dictionary<TargetKey, TargetValue>>) {
target.initialize(to: _dictionaryDownCast(source.pointee))
}
/// Implements a forced downcast. This operation should have O(1) complexity.
///
/// The cast can fail if bridging fails. The actual checks and bridging can be
/// deferred.
///
/// - Precondition: `DerivedKey` is a subtype of `BaseKey`, `DerivedValue` is
/// a subtype of `BaseValue`, and all of these types are reference types.
@inlinable
public func _dictionaryDownCast<BaseKey, BaseValue, DerivedKey, DerivedValue>(
_ source: Dictionary<BaseKey, BaseValue>
) -> Dictionary<DerivedKey, DerivedValue> {
#if _runtime(_ObjC)
if _isClassOrObjCExistential(BaseKey.self)
&& _isClassOrObjCExistential(BaseValue.self)
&& _isClassOrObjCExistential(DerivedKey.self)
&& _isClassOrObjCExistential(DerivedValue.self) {
switch source._variant {
case .native(let native):
// Note: it is safe to treat the buffer as immutable here because
// Dictionary will not mutate buffer with reference count greater than 1.
return Dictionary(_immutableCocoaDictionary: native.bridged())
case .cocoa(let cocoa):
return Dictionary(_immutableCocoaDictionary: cocoa.object)
}
}
#endif
return _dictionaryDownCastConditional(source)!
}
/// Called by the casting machinery.
@_silgen_name("_swift_dictionaryDownCastConditionalIndirect")
internal func _dictionaryDownCastConditionalIndirect<SourceKey, SourceValue,
TargetKey, TargetValue>(
_ source: UnsafePointer<Dictionary<SourceKey, SourceValue>>,
_ target: UnsafeMutablePointer<Dictionary<TargetKey, TargetValue>>
) -> Bool {
if let result: Dictionary<TargetKey, TargetValue>
= _dictionaryDownCastConditional(source.pointee) {
target.initialize(to: result)
return true
}
return false
}
/// Implements a conditional downcast.
///
/// If the cast fails, the function returns `nil`. All checks should be
/// performed eagerly.
///
/// - Precondition: `DerivedKey` is a subtype of `BaseKey`, `DerivedValue` is
/// a subtype of `BaseValue`, and all of these types are reference types.
@inlinable
public func _dictionaryDownCastConditional<
BaseKey, BaseValue, DerivedKey, DerivedValue
>(
_ source: Dictionary<BaseKey, BaseValue>
) -> Dictionary<DerivedKey, DerivedValue>? {
var result = Dictionary<DerivedKey, DerivedValue>()
for (k, v) in source {
guard let k1 = k as? DerivedKey, let v1 = v as? DerivedValue
else { return nil }
result[k1] = v1
}
return result
}

View File

@@ -0,0 +1,399 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// An instance of this class has all `Dictionary` data tail-allocated.
/// Enough bytes are allocated to hold the bitmap for marking valid entries,
/// keys, and values. The data layout starts with the bitmap, followed by the
/// keys, followed by the values.
//
// See the docs at the top of the file for more details on this type
//
// NOTE: The precise layout of this type is relied on in the runtime
// to provide a statically allocated empty singleton.
// See stdlib/public/stubs/GlobalObjects.cpp for details.
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
@_objc_non_lazy_realization
internal class _RawDictionaryStorage: __SwiftNativeNSDictionary {
/// The current number of occupied entries in this dictionary.
@usableFromInline
@nonobjc
internal final var _count: Int
/// The maximum number of elements that can be inserted into this set without
/// exceeding the hash table's maximum load factor.
@usableFromInline
@nonobjc
internal final var _capacity: Int
/// The scale of this dictionary. The number of buckets is 2 raised to the
/// power of `scale`.
@usableFromInline
@nonobjc
internal final var _scale: Int
@usableFromInline
internal final var _seed: Hasher._Seed
@usableFromInline
@nonobjc
internal final var _rawKeys: UnsafeMutableRawPointer
@usableFromInline
@nonobjc
internal final var _rawValues: UnsafeMutableRawPointer
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@nonobjc
internal init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
@inlinable
@nonobjc
internal final var _bucketCount: Int {
@inline(__always) get { return 1 &<< _scale }
}
@inlinable
@nonobjc
internal final var _metadata: UnsafeMutablePointer<_HashTable.Word> {
@inline(__always) get {
let address = Builtin.projectTailElems(self, _HashTable.Word.self)
return UnsafeMutablePointer(address)
}
}
// The _HashTable struct contains pointers into tail-allocated storage, so
// this is unsafe and needs `_fixLifetime` calls in the caller.
@inlinable
@nonobjc
internal final var _hashTable: _HashTable {
@inline(__always) get {
return _HashTable(words: _metadata, bucketCount: _bucketCount)
}
}
}
/// The storage class for the singleton empty set.
/// The single instance of this class is created by the runtime.
@_fixed_layout
@usableFromInline
internal class _EmptyDictionarySingleton: _RawDictionaryStorage {
@nonobjc
internal override init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#if _runtime(_ObjC)
@objc
internal required init(
objects: UnsafePointer<AnyObject?>,
forKeys: UnsafeRawPointer,
count: Int
) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#endif
}
#if _runtime(_ObjC)
extension _EmptyDictionarySingleton: _NSDictionaryCore {
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
return self
}
@objc
internal var count: Int {
return 0
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
// Even though we never do anything in here, we need to update the
// state so that callers know we actually ran.
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
state.pointee = theState
return 0
}
@objc(objectForKey:)
internal func object(forKey aKey: AnyObject) -> AnyObject? {
return nil
}
@objc(keyEnumerator)
internal func keyEnumerator() -> _NSEnumerator {
return _SwiftEmptyNSEnumerator()
}
@objc(getObjects:andKeys:count:)
internal func getObjects(
_ objects: UnsafeMutablePointer<AnyObject>?,
andKeys keys: UnsafeMutablePointer<AnyObject>?,
count: Int) {
// Do nothing, we're empty
}
}
#endif
extension _RawDictionaryStorage {
/// The empty singleton that is used for every single Dictionary that is
/// created without any elements. The contents of the storage should never
/// be mutated.
@inlinable
@nonobjc
internal static var empty: _EmptyDictionarySingleton {
return Builtin.bridgeFromRawPointer(
Builtin.addressof(&_swiftEmptyDictionarySingleton))
}
}
// See the docs at the top of this file for a description of this type
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
final internal class _DictionaryStorage<Key: Hashable, Value>
: _RawDictionaryStorage, _NSDictionaryCore {
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@nonobjc
override internal init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#if _runtime(_ObjC)
@objc
internal required init(
objects: UnsafePointer<AnyObject?>,
forKeys: UnsafeRawPointer,
count: Int
) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#endif
deinit {
guard _count > 0 else { return }
if !_isPOD(Key.self) {
let keys = self._keys
for index in _hashTable {
(keys + index.bucket).deinitialize(count: 1)
}
}
if !_isPOD(Value.self) {
let values = self._values
for index in _hashTable {
(values + index.bucket).deinitialize(count: 1)
}
}
_count = 0
_fixLifetime(self)
}
@inlinable
final internal var _keys: UnsafeMutablePointer<Key> {
@inline(__always)
get {
return self._rawKeys.assumingMemoryBound(to: Key.self)
}
}
@inlinable
final internal var _values: UnsafeMutablePointer<Value> {
@inline(__always)
get {
return self._rawValues.assumingMemoryBound(to: Value.self)
}
}
internal var asNative: _NativeDictionary<Key, Value> {
return _NativeDictionary(self)
}
@usableFromInline
@_effects(releasenone)
internal static func reallocate(
original: _RawDictionaryStorage,
capacity: Int
) -> (storage: _DictionaryStorage, rehash: Bool) {
_sanityCheck(capacity >= original._count)
let scale = _HashTable.scale(forCapacity: capacity)
let rehash = (scale != original._scale)
let newStorage = _DictionaryStorage<Key, Value>.allocate(scale: scale)
return (newStorage, rehash)
}
@usableFromInline
@_effects(releasenone)
static internal func allocate(capacity: Int) -> _DictionaryStorage {
let scale = _HashTable.scale(forCapacity: capacity)
return allocate(scale: scale)
}
static internal func allocate(scale: Int) -> _DictionaryStorage {
// The entry count must be representable by an Int value; hence the scale's
// peculiar upper bound.
_sanityCheck(scale >= 0 && scale < Int.bitWidth - 1)
let bucketCount = 1 &<< scale
let wordCount = _UnsafeBitset.wordCount(forCapacity: bucketCount)
let storage = Builtin.allocWithTailElems_3(
_DictionaryStorage<Key, Value>.self,
wordCount._builtinWordValue, _HashTable.Word.self,
bucketCount._builtinWordValue, Key.self,
bucketCount._builtinWordValue, Value.self)
let metadataAddr = Builtin.projectTailElems(storage, _HashTable.Word.self)
let keysAddr = Builtin.getTailAddr_Word(
metadataAddr, wordCount._builtinWordValue, _HashTable.Word.self,
Key.self)
let valuesAddr = Builtin.getTailAddr_Word(
keysAddr, bucketCount._builtinWordValue, Key.self,
Value.self)
storage._count = 0
storage._capacity = _HashTable.capacity(forScale: scale)
storage._scale = scale
storage._rawKeys = UnsafeMutableRawPointer(keysAddr)
storage._rawValues = UnsafeMutableRawPointer(valuesAddr)
// We use a slightly different hash seed whenever we change the size of the
// hash table, so that we avoid certain copy operations becoming quadratic,
// without breaking value semantics. (For background details, see
// https://bugs.swift.org/browse/SR-3268)
// FIXME: Use true per-instance seeding instead. Per-capacity seeding still
// leaves hash values the same in same-sized tables, which may affect
// operations on two tables at once. (E.g., union.)
storage._seed = (
Hasher._seed.0 ^ UInt64(truncatingIfNeeded: scale),
Hasher._seed.1)
// Initialize hash table metadata.
storage._hashTable.clear()
return storage
}
#if _runtime(_ObjC)
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
return self
}
@objc
internal var count: Int {
return _count
}
@objc(keyEnumerator)
internal func keyEnumerator() -> _NSEnumerator {
return _SwiftDictionaryNSEnumerator<Key, Value>(asNative)
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(asNative.startIndex.bucket)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var index = _HashTable.Index(bucket: Int(theState.extra.0))
let endIndex = asNative.endIndex
_precondition(index == endIndex || _hashTable.isOccupied(index))
var stored = 0
for i in 0..<count {
if index == endIndex { break }
let key = asNative.uncheckedKey(at: index)
unmanagedObjects[i] = _bridgeAnythingToObjectiveC(key)
stored += 1
index = asNative.index(after: index)
}
theState.extra.0 = CUnsignedLong(index.bucket)
state.pointee = theState
return stored
}
@objc(objectForKey:)
internal func object(forKey aKey: AnyObject) -> AnyObject? {
guard let nativeKey = _conditionallyBridgeFromObjectiveC(aKey, Key.self)
else { return nil }
let (index, found) = asNative.find(nativeKey)
guard found else { return nil }
let value = asNative.uncheckedValue(at: index)
return _bridgeAnythingToObjectiveC(value)
}
@objc(getObjects:andKeys:count:)
internal func getObjects(
_ objects: UnsafeMutablePointer<AnyObject>?,
andKeys keys: UnsafeMutablePointer<AnyObject>?,
count: Int) {
_precondition(count >= 0, "Invalid count")
guard count > 0 else { return }
var i = 0 // Current position in the output buffers
switch (_UnmanagedAnyObjectArray(keys), _UnmanagedAnyObjectArray(objects)) {
case (let unmanagedKeys?, let unmanagedObjects?):
for (key, value) in asNative {
unmanagedObjects[i] = _bridgeAnythingToObjectiveC(value)
unmanagedKeys[i] = _bridgeAnythingToObjectiveC(key)
i += 1
guard i < count else { break }
}
case (let unmanagedKeys?, nil):
for (key, _) in asNative {
unmanagedKeys[i] = _bridgeAnythingToObjectiveC(key)
i += 1
guard i < count else { break }
}
case (nil, let unmanagedObjects?):
for (_, value) in asNative {
unmanagedObjects[i] = _bridgeAnythingToObjectiveC(value)
i += 1
guard i < count else { break }
}
case (nil, nil):
// Do nothing.
break
}
}
#endif
}

View File

@@ -0,0 +1,518 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// This protocol is only used for compile-time checks that
/// every buffer type implements all required operations.
internal protocol _DictionaryBuffer {
associatedtype Key
associatedtype Value
associatedtype Index
var startIndex: Index { get }
var endIndex: Index { get }
func index(after i: Index) -> Index
func index(forKey key: Key) -> Index?
var count: Int { get }
func contains(_ key: Key) -> Bool
func lookup(_ key: Key) -> Value?
func lookup(_ index: Index) -> (key: Key, value: Value)
func key(at index: Index) -> Key
func value(at index: Index) -> Value
}
extension Dictionary {
@usableFromInline
@_frozen
internal enum _Variant {
case native(_NativeDictionary<Key, Value>)
#if _runtime(_ObjC)
case cocoa(_CocoaDictionary)
#endif
}
}
extension Dictionary._Variant {
#if _runtime(_ObjC)
@usableFromInline @_transparent
internal var guaranteedNative: Bool {
return _canBeClass(Key.self) == 0 || _canBeClass(Value.self) == 0
}
// Allow the optimizer to consider the surrounding code unreachable if Element
// is guaranteed to be native.
@usableFromInline @_transparent
internal func cocoaPath() {
if guaranteedNative {
_conditionallyUnreachable()
}
}
#endif
@inlinable
internal mutating func isUniquelyReferenced() -> Bool {
switch self {
case .native:
// Note that &self drills down through .native(_NativeDictionary) to the
// first property in _NativeDictionary, which is the reference to the
// storage.
return _isUnique_native(&self)
#if _runtime(_ObjC)
case .cocoa:
cocoaPath()
// Don't consider Cocoa buffer mutable, even if it is mutable and is
// uniquely referenced.
return false
#endif
}
}
@inlinable
internal var asNative: _NativeDictionary<Key, Value> {
@inline(__always)
get {
switch self {
case .native(let native):
return native
#if _runtime(_ObjC)
case .cocoa:
_sanityCheckFailure("internal error: not backed by native buffer")
#endif
}
}
@inline(__always)
set {
self = .native(newValue)
}
}
#if _runtime(_ObjC)
@inlinable
internal var asCocoa: _CocoaDictionary {
switch self {
case .native:
_sanityCheckFailure("internal error: not backed by NSDictionary")
case .cocoa(let cocoa):
return cocoa
}
}
#endif
/// Reserves enough space for the specified number of elements to be stored
/// without reallocating additional storage.
@inlinable
internal mutating func reserveCapacity(_ capacity: Int) {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
asNative.reserveCapacity(capacity, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let capacity = Swift.max(cocoa.count, capacity)
self = .native(_NativeDictionary(cocoa, capacity: capacity))
#endif
}
}
/// The number of elements that can be stored without expanding the current
/// storage.
///
/// For bridged storage, this is equal to the current count of the
/// collection, since any addition will trigger a copy of the elements into
/// newly allocated storage. For native storage, this is the element count
/// at which adding any more elements will exceed the load factor.
@inlinable
internal var capacity: Int {
switch self {
case .native:
return asNative.capacity
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return cocoa.count
#endif
}
}
}
extension Dictionary._Variant: _DictionaryBuffer {
@usableFromInline
internal typealias Element = (key: Key, value: Value)
@usableFromInline
internal typealias Index = Dictionary<Key, Value>.Index
@inlinable
internal var startIndex: Index {
switch self {
case .native:
return Index(_native: asNative.startIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return Index(_cocoa: cocoa.startIndex)
#endif
}
}
@inlinable
internal var endIndex: Index {
switch self {
case .native:
return Index(_native: asNative.endIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return Index(_cocoa: cocoa.endIndex)
#endif
}
}
@inlinable
internal func index(after i: Index) -> Index {
switch self {
case .native:
return Index(_native: asNative.index(after: i._asNative))
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return Index(_cocoa: cocoa.index(after: i._asCocoa))
#endif
}
}
@inlinable
@inline(__always)
internal func index(forKey key: Key) -> Index? {
switch self {
case .native:
guard let index = asNative.index(forKey: key) else { return nil }
return Index(_native: index)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaKey = _bridgeAnythingToObjectiveC(key)
guard let index = cocoa.index(forKey: cocoaKey) else { return nil }
return Index(_cocoa: index)
#endif
}
}
@inlinable
internal var count: Int {
@inline(__always)
get {
switch self {
case .native:
return asNative.count
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return cocoa.count
#endif
}
}
}
@inlinable
@inline(__always)
func contains(_ key: Key) -> Bool {
switch self {
case .native:
return asNative.contains(key)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaKey = _bridgeAnythingToObjectiveC(key)
return cocoa.contains(cocoaKey)
#endif
}
}
@inlinable
@inline(__always)
func lookup(_ key: Key) -> Value? {
switch self {
case .native:
return asNative.lookup(key)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaKey = _bridgeAnythingToObjectiveC(key)
guard let cocoaValue = cocoa.lookup(cocoaKey) else { return nil }
return _forceBridgeFromObjectiveC(cocoaValue, Value.self)
#endif
}
}
@inlinable
@inline(__always)
func lookup(_ index: Index) -> (key: Key, value: Value) {
switch self {
case .native:
return asNative.lookup(index._asNative)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let (cocoaKey, cocoaValue) = cocoa.lookup(index._asCocoa)
let nativeKey = _forceBridgeFromObjectiveC(cocoaKey, Key.self)
let nativeValue = _forceBridgeFromObjectiveC(cocoaValue, Value.self)
return (nativeKey, nativeValue)
#endif
}
}
@inlinable
@inline(__always)
func key(at index: Index) -> Key {
switch self {
case .native:
return asNative.key(at: index._asNative)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaKey = cocoa.key(at: index._asCocoa)
return _forceBridgeFromObjectiveC(cocoaKey, Key.self)
#endif
}
}
@inlinable
@inline(__always)
func value(at index: Index) -> Value {
switch self {
case .native:
return asNative.value(at: index._asNative)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaValue = cocoa.value(at: index._asCocoa)
return _forceBridgeFromObjectiveC(cocoaValue, Value.self)
#endif
}
}
}
extension Dictionary._Variant {
/// Same as find(_:), except assume a corresponding key/value pair will be
/// inserted if it doesn't already exist, and mutated if it does exist. When
/// this function returns, the storage is guaranteed to be native, uniquely
/// held, and with enough capacity for a single insertion (if the key isn't
/// already in the dictionary.)
@inlinable
@inline(__always)
internal mutating func mutatingFind(
_ key: Key
) -> (index: _NativeDictionary<Key, Value>.Index, found: Bool) {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
return asNative.mutatingFind(key, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
var native = _NativeDictionary<Key, Value>(
cocoa, capacity: cocoa.count + 1)
let result = native.mutatingFind(key, isUnique: true)
self = .native(native)
return result
#endif
}
}
/// Ensure uniquely held native storage, while preserving the given index.
/// (If the variant had bridged storage, then the returned index will be the
/// corresponding native representation. Otherwise it's kept the same.)
@inlinable
@inline(__always)
internal mutating func ensureUniqueNative(
preserving index: Index
) -> _NativeDictionary<Key, Value>.Index {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
if !isUnique {
let rehashed = asNative.copy(capacity: asNative.capacity)
_sanityCheck(!rehashed)
}
return index._asNative
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// We have to migrate the data first. But after we do so, the Cocoa
// index becomes useless, so get the key first.
let cocoaKey = cocoa.key(at: index._asCocoa)
let native = _NativeDictionary<Key, Value>(cocoa)
self = .native(native)
let nativeKey = _forceBridgeFromObjectiveC(cocoaKey, Key.self)
let (nativeIndex, found) = native.find(nativeKey)
_precondition(found, "Bridging did not preserve equality")
return nativeIndex
#endif
}
}
@inlinable
internal mutating func updateValue(
_ value: Value,
forKey key: Key
) -> Value? {
switch self {
case .native:
let isUnique = self.isUniquelyReferenced()
return asNative.updateValue(value, forKey: key, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// Make sure we have space for an extra element.
var native = _NativeDictionary<Key, Value>(
cocoa,
capacity: cocoa.count + 1)
let result = native.updateValue(value, forKey: key, isUnique: true)
self = .native(native)
return result
#endif
}
}
@inlinable
internal mutating func setValue(_ value: Value, forKey key: Key) {
switch self {
case .native:
let isUnique = self.isUniquelyReferenced()
asNative.setValue(value, forKey: key, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// Make sure we have space for an extra element.
var native = _NativeDictionary<Key, Value>(
cocoa,
capacity: cocoa.count + 1)
native.setValue(value, forKey: key, isUnique: true)
self = .native(native)
#endif
}
}
@inlinable
internal mutating func remove(at index: Index) -> Element {
// FIXME(performance): fuse data migration and element deletion into one
// operation.
let index = ensureUniqueNative(preserving: index)
return asNative.remove(at: index, isUnique: true)
}
@inlinable
internal mutating func removeValue(forKey key: Key) -> Value? {
switch self {
case .native:
let (index, found) = asNative.find(key)
guard found else { return nil }
let isUnique = isUniquelyReferenced()
return asNative.uncheckedRemove(at: index, isUnique: isUnique).value
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaKey = _bridgeAnythingToObjectiveC(key)
guard cocoa.lookup(cocoaKey) != nil else { return nil }
var native = _NativeDictionary<Key, Value>(cocoa)
let (index, found) = native.find(key)
_precondition(found, "Bridging did not preserve equality")
let old = native.uncheckedRemove(at: index, isUnique: true).value
self = .native(native)
return old
#endif
}
}
@inlinable
internal mutating func removeAll(keepingCapacity keepCapacity: Bool) {
if !keepCapacity {
self = .native(_NativeDictionary())
return
}
guard count > 0 else { return }
switch self {
case .native:
let isUnique = isUniquelyReferenced()
asNative.removeAll(isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
self = .native(_NativeDictionary(capacity: cocoa.count))
#endif
}
}
}
extension Dictionary._Variant {
/// Returns an iterator over the `(Key, Value)` pairs.
///
/// - Complexity: O(1).
@inlinable
@inline(__always)
internal func makeIterator() -> Dictionary<Key, Value>.Iterator {
switch self {
case .native(let native):
return Dictionary.Iterator(_native: native.makeIterator())
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return Dictionary.Iterator(_cocoa: cocoa.makeIterator())
#endif
}
}
}
extension Dictionary._Variant {
@inlinable
internal func mapValues<T>(
_ transform: (Value) throws -> T
) rethrows -> _NativeDictionary<Key, T> {
switch self {
case .native(let native):
return try native.mapValues(transform)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return try cocoa.mapValues(transform)
#endif
}
}
@inlinable
internal mutating func merge<S: Sequence>(
_ keysAndValues: S,
uniquingKeysWith combine: (Value, Value) throws -> Value
) rethrows where S.Element == (Key, Value) {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
try asNative.merge(
keysAndValues,
isUnique: isUnique,
uniquingKeysWith: combine)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
var native = _NativeDictionary<Key, Value>(cocoa)
try native.merge(
keysAndValues,
isUnique: true,
uniquingKeysWith: combine)
self = .native(native)
#endif
}
}
}

View File

@@ -111,9 +111,22 @@
"SliceBuffer.swift",
"SwiftNativeNSArray.swift"],
"HashedCollections": [
"HashTable.swift",
"Dictionary.swift",
"HashedCollectionsAnyHashableExtensions.swift",
"NativeDictionary.swift",
"DictionaryBridging.swift",
"DictionaryBuilder.swift",
"DictionaryCasting.swift",
"DictionaryStorage.swift",
"DictionaryVariant.swift",
"Set.swift",
"NativeSet.swift",
"SetAnyHashableExtensions.swift",
"SetBridging.swift",
"SetBuilder.swift",
"SetCasting.swift",
"SetStorage.swift",
"SetVariant.swift"
]
}
],
@@ -165,12 +178,16 @@
"Playground": [
"PlaygroundDisplay.swift"
],
"Misc": [
"AnyHashable.swift",
"Interval.swift",
"Hashing.swift",
"SipHash.swift",
"Hashing": [
"Hashable.swift",
"Hasher.swift",
"SipHash.swift",
"AnyHashable.swift",
"Hashing.swift",
"Bitset.swift"
],
"Misc": [
"Interval.swift",
"ErrorType.swift",
"InputStream.swift",
"LifetimeManager.swift",
@@ -191,11 +208,9 @@
"CommandLine.swift",
"Tuple.swift",
"NewtypeWrapper.swift",
"UnsafeBitMap.swift",
"DebuggerSupport.swift",
"Equatable.swift",
"Comparable.swift",
"Hashable.swift",
"Codable.swift",
"MigrationSupport.swift"
]

View File

@@ -0,0 +1,438 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
@usableFromInline
internal protocol _HashTableDelegate {
func hashValue(at index: _HashTable.Index) -> Int
func moveEntry(from source: _HashTable.Index, to target: _HashTable.Index)
}
@usableFromInline
@_fixed_layout
internal struct _HashTable {
@usableFromInline
internal typealias Word = _UnsafeBitset.Word
@usableFromInline
internal var words: UnsafeMutablePointer<Word>
@usableFromInline
internal let bucketMask: Int
@inlinable
@inline(__always)
internal init(words: UnsafeMutablePointer<Word>, bucketCount: Int) {
_sanityCheck(bucketCount > 0 && bucketCount & (bucketCount - 1) == 0,
"bucketCount must be a power of two")
self.words = words
// The bucket count is a power of two, so subtracting 1 will never overflow
// and get us a nice mask.
self.bucketMask = bucketCount &- 1
}
@inlinable
internal var bucketCount: Int {
@inline(__always) get {
return bucketMask &+ 1
}
}
@inlinable
internal var wordCount: Int {
@inline(__always) get {
return _UnsafeBitset.wordCount(forCapacity: bucketCount)
}
}
}
extension _HashTable {
/// The inverse of the maximum hash table load factor.
private static var maxLoadFactor: Double {
@inline(__always) get { return 3 / 4 }
}
internal static func capacity(forScale scale: Int) -> Int {
let bucketCount = 1 &<< scale
return Int(Double(bucketCount) * maxLoadFactor)
}
internal static func scale(forCapacity capacity: Int) -> Int {
let capacity = Swift.max(capacity, 1)
// Calculate the minimum number of entries we need to allocate to satisfy
// the maximum load factor. `capacity + 1` below ensures that we always
// leave at least one hole.
let minimumEntries = Swift.max(
Int((Double(capacity) / maxLoadFactor).rounded(.up)),
capacity + 1)
// The actual number of entries we need to allocate is the lowest power of
// two greater than or equal to the minimum entry count. Calculate its
// exponent.
let exponent = (Swift.max(minimumEntries, 2) - 1)._binaryLogarithm() + 1
_sanityCheck(exponent >= 0 && exponent < Int.bitWidth)
_sanityCheck(self.capacity(forScale: exponent) >= capacity)
// The scale is the exponent corresponding to the bucket count.
return exponent
}
}
extension _HashTable {
@_fixed_layout
@usableFromInline
internal struct Index {
@usableFromInline
internal var bucket: Int
@inlinable
@inline(__always)
internal init(bucket: Int) {
_sanityCheck(bucket >= 0)
self.bucket = bucket
}
@inlinable
@inline(__always)
internal init(word: Int, bit: Int) {
self.bucket = _UnsafeBitset.join(word: word, bit: bit)
}
@inlinable
internal var word: Int {
@inline(__always) get {
return _UnsafeBitset.word(for: bucket)
}
}
@inlinable
internal var bit: Int {
@inline(__always) get {
return _UnsafeBitset.bit(for: bucket)
}
}
}
}
extension _HashTable.Index: Equatable {
@inlinable
@inline(__always)
internal
static func == (lhs: _HashTable.Index, rhs: _HashTable.Index) -> Bool {
return lhs.bucket == rhs.bucket
}
}
extension _HashTable.Index: Comparable {
@inlinable
@inline(__always)
internal
static func < (lhs: _HashTable.Index, rhs: _HashTable.Index) -> Bool {
return lhs.bucket < rhs.bucket
}
}
extension _HashTable: Sequence {
@usableFromInline
@_fixed_layout
internal struct Iterator: IteratorProtocol {
@usableFromInline
let hashTable: _HashTable
@usableFromInline
var wordIndex: Int
@usableFromInline
var word: Word
@inlinable
init(_ hashTable: _HashTable) {
self.hashTable = hashTable
self.wordIndex = 0
self.word = hashTable.words[0]
if hashTable.bucketCount < Word.capacity {
self.word = self.word.intersecting(elementsBelow: hashTable.bucketCount)
}
}
@inlinable
@inline(__always)
internal mutating func next() -> Index? {
if let bit = word.next() {
return Index(word: wordIndex, bit: bit)
}
while wordIndex + 1 < hashTable.wordCount {
wordIndex += 1
word = hashTable.words[wordIndex]
if let bit = word.next() {
return Index(word: wordIndex, bit: bit)
}
}
return nil
}
}
@inlinable
internal func makeIterator() -> Iterator {
return Iterator(self)
}
}
extension _HashTable {
@inlinable
@inline(__always)
internal func isValid(_ index: Index) -> Bool {
return index.bucket >= 0 && index.bucket < bucketCount
}
@inlinable
@inline(__always)
internal func _isOccupied(_ index: Index) -> Bool {
_sanityCheck(isValid(index))
return words[index.word].uncheckedContains(index.bit)
}
@inlinable
@inline(__always)
internal func isOccupied(_ index: Index) -> Bool {
return isValid(index) && _isOccupied(index)
}
@inlinable
@inline(__always)
internal func checkOccupied(_ i: Index) {
_precondition(isOccupied(i),
"Attempting to access Collection elements using an invalid Index")
}
@inlinable
@inline(__always)
internal func _firstOccupiedIndex(fromWord word: Int) -> Index {
_sanityCheck(word >= 0 && word <= wordCount)
var word = word
while word < wordCount {
if let bit = words[word].minimum {
return Index(word: word, bit: bit)
}
word += 1
}
return endIndex
}
@inlinable
internal func index(after index: Index) -> Index {
_sanityCheck(isValid(index))
let word = index.word
if let bit = words[word].intersecting(elementsAbove: index.bit).minimum {
return Index(word: word, bit: bit)
}
return _firstOccupiedIndex(fromWord: word + 1)
}
@inlinable
internal var startIndex: Index {
return _firstOccupiedIndex(fromWord: 0)
}
@inlinable
internal var endIndex: Index {
@inline(__always)
get {
return Index(bucket: bucketCount)
}
}
}
extension _HashTable {
@inlinable
@inline(__always)
internal func idealIndex(forHashValue hashValue: Int) -> Index {
return Index(bucket: hashValue & bucketMask)
}
/// The next bucket after `bucket`, with wraparound at the end of the table.
@inlinable
@inline(__always)
internal func index(wrappedAfter index: Index) -> Index {
// The bucket is less than bucketCount, which is power of two less than
// Int.max. Therefore adding 1 does not overflow.
return Index(bucket: (index.bucket &+ 1) & bucketMask)
}
}
extension _HashTable {
@inlinable
internal func previousHole(before index: Index) -> Index {
_sanityCheck(isValid(index))
// Note that if we have only a single partial word, its out-of-bounds bits
// are guaranteed to be all set, so the formula below gives correct results.
var word = index.word
if let bit =
words[word]
.complement
.intersecting(elementsBelow: index.bit)
.maximum {
return Index(word: word, bit: bit)
}
var wrap = false
while true {
word -= 1
if word < 0 {
_precondition(!wrap, "Hash table has no holes")
wrap = true
word = wordCount - 1
}
if let bit = words[word].complement.maximum {
return Index(word: word, bit: bit)
}
}
}
@inlinable
internal func nextHole(atOrAfter index: Index) -> Index {
_sanityCheck(isValid(index))
// Note that if we have only a single partial word, its out-of-bounds bits
// are guaranteed to be all set, so the formula below gives correct results.
var word = index.word
if let bit =
words[word]
.complement
.subtracting(elementsBelow: index.bit)
.minimum {
return Index(word: word, bit: bit)
}
var wrap = false
while true {
word += 1
if word == wordCount {
_precondition(!wrap, "Hash table has no holes")
wrap = true
word = 0
}
if let bit = words[word].complement.minimum {
return Index(word: word, bit: bit)
}
}
}
}
extension _HashTable {
@inlinable
@inline(__always)
@_effects(releasenone)
internal func copyContents(of other: _HashTable) {
_sanityCheck(bucketCount == other.bucketCount)
self.words.assign(from: other.words, count: bucketCount)
}
/// Insert a new entry with the specified hash value into the table.
/// The entry must not already exist in the table -- duplicates are ignored.
@inlinable
@inline(__always)
internal func insertNew(hashValue: Int) -> Index {
let hole = nextHole(atOrAfter: idealIndex(forHashValue: hashValue))
insert(hole)
return hole
}
/// Insert a new entry for an element at `index`.
@inlinable
@inline(__always)
internal func insert(_ index: Index) {
_sanityCheck(!isOccupied(index))
words[index.word].uncheckedInsert(index.bit)
}
@inlinable
@inline(__always)
internal func clear() {
if bucketCount < Word.capacity {
// We have only a single partial word. Set all out of bounds bits, so that
// `index(after:)` and `nextHole(atOrAfter:)` works correctly without a
// special case.
words[0] = Word.allBits.subtracting(elementsBelow: bucketCount)
} else {
words.assign(repeating: .empty, count: wordCount)
}
}
@inline(__always)
@inlinable
internal func delete<D: _HashTableDelegate>(
at index: Index,
with delegate: D
) {
_sanityCheck(isOccupied(index))
// If we've put a hole in a chain of contiguous elements, some element after
// the hole may belong where the new hole is.
var hole = index
var candidate = self.index(wrappedAfter: hole)
guard _isOccupied(candidate) else {
// Fast path: Don't get the first bucket when there's nothing to do.
words[hole.word].uncheckedRemove(hole.bit)
return
}
// Find the first bucket in the contiguous chain that contains the entry
// we've just deleted.
let start = self.index(wrappedAfter: previousHole(before: index))
// Relocate out-of-place elements in the chain, repeating until we get to
// the end of the chain.
while _isOccupied(candidate) {
let candidateHash = delegate.hashValue(at: candidate)
let ideal = idealIndex(forHashValue: candidateHash)
// Does this element belong between start and hole? We need two
// separate tests depending on whether [start, hole] wraps around the
// end of the storage.
let c0 = ideal >= start
let c1 = ideal <= hole
if start <= hole ? (c0 && c1) : (c0 || c1) {
delegate.moveEntry(from: candidate, to: hole)
hole = candidate
}
candidate = self.index(wrappedAfter: candidate)
}
words[hole.word].uncheckedRemove(hole.bit)
}
}
extension _HashTable {
/// Check for consistency and return the count of occupied entries.
internal func _invariantCheck(with delegate: _HashTableDelegate) -> Int {
#if INTERNAL_CHECKS_ENABLED
_sanityCheck(bucketCount > 0 && bucketCount & (bucketCount &- 1) == 0,
"Invalid bucketCount")
_sanityCheck(_isValidAddress(UInt(bitPattern: words)),
"Invalid words pointer")
_sanityCheck(_isValidAddress(UInt(bitPattern: words + wordCount - 1)),
"Invalid words buffer")
var occupiedCount = 0
for i in self {
occupiedCount += 1
let hashValue = delegate.hashValue(at: i)
var c = idealIndex(forHashValue: hashValue)
// There must be no holes between the ideal and actual buckets for this
// hash value.
while c != i {
_sanityCheck(_isOccupied(c),
"Some hash table elements are stored outside their collision chain")
c = index(wrappedAfter: c)
}
}
return occupiedCount
#else
return 0
#endif
}
}

View File

@@ -20,7 +20,7 @@ import SwiftShims
// rdar://problem/38549901
@usableFromInline
internal protocol _HasherCore {
init(seed: (UInt64, UInt64))
init(seed: Hasher._Seed)
mutating func compress(_ value: UInt64)
mutating func finalize(tailAndByteCount: UInt64) -> UInt64
@@ -33,7 +33,7 @@ internal protocol _HasherCore {
/// This comes handy when type's _hash(into:) implementation needs to perform
/// one-shot hashing for some of its components. (E.g., for commutative
/// hashing.)
func _generateSeed() -> (UInt64, UInt64)
func _generateSeed() -> Hasher._Seed
}
@inline(__always)
@@ -160,7 +160,7 @@ internal struct _BufferingHasher<Core: _HasherCore> {
private var _core: Core
@inline(__always)
internal init(seed: (UInt64, UInt64)) {
internal init(seed: Hasher._Seed) {
self._buffer = _HasherTailBuffer()
self._core = Core(seed: seed)
}
@@ -252,7 +252,7 @@ internal struct _BufferingHasher<Core: _HasherCore> {
// Generate a seed value from the current state of this hasher.
// FIXME(hasher): Remove
@inline(__always)
internal func _generateSeed() -> (UInt64, UInt64) {
internal func _generateSeed() -> Hasher._Seed {
return _core._generateSeed()
}
@@ -296,6 +296,9 @@ public struct Hasher {
@usableFromInline
internal typealias Core = _BufferingHasher<RawCore>
@usableFromInline
internal typealias _Seed = (UInt64, UInt64)
internal var _core: Core
/// Creates a new hasher.
@@ -310,7 +313,7 @@ public struct Hasher {
/// Initialize a new hasher using the specified seed value.
@usableFromInline
@_effects(releasenone)
internal init(_seed seed: (UInt64, UInt64)) {
internal init(_seed seed: _Seed) {
self._core = Core(seed: seed)
}
@@ -331,7 +334,7 @@ public struct Hasher {
/// The 128-bit hash seed used to initialize the hasher state. Initialized
/// once during process startup.
@inlinable
internal static var _seed: (UInt64, UInt64) {
internal static var _seed: _Seed {
@inline(__always)
get {
// The seed itself is defined in C++ code so that it is initialized during
@@ -428,13 +431,13 @@ public struct Hasher {
// FIXME(hasher): Remove
@_effects(readnone)
@usableFromInline
internal func _generateSeed() -> (UInt64, UInt64) {
internal func _generateSeed() -> Hasher._Seed {
return _core._generateSeed()
}
@_effects(readnone)
@usableFromInline
internal static func _hash(seed: (UInt64, UInt64), _ value: UInt64) -> Int {
internal static func _hash(seed: _Seed, _ value: UInt64) -> Int {
var core = RawCore(seed: seed)
core.compress(value)
let tbc = _HasherTailBuffer(tail: 0, byteCount: 8)
@@ -443,7 +446,7 @@ public struct Hasher {
@_effects(readnone)
@usableFromInline
internal static func _hash(seed: (UInt64, UInt64), _ value: UInt) -> Int {
internal static func _hash(seed: _Seed, _ value: UInt) -> Int {
var core = RawCore(seed: seed)
#if arch(i386) || arch(arm)
_sanityCheck(UInt.bitWidth < UInt64.bitWidth)
@@ -461,7 +464,7 @@ public struct Hasher {
@_effects(readnone)
@usableFromInline
internal static func _hash(
seed: (UInt64, UInt64),
seed: _Seed,
bytes value: UInt64,
count: Int) -> Int {
_sanityCheck(count >= 0 && count < 8)
@@ -473,7 +476,7 @@ public struct Hasher {
@_effects(readnone)
@usableFromInline
internal static func _hash(
seed: (UInt64, UInt64),
seed: _Seed,
bytes: UnsafeRawBufferPointer) -> Int {
var core = Core(seed: seed)
core.combine(bytes: bytes)

View File

@@ -14,6 +14,8 @@
// This file implements helpers for hashing collections.
//
import SwiftShims
/// The inverse of the default hash table load factor. Factored out so that it
/// can be used in multiple places in the implementation and stay consistent.
/// Should not be used outside `Dictionary` implementation.
@@ -27,8 +29,6 @@ internal var _hashContainerDefaultMaxLoadFactorInverse: Double {
///
/// This function is part of the runtime because `Bool` type is bridged to
/// `ObjCBool`, which is in Foundation overlay.
/// FIXME(sil-serialize-all): this should be internal
@usableFromInline // FIXME(sil-serialize-all)
@_silgen_name("swift_stdlib_NSObject_isEqual")
internal func _stdlib_NSObject_isEqual(_ lhs: AnyObject, _ rhs: AnyObject) -> Bool
#endif
@@ -67,3 +67,88 @@ internal struct _UnmanagedAnyObjectArray {
}
}
}
#if _runtime(_ObjC)
/// An NSEnumerator implementation returning zero elements. This is useful when
/// a concrete element type is not recoverable from the empty singleton.
final internal class _SwiftEmptyNSEnumerator
: __SwiftNativeNSEnumerator, _NSEnumerator {
internal override required init() {}
@objc
internal func nextObject() -> AnyObject? {
return nil
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>,
count: Int
) -> Int {
// Even though we never do anything in here, we need to update the
// state so that callers know we actually ran.
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
state.pointee = theState
return 0
}
}
#endif
#if _runtime(_ObjC)
/// This is a minimal class holding a single tail-allocated flat buffer,
/// representing hash table storage for AnyObject elements. This is used to
/// store bridged elements in deferred bridging scenarios.
///
/// Using a dedicated class for this rather than a _HeapBuffer makes it easy to
/// recognize these in heap dumps etc.
internal final class _BridgingHashBuffer
: ManagedBuffer<_BridgingHashBuffer.Header, AnyObject> {
struct Header {
internal var owner: AnyObject
internal var hashTable: _HashTable
init(owner: AnyObject, hashTable: _HashTable) {
self.owner = owner
self.hashTable = hashTable
}
}
internal static func allocate(
owner: AnyObject,
hashTable: _HashTable
) -> _BridgingHashBuffer {
let buffer = self.create(minimumCapacity: hashTable.bucketCount) { _ in
Header(owner: owner, hashTable: hashTable)
}
return unsafeDowncast(buffer, to: _BridgingHashBuffer.self)
}
deinit {
for index in header.hashTable {
(firstElementAddress + index.bucket).deinitialize(count: 1)
}
_fixLifetime(self)
}
internal subscript(index: _HashTable.Index) -> AnyObject {
@inline(__always) get {
_sanityCheck(header.hashTable.isOccupied(index))
defer { _fixLifetime(self) }
return firstElementAddress[index.bucket]
}
}
@inline(__always)
internal func initialize(at index: _HashTable.Index, to object: AnyObject) {
_sanityCheck(header.hashTable.isOccupied(index))
(firstElementAddress + index.bucket).initialize(to: object)
_fixLifetime(self)
}
}
#endif

View File

@@ -0,0 +1,601 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A wrapper around _RawDictionaryStorage that provides most of the
/// implementation of Dictionary.
@usableFromInline
@_fixed_layout
internal struct _NativeDictionary<Key: Hashable, Value> {
@usableFromInline
internal typealias Element = (key: Key, value: Value)
/// See this comments on _RawDictionaryStorage and its subclasses to
/// understand why we store an untyped storage here.
@usableFromInline
internal var _storage: _RawDictionaryStorage
/// Constructs an instance from the empty singleton.
@inlinable
internal init() {
self._storage = _RawDictionaryStorage.empty
}
/// Constructs a dictionary adopting the given storage.
@inlinable
internal init(_ storage: _RawDictionaryStorage) {
self._storage = storage
}
@usableFromInline
@_effects(releasenone)
internal init(capacity: Int) {
let scale = _HashTable.scale(forCapacity: capacity)
self._storage = _DictionaryStorage<Key, Value>.allocate(scale: scale)
}
#if _runtime(_ObjC)
@inlinable
internal init(_ cocoa: _CocoaDictionary) {
self.init(cocoa, capacity: cocoa.count)
}
@inlinable
internal init(_ cocoa: _CocoaDictionary, capacity: Int) {
_sanityCheck(cocoa.count <= capacity)
self.init(capacity: capacity)
for (key, value) in cocoa {
insertNew(
key: _forceBridgeFromObjectiveC(key, Key.self),
value: _forceBridgeFromObjectiveC(value, Value.self))
}
}
#endif
}
extension _NativeDictionary { // Primitive fields
@inlinable
internal var capacity: Int {
@inline(__always)
get {
return _assumeNonNegative(_storage._capacity)
}
}
@inlinable
internal var hashTable: _HashTable {
@inline(__always) get {
return _storage._hashTable
}
}
// This API is unsafe and needs a `_fixLifetime` in the caller.
@inlinable
internal var _keys: UnsafeMutablePointer<Key> {
return _storage._rawKeys.assumingMemoryBound(to: Key.self)
}
@inlinable
internal var _values: UnsafeMutablePointer<Value> {
return _storage._rawValues.assumingMemoryBound(to: Value.self)
}
}
extension _NativeDictionary { // Low-level unchecked operations
@inlinable
@inline(__always)
internal func uncheckedKey(at index: Index) -> Key {
defer { _fixLifetime(self) }
_sanityCheck(hashTable.isOccupied(index))
return _keys[index.bucket]
}
@inlinable
@inline(__always)
internal func uncheckedValue(at index: Index) -> Value {
defer { _fixLifetime(self) }
_sanityCheck(hashTable.isOccupied(index))
return _values[index.bucket]
}
@usableFromInline
@inline(__always)
internal func uncheckedInitialize(
at index: Index,
toKey key: Key,
value: Value) {
defer { _fixLifetime(self) }
_sanityCheck(hashTable.isValid(index))
(_keys + index.bucket).initialize(to: key)
(_values + index.bucket).initialize(to: value)
}
@usableFromInline
@inline(__always)
internal func uncheckedDestroy(at index: Index) {
defer { _fixLifetime(self) }
_sanityCheck(hashTable.isOccupied(index))
(_keys + index.bucket).deinitialize(count: 1)
(_values + index.bucket).deinitialize(count: 1)
}
}
extension _NativeDictionary { // Low-level lookup operations
@inlinable
@inline(__always)
internal func hashValue(for key: Key) -> Int {
return key._rawHashValue(seed: _storage._seed)
}
@inlinable
@inline(__always)
internal func find(_ key: Key) -> (index: Index, found: Bool) {
return find(key, hashValue: self.hashValue(for: key))
}
/// Search for a given element, assuming it has the specified hash value.
///
/// If the element is not present in this set, return the position where it
/// could be inserted.
@inlinable
@inline(__always)
internal func find(
_ key: Key,
hashValue: Int
) -> (index: Index, found: Bool) {
let hashTable = self.hashTable
var index = hashTable.idealIndex(forHashValue: hashValue)
while hashTable._isOccupied(index) {
if uncheckedKey(at: index) == key {
return (index, true)
}
index = hashTable.index(wrappedAfter: index)
}
return (index, false)
}
}
extension _NativeDictionary { // ensureUnique
@inlinable
internal mutating func resize(capacity: Int) {
let capacity = Swift.max(capacity, self.capacity)
let result = _NativeDictionary(
_DictionaryStorage<Key, Value>.allocate(capacity: capacity))
if count > 0 {
for index in hashTable {
let key = (_keys + index.bucket).move()
let value = (_values + index.bucket).move()
result._unsafeInsertNew(key: key, value: value)
}
// Clear out old storage, ensuring that its deinit won't overrelease the
// elements we've just moved out.
_storage._hashTable.clear()
_storage._count = 0
}
_storage = result._storage
}
@inlinable
internal mutating func copy(capacity: Int) -> Bool {
let capacity = Swift.max(capacity, self.capacity)
let (newStorage, rehash) = _DictionaryStorage<Key, Value>.reallocate(
original: _storage,
capacity: capacity)
let result = _NativeDictionary(newStorage)
if count > 0 {
if rehash {
for index in hashTable {
result._unsafeInsertNew(
key: self.uncheckedKey(at: index),
value: self.uncheckedValue(at: index))
}
} else {
result.hashTable.copyContents(of: hashTable)
result._storage._count = self.count
for index in hashTable {
let key = uncheckedKey(at: index)
let value = uncheckedValue(at: index)
result.uncheckedInitialize(at: index, toKey: key, value: value)
}
}
}
_storage = result._storage
return rehash
}
/// Ensure storage of self is uniquely held and can hold at least `capacity`
/// elements. Returns true iff contents were rehashed.
@inlinable
@inline(__always)
internal mutating func ensureUnique(isUnique: Bool, capacity: Int) -> Bool {
if _fastPath(capacity <= self.capacity && isUnique) {
return false
}
guard isUnique else {
return copy(capacity: capacity)
}
resize(capacity: capacity)
return true
}
@inlinable
internal mutating func reserveCapacity(_ capacity: Int, isUnique: Bool) {
_ = ensureUnique(isUnique: isUnique, capacity: capacity)
}
}
extension _NativeDictionary: _DictionaryBuffer {
@usableFromInline
internal typealias Index = _HashTable.Index
@inlinable
internal var startIndex: Index {
return hashTable.startIndex
}
@inlinable
internal var endIndex: Index {
return hashTable.endIndex
}
@inlinable
internal func index(after index: Index) -> Index {
return hashTable.index(after: index)
}
@inlinable
internal func index(forKey key: Key) -> Index? {
if count == 0 {
// Fast path that avoids computing the hash of the key.
return nil
}
let (index, found) = find(key)
return found ? index : nil
}
@inlinable
internal var count: Int {
@inline(__always) get {
return _assumeNonNegative(_storage._count)
}
}
@inlinable
@inline(__always)
func contains(_ key: Key) -> Bool {
return find(key).found
}
@inlinable
@inline(__always)
func lookup(_ key: Key) -> Value? {
if count == 0 {
// Fast path that avoids computing the hash of the key.
return nil
}
let (index, found) = self.find(key)
return found ? self.uncheckedValue(at: index) : nil
}
@inlinable
@inline(__always)
func lookup(_ index: Index) -> (key: Key, value: Value) {
_precondition(hashTable.isOccupied(index),
"Attempting to access Dictionary elements using an invalid Index")
let key = self.uncheckedKey(at: index)
let value = self.uncheckedValue(at: index)
return (key, value)
}
@inlinable
@inline(__always)
func key(at index: Index) -> Key {
_precondition(hashTable.isOccupied(index),
"Attempting to access Dictionary elements using an invalid Index")
return self.uncheckedKey(at: index)
}
@inlinable
@inline(__always)
func value(at index: Index) -> Value {
_precondition(hashTable.isOccupied(index),
"Attempting to access Dictionary elements using an invalid Index")
return self.uncheckedValue(at: index)
}
}
// This function has a highly visible name to make it stand out in stack traces.
@usableFromInline
@inline(never)
internal func KEY_TYPE_OF_DICTIONARY_VIOLATES_HASHABLE_REQUIREMENTS(
_ keyType: Any.Type
) -> Never {
_assertionFailure(
"Fatal error",
"""
Duplicate keys of type '\(keyType)' were found in a Dictionary.
This usually means either that the type violates Hashable's requirements, or
that members of such a dictionary were mutated after insertion.
""",
flags: _fatalErrorFlags())
}
extension _NativeDictionary { // Insertions
/// Insert a new element into uniquely held storage.
/// Storage must be uniquely referenced with adequate capacity.
/// The `key` must not be already present in the Dictionary.
@inlinable
internal func _unsafeInsertNew(key: Key, value: Value) {
_sanityCheck(count + 1 <= capacity)
let hashValue = self.hashValue(for: key)
if _isDebugAssertConfiguration() {
// In debug builds, perform a full lookup and trap if we detect duplicate
// elements -- these imply that the Element type violates Hashable
// requirements. This is generally more costly than a direct insertion,
// because we'll need to compare elements in case of hash collisions.
let (index, found) = find(key, hashValue: hashValue)
guard !found else {
KEY_TYPE_OF_DICTIONARY_VIOLATES_HASHABLE_REQUIREMENTS(Key.self)
}
hashTable.insert(index)
uncheckedInitialize(at: index, toKey: key, value: value)
} else {
let index = hashTable.insertNew(hashValue: hashValue)
uncheckedInitialize(at: index, toKey: key, value: value)
}
_storage._count += 1
}
/// Insert a new entry into uniquely held storage.
/// Storage must be uniquely referenced.
/// The `key` must not be already present in the Dictionary.
@inlinable
internal mutating func insertNew(key: Key, value: Value) {
_ = ensureUnique(isUnique: true, capacity: count + 1)
_unsafeInsertNew(key: key, value: value)
}
/// Same as find(_:), except assume a corresponding key/value pair will be
/// inserted if it doesn't already exist, and mutated if it does exist. When
/// this function returns, the storage is guaranteed to be native, uniquely
/// held, and with enough capacity for a single insertion (if the key isn't
/// already in the dictionary.)
@inlinable
@inline(__always)
internal mutating func mutatingFind(
_ key: Key,
isUnique: Bool
) -> (index: Index, found: Bool) {
let (index, found) = find(key)
// Prepare storage.
// If `key` isn't in the dictionary yet, assume that this access will end
// up inserting it. (If we guess wrong, we might needlessly expand
// storage; that's fine.) Otherwise this can only be a removal or an
// in-place mutation.
let rehashed = ensureUnique(
isUnique: isUnique,
capacity: count + (found ? 0 : 1))
guard rehashed else { return (index, found) }
let (i, f) = find(key)
if f != found {
KEY_TYPE_OF_DICTIONARY_VIOLATES_HASHABLE_REQUIREMENTS(Key.self)
}
return (i, found)
}
@inlinable
internal func _insert(at index: Index, key: Key, value: Value) {
_sanityCheck(count < capacity)
hashTable.insert(index)
uncheckedInitialize(at: index, toKey: key, value: value)
_storage._count += 1
}
@inlinable
internal mutating func updateValue(
_ value: Value,
forKey key: Key,
isUnique: Bool
) -> Value? {
let (index, found) = mutatingFind(key, isUnique: isUnique)
if found {
let oldValue = (_values + index.bucket).move()
(_values + index.bucket).initialize(to: value)
// FIXME: Replacing the old key with the new is unnecessary, unintuitive,
// and actively harmful to some usecases. We shouldn't do it.
// rdar://problem/32144087
(_keys + index.bucket).pointee = key
return oldValue
}
_insert(at: index, key: key, value: value)
return nil
}
@inlinable
internal mutating func setValue(
_ value: Value,
forKey key: Key,
isUnique: Bool
) {
let (index, found) = mutatingFind(key, isUnique: isUnique)
if found {
(_values + index.bucket).pointee = value
// FIXME: Replacing the old key with the new is unnecessary, unintuitive,
// and actively harmful to some usecases. We shouldn't do it.
// rdar://problem/32144087
(_keys + index.bucket).pointee = key
} else {
_insert(at: index, key: key, value: value)
}
}
}
extension _NativeDictionary: _HashTableDelegate {
@inlinable
@inline(__always)
internal func hashValue(at index: Index) -> Int {
return hashValue(for: uncheckedKey(at: index))
}
@inlinable
@inline(__always)
internal func moveEntry(from source: Index, to target: Index) {
(_keys + target.bucket)
.moveInitialize(from: _keys + source.bucket, count: 1)
(_values + target.bucket)
.moveInitialize(from: _values + source.bucket, count: 1)
}
}
extension _NativeDictionary { // Deletion
@inlinable
internal func _delete(at index: Index) {
hashTable.delete(at: index, with: self)
_storage._count -= 1
_sanityCheck(_storage._count >= 0)
}
@inlinable
@inline(__always)
internal mutating func uncheckedRemove(
at index: Index,
isUnique: Bool
) -> Element {
_sanityCheck(hashTable.isOccupied(index))
let rehashed = ensureUnique(isUnique: isUnique, capacity: capacity)
_sanityCheck(!rehashed)
let oldKey = (_keys + index.bucket).move()
let oldValue = (_values + index.bucket).move()
_delete(at: index)
return (oldKey, oldValue)
}
@inlinable
@inline(__always)
internal mutating func remove(at index: Index, isUnique: Bool) -> Element {
_precondition(hashTable.isOccupied(index), "Invalid index")
return uncheckedRemove(at: index, isUnique: isUnique)
}
@usableFromInline
internal mutating func removeAll(isUnique: Bool) {
guard isUnique else {
let scale = self._storage._scale
_storage = _DictionaryStorage<Key, Value>.allocate(scale: scale)
return
}
for index in hashTable {
(_keys + index.bucket).deinitialize(count: 1)
(_values + index.bucket).deinitialize(count: 1)
}
hashTable.clear()
_storage._count = 0
}
}
extension _NativeDictionary { // High-level operations
@inlinable
internal func mapValues<T>(
_ transform: (Value) throws -> T
) rethrows -> _NativeDictionary<Key, T> {
let result = _NativeDictionary<Key, T>(capacity: capacity)
// Because the keys in the current and new buffer are the same, we can
// initialize to the same locations in the new buffer, skipping hash value
// recalculations.
for index in hashTable {
let key = self.uncheckedKey(at: index)
let value = self.uncheckedValue(at: index)
try result._insert(at: index, key: key, value: transform(value))
}
return result
}
@inlinable
internal mutating func merge<S: Sequence>(
_ keysAndValues: S,
isUnique: Bool,
uniquingKeysWith combine: (Value, Value) throws -> Value
) rethrows where S.Element == (Key, Value) {
var isUnique = isUnique
for (key, value) in keysAndValues {
let (index, found) = mutatingFind(key, isUnique: isUnique)
isUnique = true
if found {
do {
let v = (_values + index.bucket).move()
let newValue = try combine(v, value)
(_values + index.bucket).initialize(to: newValue)
} catch _MergeError.keyCollision {
fatalError("Duplicate values for key: '\(key)'")
}
} else {
_insert(at: index, key: key, value: value)
}
}
}
@inlinable
@inline(__always)
internal init<S: Sequence>(
grouping values: S,
by keyForValue: (S.Element) throws -> Key
) rethrows where Value == [S.Element] {
self.init()
for value in values {
let key = try keyForValue(value)
let (index, found) = mutatingFind(key, isUnique: true)
if found {
_values[index.bucket].append(value)
} else {
_insert(at: index, key: key, value: [value])
}
}
}
}
extension _NativeDictionary: Sequence {
@usableFromInline
@_fixed_layout
internal struct Iterator {
// The iterator is iterating over a frozen view of the collection state, so
// it keeps its own reference to the dictionary.
@usableFromInline
internal let base: _NativeDictionary
@usableFromInline
internal var iterator: _HashTable.Iterator
@inlinable
init(_ base: _NativeDictionary) {
self.base = base
self.iterator = base.hashTable.makeIterator()
}
}
@inlinable
internal func makeIterator() -> Iterator {
return Iterator(self)
}
}
extension _NativeDictionary.Iterator: IteratorProtocol {
@usableFromInline
internal typealias Element = (key: Key, value: Value)
@inlinable
internal mutating func next() -> Element? {
guard let index = iterator.next() else { return nil }
let key = base.uncheckedKey(at: index)
let value = base.uncheckedValue(at: index)
return (key, value)
}
}

View File

@@ -0,0 +1,443 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A wrapper around _RawSetStorage that provides most of the
/// implementation of Set.
@usableFromInline
@_fixed_layout
internal struct _NativeSet<Element: Hashable> {
/// See the comments on _RawSetStorage and its subclasses to understand why we
/// store an untyped storage here.
@usableFromInline
internal var _storage: _RawSetStorage
/// Constructs an instance from the empty singleton.
@inlinable
@inline(__always)
internal init() {
self._storage = _RawSetStorage.empty
}
/// Constructs a native set adopting the given storage.
@inlinable
@inline(__always)
internal init(_ storage: _RawSetStorage) {
self._storage = storage
}
@usableFromInline
@_effects(releasenone)
internal init(capacity: Int) {
let scale = _HashTable.scale(forCapacity: capacity)
self._storage = _SetStorage<Element>.allocate(scale: scale)
}
#if _runtime(_ObjC)
@inlinable
internal init(_ cocoa: _CocoaSet) {
self.init(cocoa, capacity: cocoa.count)
}
@inlinable
internal init(_ cocoa: _CocoaSet, capacity: Int) {
_sanityCheck(cocoa.count <= capacity)
self.init(capacity: capacity)
for element in cocoa {
let nativeElement = _forceBridgeFromObjectiveC(element, Element.self)
insertNew(nativeElement, isUnique: true)
}
}
#endif
}
extension _NativeSet { // Primitive fields
@inlinable
internal var capacity: Int {
@inline(__always)
get {
return _assumeNonNegative(_storage._capacity)
}
}
@inlinable
internal var hashTable: _HashTable {
@inline(__always) get {
return _storage._hashTable
}
}
// This API is unsafe and needs a `_fixLifetime` in the caller.
@inlinable
internal var _elements: UnsafeMutablePointer<Element> {
return _storage._rawElements.assumingMemoryBound(to: Element.self)
}
}
extension _NativeSet { // Low-level unchecked operations
@inlinable
@inline(__always)
internal func uncheckedElement(at index: Index) -> Element {
defer { _fixLifetime(self) }
_sanityCheck(hashTable.isOccupied(index))
return _elements[index.bucket]
}
@inlinable
@inline(__always)
internal func uncheckedInitialize(at index: Index, to element: Element) {
_sanityCheck(hashTable.isValid(index))
(_elements + index.bucket).initialize(to: element)
}
}
extension _NativeSet { // Low-level lookup operations
@inlinable
@inline(__always)
internal func hashValue(for element: Element) -> Int {
return element._rawHashValue(seed: _storage._seed)
}
@inlinable
@inline(__always)
internal func find(_ element: Element) -> (index: Index, found: Bool) {
return find(element, hashValue: self.hashValue(for: element))
}
/// Search for a given element, assuming it has the specified hash value.
///
/// If the element is not present in this set, return the position where it
/// could be inserted.
@inlinable
@inline(__always)
internal func find(
_ element: Element,
hashValue: Int
) -> (index: Index, found: Bool) {
let hashTable = self.hashTable
var index = hashTable.idealIndex(forHashValue: hashValue)
while hashTable._isOccupied(index) {
if uncheckedElement(at: index) == element {
return (index, true)
}
index = hashTable.index(wrappedAfter: index)
}
return (index, false)
}
}
extension _NativeSet { // ensureUnique
@inlinable
internal mutating func resize(capacity: Int) {
let capacity = Swift.max(capacity, self.capacity)
let result = _NativeSet(_SetStorage<Element>.allocate(capacity: capacity))
if count > 0 {
for index in hashTable {
let element = (self._elements + index.bucket).move()
result._unsafeInsertNew(element)
}
// Clear out old storage, ensuring that its deinit won't overrelease the
// elements we've just moved out.
_storage._hashTable.clear()
_storage._count = 0
}
_storage = result._storage
}
@inlinable
internal mutating func copy(capacity: Int) -> Bool {
let capacity = Swift.max(capacity, self.capacity)
let (newStorage, rehash) = _SetStorage<Element>.reallocate(
original: _storage,
capacity: capacity)
let result = _NativeSet(newStorage)
if count > 0 {
if rehash {
for index in hashTable {
result._unsafeInsertNew(self.uncheckedElement(at: index))
}
} else {
result.hashTable.copyContents(of: hashTable)
result._storage._count = self.count
for index in hashTable {
let element = uncheckedElement(at: index)
result.uncheckedInitialize(at: index, to: element)
}
}
}
_storage = result._storage
return rehash
}
/// Ensure storage of self is uniquely held and can hold at least `capacity`
/// elements. Returns true iff contents were rehashed.
@inlinable
@inline(__always)
internal mutating func ensureUnique(isUnique: Bool, capacity: Int) -> Bool {
if _fastPath(capacity <= self.capacity && isUnique) {
return false
}
guard isUnique else {
return copy(capacity: capacity)
}
resize(capacity: capacity)
return true
}
@inlinable
internal mutating func reserveCapacity(_ capacity: Int, isUnique: Bool) {
_ = ensureUnique(isUnique: isUnique, capacity: capacity)
}
}
extension _NativeSet: _SetBuffer {
@usableFromInline
internal typealias Index = _HashTable.Index
@inlinable
internal var startIndex: Index {
return hashTable.startIndex
}
@inlinable
internal var endIndex: Index {
return hashTable.endIndex
}
@inlinable
internal func index(after index: Index) -> Index {
return hashTable.index(after: index)
}
@inlinable
@inline(__always)
internal func index(for element: Element) -> Index? {
if count == 0 {
// Fast path that avoids computing the hash of the key.
return nil
}
let (index, found) = find(element)
return found ? index : nil
}
@inlinable
internal var count: Int {
@inline(__always) get {
return _assumeNonNegative(_storage._count)
}
}
@inlinable
@inline(__always)
internal func contains(_ member: Element) -> Bool {
// Fast path: Don't calculate the hash if the set has no elements.
if count == 0 { return false }
return find(member).found
}
@inlinable
@inline(__always)
internal func element(at index: Index) -> Element {
hashTable.checkOccupied(index)
return _elements[index.bucket]
}
}
// This function has a highly visible name to make it stand out in stack traces.
@usableFromInline
@inline(never)
internal func ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(
_ elementType: Any.Type
) -> Never {
_assertionFailure(
"Fatal error",
"""
Duplicate elements of type '\(elementType)' were found in a Set.
This usually means either that the type violates Hashable's requirements, or
that members of such a set were mutated after insertion.
""",
flags: _fatalErrorFlags())
}
extension _NativeSet { // Insertions
/// Insert a new element into uniquely held storage.
/// Storage must be uniquely referenced with adequate capacity.
/// The `element` must not be already present in the Set.
@inlinable
internal func _unsafeInsertNew(_ element: Element) {
_sanityCheck(count + 1 <= capacity)
let hashValue = self.hashValue(for: element)
if _isDebugAssertConfiguration() {
// In debug builds, perform a full lookup and trap if we detect duplicate
// elements -- these imply that the Element type violates Hashable
// requirements. This is generally more costly than a direct insertion,
// because we'll need to compare elements in case of hash collisions.
let (index, found) = find(element, hashValue: hashValue)
guard !found else {
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
}
hashTable.insert(index)
uncheckedInitialize(at: index, to: element)
} else {
let index = hashTable.insertNew(hashValue: hashValue)
uncheckedInitialize(at: index, to: element)
}
_storage._count += 1
}
/// Insert a new element into uniquely held storage.
/// Storage must be uniquely referenced.
/// The `element` must not be already present in the Set.
@inlinable
internal mutating func insertNew(_ element: Element, isUnique: Bool) {
_ = ensureUnique(isUnique: isUnique, capacity: count + 1)
_unsafeInsertNew(element)
}
@inlinable
internal func _unsafeInsertNew(_ element: Element, at index: Index) {
hashTable.insert(index)
uncheckedInitialize(at: index, to: element)
_storage._count += 1
}
@inlinable
internal mutating func insertNew(
_ element: Element,
at index: Index,
isUnique: Bool
) {
_sanityCheck(!hashTable.isOccupied(index))
var index = index
if ensureUnique(isUnique: isUnique, capacity: count + 1) {
let (i, f) = find(element)
if f {
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
}
index = i
}
_unsafeInsertNew(element, at: index)
}
@inlinable
internal mutating func update(
with element: Element,
isUnique: Bool
) -> Element? {
var (index, found) = find(element)
let rehashed = ensureUnique(
isUnique: isUnique,
capacity: count + (found ? 0 : 1))
if rehashed {
let (i, f) = find(element)
if f != found {
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
}
index = i
}
if found {
let old = (_elements + index.bucket).move()
uncheckedInitialize(at: index, to: element)
return old
}
_unsafeInsertNew(element, at: index)
return nil
}
}
extension _NativeSet: _HashTableDelegate {
@inlinable
@inline(__always)
internal func hashValue(at index: Index) -> Int {
return hashValue(for: uncheckedElement(at: index))
}
@inlinable
@inline(__always)
internal func moveEntry(from source: Index, to target: Index) {
(_elements + target.bucket)
.moveInitialize(from: _elements + source.bucket, count: 1)
}
}
extension _NativeSet { // Deletion
@inlinable
internal mutating func _delete(at index: Index) {
hashTable.delete(at: index, with: self)
_storage._count -= 1
}
@inlinable
@inline(__always)
internal mutating func uncheckedRemove(
at index: Index,
isUnique: Bool) -> Element {
_sanityCheck(hashTable.isOccupied(index))
let rehashed = ensureUnique(isUnique: isUnique, capacity: capacity)
_sanityCheck(!rehashed)
let old = (_elements + index.bucket).move()
_delete(at: index)
return old
}
@inlinable
@inline(__always)
internal mutating func remove(at index: Index, isUnique: Bool) -> Element {
_precondition(hashTable.isOccupied(index), "Invalid index")
return uncheckedRemove(at: index, isUnique: isUnique)
}
@usableFromInline
internal mutating func removeAll(isUnique: Bool) {
guard isUnique else {
let scale = self._storage._scale
_storage = _SetStorage<Element>.allocate(scale: scale)
return
}
for index in hashTable {
(_elements + index.bucket).deinitialize(count: 1)
}
hashTable.clear()
_storage._count = 0
}
}
extension _NativeSet: Sequence {
@usableFromInline
@_fixed_layout
internal struct Iterator {
// The iterator is iterating over a frozen view of the collection state, so
// it keeps its own reference to the set.
@usableFromInline
internal let base: _NativeSet
@usableFromInline
internal var iterator: _HashTable.Iterator
@inlinable
init(_ base: _NativeSet) {
self.base = base
self.iterator = base.hashTable.makeIterator()
}
}
@inlinable
__consuming internal func makeIterator() -> Iterator {
return Iterator(self)
}
}
extension _NativeSet.Iterator: IteratorProtocol {
@inlinable
internal mutating func next() -> Element? {
guard let index = iterator.next() else { return nil }
return base.uncheckedElement(at: index)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,582 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if _runtime(_ObjC)
import SwiftShims
@_silgen_name("swift_stdlib_CFSetGetValues")
@usableFromInline
internal
func _stdlib_CFSetGetValues(_ nss: _NSSet, _: UnsafeMutablePointer<AnyObject>)
/// Equivalent to `NSSet.allObjects`, but does not leave objects on the
/// autorelease pool.
@inlinable
internal func _stdlib_NSSet_allObjects(
_ nss: _NSSet
) -> _HeapBuffer<Int, AnyObject> {
let count = nss.count
let storage = _HeapBuffer<Int, AnyObject>(
_HeapBufferStorage<Int, AnyObject>.self, count, count)
_stdlib_CFSetGetValues(nss, storage.baseAddress)
return storage
}
extension _NativeSet { // Bridging
@usableFromInline
internal func bridged() -> _NSSet {
// We can zero-cost bridge if our keys are verbatim
// or if we're the empty singleton.
// Temporary var for SOME type safety before a cast.
let nsSet: _NSSetCore
if _storage === _RawSetStorage.empty || count == 0 {
nsSet = _RawSetStorage.empty
} else if _isBridgedVerbatimToObjectiveC(Element.self) {
nsSet = unsafeDowncast(_storage, to: _SetStorage<Element>.self)
} else {
nsSet = _SwiftDeferredNSSet(self)
}
// Cast from "minimal NSSet" to "NSSet"
// Note that if you actually ask Swift for this cast, it will fail.
// Never trust a shadow protocol!
return unsafeBitCast(nsSet, to: _NSSet.self)
}
}
/// An NSEnumerator that works with any _NativeSet of verbatim bridgeable
/// elements. Used by the various NSSet impls.
final internal class _SwiftSetNSEnumerator<Element: Hashable>
: __SwiftNativeNSEnumerator, _NSEnumerator {
@nonobjc internal var base: _NativeSet<Element>
@nonobjc internal var bridgedElements: _BridgingHashBuffer?
@nonobjc internal var nextIndex: _NativeSet<Element>.Index
@nonobjc internal var endIndex: _NativeSet<Element>.Index
@objc
internal override required init() {
_sanityCheckFailure("don't call this designated initializer")
}
internal init(_ base: _NativeSet<Element>) {
_sanityCheck(_isBridgedVerbatimToObjectiveC(Element.self))
self.base = base
self.bridgedElements = nil
self.nextIndex = base.startIndex
self.endIndex = base.endIndex
}
@nonobjc
internal init(_ deferred: _SwiftDeferredNSSet<Element>) {
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Element.self))
self.base = deferred.native
self.bridgedElements = deferred.bridgeElements()
self.nextIndex = base.startIndex
self.endIndex = base.endIndex
}
private func bridgedElement(at index: _HashTable.Index) -> AnyObject {
_sanityCheck(base.hashTable.isOccupied(index))
if let bridgedElements = self.bridgedElements {
return bridgedElements[index]
}
return _bridgeAnythingToObjectiveC(base.element(at: index))
}
//
// NSEnumerator implementation.
//
// Do not call any of these methods from the standard library!
//
@objc
internal func nextObject() -> AnyObject? {
if nextIndex == endIndex {
return nil
}
let index = nextIndex
nextIndex = base.index(after: nextIndex)
return self.bridgedElement(at: index)
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
if nextIndex == endIndex {
state.pointee = theState
return 0
}
// Return only a single element so that code can start iterating via fast
// enumeration, terminate it, and continue via NSEnumerator.
let unmanagedObjects = _UnmanagedAnyObjectArray(objects)
unmanagedObjects[0] = self.bridgedElement(at: nextIndex)
nextIndex = base.index(after: nextIndex)
state.pointee = theState
return 1
}
}
/// This class exists for Objective-C bridging. It holds a reference to a
/// _NativeSet, and can be upcast to NSSelf when bridging is necessary. This is
/// the fallback implementation for situations where toll-free bridging isn't
/// possible. On first access, a _NativeSet of AnyObject will be constructed
/// containing all the bridged elements.
final internal class _SwiftDeferredNSSet<Element: Hashable>
: __SwiftNativeNSSet, _NSSetCore {
// This stored property must be stored at offset zero. We perform atomic
// operations on it.
//
// Do not access this property directly.
@nonobjc
private var _bridgedElements_DoNotUse: AnyObject?
/// The unbridged elements.
internal var native: _NativeSet<Element>
internal init(_ native: _NativeSet<Element>) {
_sanityCheck(native.count > 0)
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Element.self))
self.native = native
super.init()
}
/// Returns the pointer to the stored property, which contains bridged
/// Set elements.
@nonobjc
private var _bridgedElementsPtr: UnsafeMutablePointer<AnyObject?> {
return _getUnsafePointerToStoredProperties(self)
.assumingMemoryBound(to: Optional<AnyObject>.self)
}
/// The buffer for bridged Set elements, if present.
@nonobjc
private var _bridgedElements: _BridgingHashBuffer? {
guard let ref = _stdlib_atomicLoadARCRef(object: _bridgedElementsPtr) else {
return nil
}
return unsafeDowncast(ref, to: _BridgingHashBuffer.self)
}
/// Attach a buffer for bridged Set elements.
@nonobjc
private func _initializeBridgedElements(_ storage: _BridgingHashBuffer) {
_stdlib_atomicInitializeARCRef(
object: _bridgedElementsPtr,
desired: storage)
}
@nonobjc
internal func bridgeElements() -> _BridgingHashBuffer {
if let bridgedElements = _bridgedElements { return bridgedElements }
// Allocate and initialize heap storage for bridged objects.
let bridged = _BridgingHashBuffer.allocate(
owner: native._storage,
hashTable: native.hashTable)
for index in native.hashTable {
let object = _bridgeAnythingToObjectiveC(native.element(at: index))
bridged.initialize(at: index, to: object)
}
// Atomically put the bridged elements in place.
_initializeBridgedElements(bridged)
return _bridgedElements!
}
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
// Instances of this class should be visible outside of standard library as
// having `NSSet` type, which is immutable.
return self
}
@objc(member:)
internal func member(_ object: AnyObject) -> AnyObject? {
guard let element = _conditionallyBridgeFromObjectiveC(object, Element.self)
else { return nil }
let (index, found) = native.find(element)
guard found else { return nil }
let bridged = bridgeElements()
return bridged[index]
}
@objc
internal func objectEnumerator() -> _NSEnumerator {
return _SwiftSetNSEnumerator<Element>(self)
}
@objc
internal var count: Int {
return native.count
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?,
count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(native.startIndex.bucket)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var index = _NativeSet<Element>.Index(bucket: Int(theState.extra.0))
let endIndex = native.endIndex
_precondition(index == endIndex || native.hashTable.isValid(index))
// Only need to bridge once, so we can hoist it out of the loop.
let bridgedElements = bridgeElements()
var stored = 0
for i in 0..<count {
if index == endIndex { break }
unmanagedObjects[i] = bridgedElements[index]
stored += 1
index = native.index(after: index)
}
theState.extra.0 = CUnsignedLong(index.bucket)
state.pointee = theState
return stored
}
}
@usableFromInline
@_fixed_layout
internal struct _CocoaSet {
@usableFromInline
internal let object: _NSSet
@inlinable
internal init(_ object: _NSSet) {
self.object = object
}
}
extension _CocoaSet {
@usableFromInline
@_effects(releasenone)
internal func member(for index: Index) -> AnyObject {
return index.allKeys[index.currentKeyIndex]
}
@inlinable
internal func member(for element: AnyObject) -> AnyObject? {
return object.member(element)
}
}
extension _CocoaSet: Equatable {
@usableFromInline
internal static func ==(lhs: _CocoaSet, rhs: _CocoaSet) -> Bool {
return _stdlib_NSObject_isEqual(lhs.object, rhs.object)
}
}
extension _CocoaSet: _SetBuffer {
@usableFromInline
internal typealias Element = AnyObject
@inlinable
internal var startIndex: Index {
return Index(self, startIndex: ())
}
@inlinable
internal var endIndex: Index {
return Index(self, endIndex: ())
}
@inlinable
internal func index(after i: Index) -> Index {
var i = i
formIndex(after: &i)
return i
}
@usableFromInline
@_effects(releasenone)
internal func formIndex(after i: inout Index) {
_precondition(i.base.object === self.object, "Invalid index")
_precondition(i.currentKeyIndex < i.allKeys.value,
"Cannot increment endIndex")
i.currentKeyIndex += 1
}
@usableFromInline
internal func index(for element: AnyObject) -> Index? {
// Fast path that does not involve creating an array of all keys. In case
// the key is present, this lookup is a penalty for the slow path, but the
// potential savings are significant: we could skip a memory allocation and
// a linear search.
if !contains(element) {
return nil
}
let allKeys = _stdlib_NSSet_allObjects(object)
var keyIndex = -1
for i in 0..<allKeys.value {
if _stdlib_NSObject_isEqual(element, allKeys[i]) {
keyIndex = i
break
}
}
_sanityCheck(keyIndex >= 0,
"Key was found in fast path, but not found later?")
return Index(self, allKeys, keyIndex)
}
@inlinable
internal var count: Int {
return object.count
}
@inlinable
internal func contains(_ element: AnyObject) -> Bool {
return object.member(element) != nil
}
@usableFromInline
internal func element(at i: Index) -> AnyObject {
let value: AnyObject? = i.allKeys[i.currentKeyIndex]
_sanityCheck(value != nil, "Item not found in underlying NSSet")
return value!
}
}
extension _CocoaSet {
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
internal struct Index {
// Assumption: we rely on NSDictionary.getObjects when being
// repeatedly called on the same NSDictionary, returning items in the same
// order every time.
// Similarly, the same assumption holds for NSSet.allObjects.
/// A reference to the NSSet, which owns members in `allObjects`,
/// or `allKeys`, for NSSet and NSDictionary respectively.
@usableFromInline // FIXME(sil-serialize-all)
internal let base: _CocoaSet
// FIXME: swift-3-indexing-model: try to remove the cocoa reference, but
// make sure that we have a safety check for accessing `allKeys`. Maybe
// move both into the dictionary/set itself.
/// An unowned array of keys.
@usableFromInline // FIXME(sil-serialize-all)
internal var allKeys: _HeapBuffer<Int, AnyObject>
/// Index into `allKeys`
@usableFromInline // FIXME(sil-serialize-all)
internal var currentKeyIndex: Int
@inlinable // FIXME(sil-serialize-all)
internal init(_ base: _CocoaSet, startIndex: ()) {
self.base = base
self.allKeys = _stdlib_NSSet_allObjects(base.object)
self.currentKeyIndex = 0
}
@inlinable // FIXME(sil-serialize-all)
internal init(_ base: _CocoaSet, endIndex: ()) {
self.base = base
self.allKeys = _stdlib_NSSet_allObjects(base.object)
self.currentKeyIndex = allKeys.value
}
@inlinable // FIXME(sil-serialize-all)
internal init(
_ base: _CocoaSet,
_ allKeys: _HeapBuffer<Int, AnyObject>,
_ currentKeyIndex: Int
) {
self.base = base
self.allKeys = allKeys
self.currentKeyIndex = currentKeyIndex
}
}
}
extension _CocoaSet.Index: Equatable {
@inlinable
internal static func == (lhs: _CocoaSet.Index, rhs: _CocoaSet.Index) -> Bool {
_precondition(lhs.base.object === rhs.base.object,
"Comparing indexes from different sets")
return lhs.currentKeyIndex == rhs.currentKeyIndex
}
}
extension _CocoaSet.Index: Comparable {
@inlinable
internal static func < (lhs: _CocoaSet.Index, rhs: _CocoaSet.Index) -> Bool {
_precondition(lhs.base.object === rhs.base.object,
"Comparing indexes from different sets")
return lhs.currentKeyIndex < rhs.currentKeyIndex
}
}
extension _CocoaSet: Sequence {
@usableFromInline
final internal class Iterator {
// Cocoa Set iterator has to be a class, otherwise we cannot
// guarantee that the fast enumeration struct is pinned to a certain memory
// location.
// This stored property should be stored at offset zero. There's code below
// relying on this.
internal var _fastEnumerationState: _SwiftNSFastEnumerationState =
_makeSwiftNSFastEnumerationState()
// This stored property should be stored right after
// `_fastEnumerationState`. There's code below relying on this.
internal var _fastEnumerationStackBuf = _CocoaFastEnumerationStackBuf()
internal let base: _CocoaSet
internal var _fastEnumerationStatePtr:
UnsafeMutablePointer<_SwiftNSFastEnumerationState> {
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
to: _SwiftNSFastEnumerationState.self)
}
internal var _fastEnumerationStackBufPtr:
UnsafeMutablePointer<_CocoaFastEnumerationStackBuf> {
return UnsafeMutableRawPointer(_fastEnumerationStatePtr + 1)
.assumingMemoryBound(to: _CocoaFastEnumerationStackBuf.self)
}
// These members have to be word-sized integers, they cannot be limited to
// Int8 just because our storage holds 16 elements: fast enumeration is
// allowed to return inner pointers to the container, which can be much
// larger.
internal var itemIndex: Int = 0
internal var itemCount: Int = 0
internal init(_ base: _CocoaSet) {
self.base = base
}
}
@usableFromInline
__consuming internal func makeIterator() -> Iterator {
return Iterator(self)
}
}
extension _CocoaSet.Iterator: IteratorProtocol {
@usableFromInline
internal typealias Element = AnyObject
@usableFromInline
internal func next() -> Element? {
if itemIndex < 0 {
return nil
}
let base = self.base
if itemIndex == itemCount {
let stackBufCount = _fastEnumerationStackBuf.count
// We can't use `withUnsafeMutablePointer` here to get pointers to
// properties, because doing so might introduce a writeback storage, but
// fast enumeration relies on the pointer identity of the enumeration
// state struct.
itemCount = base.object.countByEnumerating(
with: _fastEnumerationStatePtr,
objects: UnsafeMutableRawPointer(_fastEnumerationStackBufPtr)
.assumingMemoryBound(to: AnyObject.self),
count: stackBufCount)
if itemCount == 0 {
itemIndex = -1
return nil
}
itemIndex = 0
}
let itemsPtrUP =
UnsafeMutableRawPointer(_fastEnumerationState.itemsPtr!)
.assumingMemoryBound(to: AnyObject.self)
let itemsPtr = _UnmanagedAnyObjectArray(itemsPtrUP)
let key: AnyObject = itemsPtr[itemIndex]
itemIndex += 1
return key
}
}
//===--- Bridging ---------------------------------------------------------===//
extension Set {
@inlinable
public func _bridgeToObjectiveCImpl() -> _NSSetCore {
switch _variant {
case .native(let nativeSet):
return nativeSet.bridged()
case .cocoa(let cocoaSet):
return cocoaSet.object
}
}
/// Returns the native Dictionary hidden inside this NSDictionary;
/// returns nil otherwise.
public static func _bridgeFromObjectiveCAdoptingNativeStorageOf(
_ s: AnyObject
) -> Set<Element>? {
// Try all three NSSet impls that we currently provide.
if let deferred = s as? _SwiftDeferredNSSet<Element> {
return Set(_native: deferred.native)
}
if let nativeStorage = s as? _SetStorage<Element> {
return Set(_native: _NativeSet(nativeStorage))
}
if s === _RawSetStorage.empty {
return Set()
}
// FIXME: what if `s` is native storage, but for different key/value type?
return nil
}
}
#endif // _runtime(_ObjC)

View File

@@ -0,0 +1,50 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// Initializes a `Set` from unique members.
///
/// Using a builder can be faster than inserting members into an empty
/// `Set`.
@_fixed_layout
public // SPI(Foundation)
struct _SetBuilder<Element: Hashable> {
@usableFromInline
internal var _target: _NativeSet<Element>
@usableFromInline
internal let _requestedCount: Int
@inlinable
public init(count: Int) {
_target = _NativeSet(capacity: count)
_requestedCount = count
}
@inlinable
public mutating func add(member: Element) {
_precondition(_target.count < _requestedCount,
"Can't add more members than promised")
_target.insertNew(member, isUnique: true)
}
@inlinable
public mutating func take() -> Set<Element> {
_precondition(_target.capacity > 0 || _requestedCount == 0,
"Cannot take the result twice")
_precondition(_target.count == _requestedCount,
"The number of members added does not match the promised count")
// Prevent taking the result twice.
var result = _NativeSet<Element>()
swap(&result, &_target)
return Set(_native: result)
}
}

View File

@@ -0,0 +1,95 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===--- Compiler conversion/casting entry points for Set<Element> --------===//
/// Perform a non-bridged upcast that always succeeds.
///
/// - Precondition: `BaseValue` is a base class or base `@objc`
/// protocol (such as `AnyObject`) of `DerivedValue`.
@inlinable
public func _setUpCast<DerivedValue, BaseValue>(_ source: Set<DerivedValue>)
-> Set<BaseValue> {
var builder = _SetBuilder<BaseValue>(count: source.count)
for x in source {
builder.add(member: x as! BaseValue)
}
return builder.take()
}
/// Called by the casting machinery.
@_silgen_name("_swift_setDownCastIndirect")
internal func _setDownCastIndirect<SourceValue, TargetValue>(
_ source: UnsafePointer<Set<SourceValue>>,
_ target: UnsafeMutablePointer<Set<TargetValue>>) {
target.initialize(to: _setDownCast(source.pointee))
}
/// Implements a forced downcast. This operation should have O(1) complexity.
///
/// The cast can fail if bridging fails. The actual checks and bridging can be
/// deferred.
///
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
/// are reference types.
@inlinable
public func _setDownCast<BaseValue, DerivedValue>(_ source: Set<BaseValue>)
-> Set<DerivedValue> {
#if _runtime(_ObjC)
if _isClassOrObjCExistential(BaseValue.self)
&& _isClassOrObjCExistential(DerivedValue.self) {
switch source._variant {
case .native(let nativeSet):
return Set(_immutableCocoaSet: nativeSet.bridged())
case .cocoa(let cocoaSet):
return Set(_immutableCocoaSet: cocoaSet.object)
}
}
#endif
return _setDownCastConditional(source)!
}
/// Called by the casting machinery.
@_silgen_name("_swift_setDownCastConditionalIndirect")
internal func _setDownCastConditionalIndirect<SourceValue, TargetValue>(
_ source: UnsafePointer<Set<SourceValue>>,
_ target: UnsafeMutablePointer<Set<TargetValue>>
) -> Bool {
if let result: Set<TargetValue> = _setDownCastConditional(source.pointee) {
target.initialize(to: result)
return true
}
return false
}
/// Implements a conditional downcast.
///
/// If the cast fails, the function returns `nil`. All checks should be
/// performed eagerly.
///
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
/// are reference types.
@inlinable
public func _setDownCastConditional<BaseValue, DerivedValue>(
_ source: Set<BaseValue>
) -> Set<DerivedValue>? {
var result = Set<DerivedValue>(minimumCapacity: source.count)
for member in source {
if let derivedMember = member as? DerivedValue {
result.insert(derivedMember)
continue
}
return nil
}
return result
}

View File

@@ -0,0 +1,322 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// An instance of this class has all `Set` data tail-allocated.
/// Enough bytes are allocated to hold the bitmap for marking valid entries,
/// keys, and values. The data layout starts with the bitmap, followed by the
/// keys, followed by the values.
//
// See the docs at the top of the file for more details on this type
//
// NOTE: The precise layout of this type is relied on in the runtime
// to provide a statically allocated empty singleton.
// See stdlib/public/stubs/GlobalObjects.cpp for details.
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
@_objc_non_lazy_realization
internal class _RawSetStorage: __SwiftNativeNSSet {
/// The current number of occupied entries in this set.
@usableFromInline
@nonobjc
internal final var _count: Int
/// The maximum number of elements that can be inserted into this set without
/// exceeding the hash table's maximum load factor.
@usableFromInline
@nonobjc
internal final var _capacity: Int
/// The scale of this set. The number of buckets is 2 raised to the
/// power of `scale`.
@usableFromInline
@nonobjc
internal final var _scale: Int
@usableFromInline
internal final var _seed: Hasher._Seed
@usableFromInline
@nonobjc
internal final var _rawElements: UnsafeMutableRawPointer
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@nonobjc
internal init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
@inlinable
@nonobjc
internal final var _bucketCount: Int {
@inline(__always) get { return 1 &<< _scale }
}
@inlinable
@nonobjc
internal final var _metadata: UnsafeMutablePointer<_HashTable.Word> {
@inline(__always) get {
let address = Builtin.projectTailElems(self, _HashTable.Word.self)
return UnsafeMutablePointer(address)
}
}
// The _HashTable struct contains pointers into tail-allocated storage, so
// this is unsafe and needs `_fixLifetime` calls in the caller.
@inlinable
@nonobjc
internal final var _hashTable: _HashTable {
@inline(__always) get {
return _HashTable(words: _metadata, bucketCount: _bucketCount)
}
}
}
/// The storage class for the singleton empty set.
/// The single instance of this class is created by the runtime.
@_fixed_layout
@usableFromInline
internal class _EmptySetSingleton: _RawSetStorage {
@nonobjc
override internal init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#if _runtime(_ObjC)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("This class cannot be directly initialized")
}
#endif
}
extension _RawSetStorage {
/// The empty singleton that is used for every single Set that is created
/// without any elements. The contents of the storage must never be mutated.
@inlinable
@nonobjc
internal static var empty: _EmptySetSingleton {
return Builtin.bridgeFromRawPointer(
Builtin.addressof(&_swiftEmptySetSingleton))
}
}
extension _EmptySetSingleton: _NSSetCore {
#if _runtime(_ObjC)
//
// NSSet implementation, assuming Self is the empty singleton
//
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
return self
}
@objc
internal var count: Int {
return 0
}
@objc(member:)
internal func member(_ object: AnyObject) -> AnyObject? {
return nil
}
@objc
internal func objectEnumerator() -> _NSEnumerator {
return _SwiftEmptyNSEnumerator()
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
// Even though we never do anything in here, we need to update the
// state so that callers know we actually ran.
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
}
state.pointee = theState
return 0
}
#endif
}
// See the docs at the top of this file for a description of this type
@_fixed_layout // FIXME(sil-serialize-all)
@usableFromInline
final internal class _SetStorage<Element: Hashable>
: _RawSetStorage, _NSSetCore {
// This type is made with allocWithTailElems, so no init is ever called.
// But we still need to have an init to satisfy the compiler.
@nonobjc
override internal init(_doNotCallMe: ()) {
_sanityCheckFailure("This class cannot be directly initialized")
}
deinit {
guard _count > 0 else { return }
if !_isPOD(Element.self) {
let elements = _elements
for index in _hashTable {
(elements + index.bucket).deinitialize(count: 1)
}
}
_fixLifetime(self)
}
@inlinable
final internal var _elements: UnsafeMutablePointer<Element> {
@inline(__always)
get {
return self._rawElements.assumingMemoryBound(to: Element.self)
}
}
internal var asNative: _NativeSet<Element> {
return _NativeSet(self)
}
#if _runtime(_ObjC)
@objc
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
_sanityCheckFailure("don't call this designated initializer")
}
@objc(copyWithZone:)
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
return self
}
@objc
internal var count: Int {
return _count
}
@objc
internal func objectEnumerator() -> _NSEnumerator {
return _SwiftSetNSEnumerator<Element>(asNative)
}
@objc(countByEnumeratingWithState:objects:count:)
internal func countByEnumerating(
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
objects: UnsafeMutablePointer<AnyObject>?, count: Int
) -> Int {
var theState = state.pointee
if theState.state == 0 {
theState.state = 1 // Arbitrary non-zero value.
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
theState.extra.0 = CUnsignedLong(asNative.startIndex.bucket)
}
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
// and (b) the optimizer should then be able to optimize away the
// unwrapping check below.
if _slowPath(objects == nil) {
return 0
}
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
var index = _HashTable.Index(bucket: Int(theState.extra.0))
let endIndex = asNative.endIndex
_precondition(index == endIndex || _hashTable.isValid(index))
var stored = 0
for i in 0..<count {
if index == endIndex { break }
let element = _elements[index.bucket]
unmanagedObjects[i] = _bridgeAnythingToObjectiveC(element)
stored += 1
index = asNative.index(after: index)
}
theState.extra.0 = CUnsignedLong(index.bucket)
state.pointee = theState
return stored
}
@objc(member:)
internal func member(_ object: AnyObject) -> AnyObject? {
guard let native = _conditionallyBridgeFromObjectiveC(object, Element.self)
else { return nil }
let (index, found) = asNative.find(native)
guard found else { return nil }
return _bridgeAnythingToObjectiveC(_elements[index.bucket])
}
#endif
}
extension _SetStorage {
@usableFromInline
@_effects(releasenone)
internal static func reallocate(
original: _RawSetStorage,
capacity: Int
) -> (storage: _SetStorage, rehash: Bool) {
_sanityCheck(capacity >= original._count)
let scale = _HashTable.scale(forCapacity: capacity)
let rehash = (scale != original._scale)
let newStorage = _SetStorage<Element>.allocate(scale: scale)
return (newStorage, rehash)
}
@usableFromInline
@_effects(releasenone)
static internal func allocate(capacity: Int) -> _SetStorage {
let scale = _HashTable.scale(forCapacity: capacity)
return allocate(scale: scale)
}
static internal func allocate(scale: Int) -> _SetStorage {
// The entry count must be representable by an Int value; hence the scale's
// peculiar upper bound.
_sanityCheck(scale >= 0 && scale < Int.bitWidth - 1)
let bucketCount = 1 &<< scale
let wordCount = _UnsafeBitset.wordCount(forCapacity: bucketCount)
let storage = Builtin.allocWithTailElems_2(
_SetStorage<Element>.self,
wordCount._builtinWordValue, _HashTable.Word.self,
bucketCount._builtinWordValue, Element.self)
let metadataAddr = Builtin.projectTailElems(storage, _HashTable.Word.self)
let elementsAddr = Builtin.getTailAddr_Word(
metadataAddr, wordCount._builtinWordValue, _HashTable.Word.self,
Element.self)
storage._count = 0
storage._capacity = _HashTable.capacity(forScale: scale)
storage._scale = scale
storage._rawElements = UnsafeMutableRawPointer(elementsAddr)
// We use a slightly different hash seed whenever we change the size of the
// hash table, so that we avoid certain copy operations becoming quadratic,
// without breaking value semantics. (For background details, see
// https://bugs.swift.org/browse/SR-3268)
// FIXME: Use true per-instance seeding instead. Per-capacity seeding still
// leaves hash values the same in same-sized tables, which may affect
// operations on two tables at once. (E.g., union.)
storage._seed = (
Hasher._seed.0 ^ UInt64(truncatingIfNeeded: scale),
Hasher._seed.1)
// Initialize hash table metadata.
storage._hashTable.clear()
return storage
}
}

View File

@@ -0,0 +1,392 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// This protocol is only used for compile-time checks that
/// every buffer type implements all required operations.
internal protocol _SetBuffer {
associatedtype Element
associatedtype Index
var startIndex: Index { get }
var endIndex: Index { get }
func index(after i: Index) -> Index
func index(for element: Element) -> Index?
var count: Int { get }
func contains(_ member: Element) -> Bool
func element(at i: Index) -> Element
}
extension Set {
@usableFromInline
@_frozen
internal enum _Variant {
case native(_NativeSet<Element>)
#if _runtime(_ObjC)
case cocoa(_CocoaSet)
#endif
}
}
extension Set._Variant {
#if _runtime(_ObjC)
@usableFromInline
@_transparent
internal var guaranteedNative: Bool {
return _canBeClass(Element.self) == 0
}
/// Allow the optimizer to consider the surrounding code unreachable if
/// Set<Element> is guaranteed to be native.
@usableFromInline
@_transparent
internal func cocoaPath() {
if guaranteedNative {
_conditionallyUnreachable()
}
}
#endif
@inlinable
internal mutating func isUniquelyReferenced() -> Bool {
// Note that &self drills down through .native(_NativeSet) to the first
// property in _NativeSet, which is the reference to the storage.
switch self {
case .native:
return _isUnique_native(&self)
#if _runtime(_ObjC)
case .cocoa:
cocoaPath()
// Don't consider Cocoa buffer mutable, even if it is mutable and is
// uniquely referenced.
return false
#endif
}
}
@usableFromInline @_transparent
internal var asNative: _NativeSet<Element> {
get {
switch self {
case .native(let nativeSet):
return nativeSet
#if _runtime(_ObjC)
case .cocoa:
_sanityCheckFailure("internal error: not backed by native buffer")
#endif
}
}
set {
self = .native(newValue)
}
}
#if _runtime(_ObjC)
@inlinable
internal var asCocoa: _CocoaSet {
switch self {
case .native:
_sanityCheckFailure("internal error: not backed by NSSet")
case .cocoa(let cocoa):
return cocoa
}
}
#endif
/// Reserves enough space for the specified number of elements to be stored
/// without reallocating additional storage.
@inlinable
internal mutating func reserveCapacity(_ capacity: Int) {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
asNative.reserveCapacity(capacity, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let capacity = Swift.max(cocoa.count, capacity)
self = .native(_NativeSet(cocoa, capacity: capacity))
#endif
}
}
/// The number of elements that can be stored without expanding the current
/// storage.
///
/// For bridged storage, this is equal to the current count of the
/// collection, since any addition will trigger a copy of the elements into
/// newly allocated storage. For native storage, this is the element count
/// at which adding any more elements will exceed the load factor.
@inlinable
internal var capacity: Int {
switch self {
case .native:
return asNative.capacity
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return cocoa.count
#endif
}
}
}
extension Set._Variant: _SetBuffer {
@usableFromInline
internal typealias Index = Set<Element>.Index
@inlinable
internal var startIndex: Index {
switch self {
case .native:
return Index(_native: asNative.startIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaSet):
cocoaPath()
return Index(_cocoa: cocoaSet.startIndex)
#endif
}
}
@inlinable
internal var endIndex: Index {
switch self {
case .native:
return Index(_native: asNative.endIndex)
#if _runtime(_ObjC)
case .cocoa(let cocoaSet):
cocoaPath()
return Index(_cocoa: cocoaSet.endIndex)
#endif
}
}
@inlinable
internal func index(after i: Index) -> Index {
switch self {
case .native:
return Index(_native: asNative.index(after: i._asNative))
#if _runtime(_ObjC)
case .cocoa(let cocoaSet):
cocoaPath()
return Index(_cocoa: cocoaSet.index(after: i._asCocoa))
#endif
}
}
@inlinable
@inline(__always)
internal func index(for element: Element) -> Index? {
switch self {
case .native:
guard let index = asNative.index(for: element) else { return nil }
return Index(_native: index)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaElement = _bridgeAnythingToObjectiveC(element)
guard let index = cocoa.index(for: cocoaElement) else { return nil }
return Index(_cocoa: index)
#endif
}
}
@inlinable
internal var count: Int {
@inline(__always)
get {
switch self {
case .native:
return asNative.count
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return cocoa.count
#endif
}
}
}
@inlinable
@inline(__always)
internal func contains(_ member: Element) -> Bool {
switch self {
case .native:
return asNative.contains(member)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return cocoa.contains(_bridgeAnythingToObjectiveC(member))
#endif
}
}
@inlinable
@inline(__always)
internal func element(at i: Index) -> Element {
switch self {
case .native:
return asNative.element(at: i._asNative)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaMember = cocoa.element(at: i._asCocoa)
return _forceBridgeFromObjectiveC(cocoaMember, Element.self)
#endif
}
}
}
extension Set._Variant {
@inlinable
internal mutating func update(with value: Element) -> Element? {
switch self {
case .native:
let isUnique = self.isUniquelyReferenced()
return asNative.update(with: value, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// Make sure we have space for an extra element.
var native = _NativeSet<Element>(cocoa, capacity: cocoa.count + 1)
let old = native.update(with: value, isUnique: true)
self = .native(native)
return old
#endif
}
}
@inlinable
internal mutating func insert(
_ element: Element
) -> (inserted: Bool, memberAfterInsert: Element) {
switch self {
case .native:
let (index, found) = asNative.find(element)
if found {
return (false, asNative.uncheckedElement(at: index))
}
let isUnique = self.isUniquelyReferenced()
asNative.insertNew(element, at: index, isUnique: isUnique)
return (true, element)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// Make sure we have space for an extra element.
let cocoaMember = _bridgeAnythingToObjectiveC(element)
if let m = cocoa.member(for: cocoaMember) {
return (false, _forceBridgeFromObjectiveC(m, Element.self))
}
var native = _NativeSet<Element>(cocoa, capacity: cocoa.count + 1)
native.insertNew(element, isUnique: true)
self = .native(native)
return (true, element)
#endif
}
}
@inlinable
@discardableResult
internal mutating func remove(at index: Index) -> Element {
switch self {
case .native:
let isUnique = isUniquelyReferenced()
return asNative.remove(at: index._asNative, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
// We have to migrate the data first. But after we do so, the Cocoa
// index becomes useless, so get the element first.
let cocoaMember = cocoa.member(for: index._asCocoa)
let nativeMember = _forceBridgeFromObjectiveC(cocoaMember, Element.self)
return _migrateToNative(cocoa, removing: nativeMember)
#endif
}
}
@inlinable
@discardableResult
internal mutating func remove(_ member: Element) -> Element? {
switch self {
case .native:
let (index, found) = asNative.find(member)
guard found else { return nil }
let isUnique = isUniquelyReferenced()
return asNative.uncheckedRemove(at: index, isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
let cocoaMember = _bridgeAnythingToObjectiveC(member)
guard cocoa.contains(cocoaMember) else { return nil }
return _migrateToNative(cocoa, removing: member)
#endif
}
}
#if _runtime(_ObjC)
@inlinable
internal mutating func _migrateToNative(
_ cocoa: _CocoaSet,
removing member: Element
) -> Element {
// FIXME(performance): fuse data migration and element deletion into one
// operation.
var native = _NativeSet<Element>(cocoa)
let (index, found) = native.find(member)
_precondition(found, "Bridging did not preserve equality")
let old = native.remove(at: index, isUnique: true)
_precondition(member == old, "Bridging did not preserve equality")
self = .native(native)
return old
}
#endif
@inlinable
internal mutating func removeAll(keepingCapacity keepCapacity: Bool) {
if !keepCapacity {
self = .native(_NativeSet<Element>())
return
}
guard count > 0 else { return }
switch self {
case .native:
let isUnique = isUniquelyReferenced()
asNative.removeAll(isUnique: isUnique)
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
self = .native(_NativeSet(capacity: cocoa.count))
#endif
}
}
}
extension Set._Variant {
/// Returns an iterator over the elements.
///
/// - Complexity: O(1).
@inlinable
@inline(__always)
__consuming internal func makeIterator() -> Set<Element>.Iterator {
switch self {
case .native(let native):
return Set.Iterator(_native: native.makeIterator())
#if _runtime(_ObjC)
case .cocoa(let cocoa):
cocoaPath()
return Set.Iterator(_cocoa: cocoa.makeIterator())
#endif
}
}
}

View File

@@ -94,7 +94,7 @@ public protocol _NSDictionaryCore :
var count: Int { get }
@objc(objectForKey:)
func objectFor(_ aKey: AnyObject) -> AnyObject?
func object(forKey aKey: AnyObject) -> AnyObject?
func keyEnumerator() -> _NSEnumerator

View File

@@ -38,6 +38,7 @@ internal struct _ThreadLocalStorage {
//
// private
internal var uBreakIterator: OpaquePointer
internal var uText: OpaquePointer
// TODO: Consider saving two, e.g. for character-by-character comparison
@@ -55,8 +56,9 @@ internal struct _ThreadLocalStorage {
// TODO: unowned reference to string owner, base address, and _countAndFlags
// private: Should only be called by _initializeThreadLocalStorage
internal init(_uBreakIterator: OpaquePointer) {
internal init(_uBreakIterator: OpaquePointer, _uText: OpaquePointer) {
self.uBreakIterator = _uBreakIterator
self.uText = _uText
}
// Get the current thread's TLS pointer. On first call for a given thread,
@@ -104,19 +106,26 @@ internal func _destroyTLS(_ ptr: UnsafeMutableRawPointer?) {
internal func _createThreadLocalStorage()
-> UnsafeMutablePointer<_ThreadLocalStorage>
{
// Create and initialize one.
// Allocate and initialize a UBreakIterator and UText.
var err = __swift_stdlib_U_ZERO_ERROR
let newUBreakIterator = __swift_stdlib_ubrk_open(
/*type:*/ __swift_stdlib_UBRK_CHARACTER, /*locale:*/ nil,
/*text:*/ nil, /*textLength:*/ 0, /*status:*/ &err)
_precondition(err.isSuccess, "Unexpected ubrk_open failure")
// utext_openUTF8 needs a valid pointer, even though we won't read from it
var a: Int8 = 0x41
let newUText = __swift_stdlib_utext_openUTF8(
/*ut:*/ nil, /*s:*/ &a, /*len:*/ 1, /*status:*/ &err)
_precondition(err.isSuccess, "Unexpected utext_openUTF8 failure")
let tlsPtr: UnsafeMutablePointer<_ThreadLocalStorage>
= UnsafeMutablePointer<_ThreadLocalStorage>.allocate(
capacity: 1
)
tlsPtr.initialize(
to: _ThreadLocalStorage(_uBreakIterator: newUBreakIterator)
)
tlsPtr.initialize(to: _ThreadLocalStorage(
_uBreakIterator: newUBreakIterator, _uText: newUText))
return tlsPtr
}

View File

@@ -1,87 +0,0 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A wrapper around a bitmap storage with room for at least `bitCount` bits.
@_fixed_layout
@usableFromInline // @testable
internal struct _UnsafeBitMap {
@usableFromInline
internal let values: UnsafeMutablePointer<UInt>
@usableFromInline
internal let bitCount: Int
@inlinable
@inline(__always)
internal static func wordIndex(_ i: Int) -> Int {
// Note: We perform the operation on UInts to get faster unsigned math
// (shifts).
return Int(bitPattern: UInt(bitPattern: i) / UInt(UInt.bitWidth))
}
@inlinable
@inline(__always)
internal static func bitIndex(_ i: Int) -> UInt {
// Note: We perform the operation on UInts to get faster unsigned math
// (shifts).
return UInt(bitPattern: i) % UInt(UInt.bitWidth)
}
@inlinable
@inline(__always)
internal static func sizeInWords(forSizeInBits bitCount: Int) -> Int {
return (bitCount + Int.bitWidth - 1) / Int.bitWidth
}
@inlinable
@inline(__always)
internal init(storage: UnsafeMutablePointer<UInt>, bitCount: Int) {
self.bitCount = bitCount
self.values = storage
}
@inlinable
internal var numberOfWords: Int {
@inline(__always)
get {
return _UnsafeBitMap.sizeInWords(forSizeInBits: bitCount)
}
}
@inlinable
@inline(__always)
internal func initializeToZero() {
values.initialize(repeating: 0, count: numberOfWords)
}
@inlinable
internal subscript(i: Int) -> Bool {
@inline(__always)
get {
_sanityCheck(i < Int(bitCount) && i >= 0, "index out of bounds")
let word = values[_UnsafeBitMap.wordIndex(i)]
let bit = word & (1 << _UnsafeBitMap.bitIndex(i))
return bit != 0
}
@inline(__always)
nonmutating set {
_sanityCheck(i < Int(bitCount) && i >= 0, "index out of bounds")
let wordIdx = _UnsafeBitMap.wordIndex(i)
let bitMask = (1 as UInt) &<< _UnsafeBitMap.bitIndex(i)
if newValue {
values[wordIdx] = values[wordIdx] | bitMask
} else {
values[wordIdx] = values[wordIdx] & ~bitMask
}
}
}
}