demangler: put the demangler into a separate library

Previously it was part of swiftBasic.

The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.

This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.

Also in this commit: remove some unused API functions from the demangler Context.

fixes rdar://problem/30503344
This commit is contained in:
Erik Eckstein
2017-03-09 07:58:40 -08:00
parent 002beb8e4f
commit 5e80555c9b
79 changed files with 2207 additions and 2298 deletions

347
lib/Demangling/Punycode.cpp Normal file
View File

@@ -0,0 +1,347 @@
//===--- Punycode.cpp - Unicode to Punycode transcoding -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Demangling/Punycode.h"
#include "swift/Demangling/ManglingUtils.h"
#include <vector>
#include <cstdint>
using namespace swift;
using namespace Punycode;
// RFC 3492
// Section 5: Parameter values for Punycode
static const int base = 36;
static const int tmin = 1;
static const int tmax = 26;
static const int skew = 38;
static const int damp = 700;
static const int initial_bias = 72;
static const uint32_t initial_n = 128;
static const char delimiter = '_';
static char digit_value(int digit) {
assert(digit < base && "invalid punycode digit");
if (digit < 26)
return 'a' + digit;
return 'A' - 26 + digit;
}
static int digit_index(char value) {
if (value >= 'a' && value <= 'z')
return value - 'a';
if (value >= 'A' && value <= 'J')
return value - 'A' + 26;
return -1;
}
static bool isValidUnicodeScalar(uint32_t S) {
// Also accept the range of 0xD800 - 0xD880, which is used for non-symbol
// ASCII characters.
return (S < 0xD880) || (S >= 0xE000 && S <= 0x1FFFFF);
}
// Section 6.1: Bias adaptation function
static int adapt(int delta, int numpoints, bool firsttime) {
if (firsttime)
delta = delta / damp;
else
delta = delta / 2;
delta += delta / numpoints;
int k = 0;
while (delta > ((base - tmin) * tmax) / 2) {
delta /= base - tmin;
k += base;
}
return k + (((base - tmin + 1) * delta) / (delta + skew));
}
// Section 6.2: Decoding procedure
bool Punycode::decodePunycode(StringRef InputPunycode,
std::vector<uint32_t> &OutCodePoints) {
OutCodePoints.clear();
OutCodePoints.reserve(InputPunycode.size());
// -- Build the decoded string as UTF32 first because we need random access.
uint32_t n = initial_n;
int i = 0;
int bias = initial_bias;
/// let output = an empty string indexed from 0
// consume all code points before the last delimiter (if there is one)
// and copy them to output,
size_t lastDelimiter = InputPunycode.find_last_of(delimiter);
if (lastDelimiter != StringRef::npos) {
for (char c : InputPunycode.slice(0, lastDelimiter)) {
// fail on any non-basic code point
if (static_cast<unsigned char>(c) > 0x7f)
return true;
OutCodePoints.push_back(c);
}
// if more than zero code points were consumed then consume one more
// (which will be the last delimiter)
InputPunycode =
InputPunycode.slice(lastDelimiter + 1, InputPunycode.size());
}
while (!InputPunycode.empty()) {
int oldi = i;
int w = 1;
for (int k = base; ; k += base) {
// consume a code point, or fail if there was none to consume
if (InputPunycode.empty())
return true;
char codePoint = InputPunycode.front();
InputPunycode = InputPunycode.slice(1, InputPunycode.size());
// let digit = the code point's digit-value, fail if it has none
int digit = digit_index(codePoint);
if (digit < 0)
return true;
i = i + digit * w;
int t = k <= bias ? tmin
: k >= bias + tmax ? tmax
: k - bias;
if (digit < t)
break;
w = w * (base - t);
}
bias = adapt(i - oldi, OutCodePoints.size() + 1, oldi == 0);
n = n + i / (OutCodePoints.size() + 1);
i = i % (OutCodePoints.size() + 1);
// if n is a basic code point then fail
if (n < 0x80)
return true;
// insert n into output at position i
OutCodePoints.insert(OutCodePoints.begin() + i, n);
i++;
}
return true;
}
// Section 6.3: Encoding procedure
bool Punycode::encodePunycode(const std::vector<uint32_t> &InputCodePoints,
std::string &OutPunycode) {
OutPunycode.clear();
uint32_t n = initial_n;
int delta = 0;
int bias = initial_bias;
// let h = b = the number of basic code points in the input
// copy them to the output in order...
size_t h = 0;
for (auto C : InputCodePoints) {
if (C < 0x80) {
++h;
OutPunycode.push_back(C);
}
if (!isValidUnicodeScalar(C)) {
OutPunycode.clear();
return false;
}
}
size_t b = h;
// ...followed by a delimiter if b > 0
if (b > 0)
OutPunycode.push_back(delimiter);
while (h < InputCodePoints.size()) {
// let m = the minimum code point >= n in the input
uint32_t m = 0x10FFFF;
for (auto codePoint : InputCodePoints) {
if (codePoint >= n && codePoint < m)
m = codePoint;
}
delta = delta + (m - n) * (h + 1);
n = m;
for (auto c : InputCodePoints) {
if (c < n) ++delta;
if (c == n) {
int q = delta;
for (int k = base; ; k += base) {
int t = k <= bias ? tmin
: k >= bias + tmax ? tmax
: k - bias;
if (q < t) break;
OutPunycode.push_back(digit_value(t + ((q - t) % (base - t))));
q = (q - t) / (base - t);
}
OutPunycode.push_back(digit_value(q));
bias = adapt(delta, h + 1, h == b);
delta = 0;
++h;
}
}
++delta; ++n;
}
return true;
}
static bool encodeToUTF8(const std::vector<uint32_t> &Scalars,
std::string &OutUTF8) {
for (auto S : Scalars) {
if (!isValidUnicodeScalar(S)) {
OutUTF8.clear();
return false;
}
if (S >= 0xD800 && S < 0xD880)
S -= 0xD800;
unsigned Bytes = 0;
if (S < 0x80)
Bytes = 1;
else if (S < 0x800)
Bytes = 2;
else if (S < 0x10000)
Bytes = 3;
else
Bytes = 4;
switch (Bytes) {
case 1:
OutUTF8.push_back(S);
break;
case 2: {
uint8_t Byte2 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte1 = S | 0xC0;
OutUTF8.push_back(Byte1);
OutUTF8.push_back(Byte2);
break;
}
case 3: {
uint8_t Byte3 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte2 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte1 = S | 0xE0;
OutUTF8.push_back(Byte1);
OutUTF8.push_back(Byte2);
OutUTF8.push_back(Byte3);
break;
}
case 4: {
uint8_t Byte4 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte3 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte2 = (S | 0x80) & 0xBF;
S >>= 6;
uint8_t Byte1 = S | 0xF0;
OutUTF8.push_back(Byte1);
OutUTF8.push_back(Byte2);
OutUTF8.push_back(Byte3);
OutUTF8.push_back(Byte4);
break;
}
}
}
return true;
}
bool Punycode::decodePunycodeUTF8(StringRef InputPunycode,
std::string &OutUTF8) {
std::vector<uint32_t> OutCodePoints;
if (!decodePunycode(InputPunycode, OutCodePoints))
return false;
return encodeToUTF8(OutCodePoints, OutUTF8);
}
static bool isContinuationByte(uint8_t unit) {
return (unit & 0xC0) == 0x80;
}
/// Reencode well-formed UTF-8 as UTF-32.
///
/// This entry point is only called from compiler-internal entry points, so does
/// only minimal validation. In particular, it does *not* check for overlong
/// encodings.
/// If \p mapNonSymbolChars is true, non-symbol ASCII characters (characters
/// except [$_a-zA-Z0-9]) are also encoded like non-ASCII unicode characters.
/// Returns false if \p InputUTF8 contains surrogate code points.
static bool convertUTF8toUTF32(llvm::StringRef InputUTF8,
std::vector<uint32_t> &OutUTF32,
bool mapNonSymbolChars) {
auto ptr = InputUTF8.begin();
auto end = InputUTF8.end();
while (ptr < end) {
uint8_t first = *ptr++;
if (first < 0x80) {
if (NewMangling::isValidSymbolChar(first) || !mapNonSymbolChars) {
OutUTF32.push_back(first);
} else {
OutUTF32.push_back((uint32_t)first + 0xD800);
}
} else if (first < 0xC0) {
// Invalid continuation byte.
return false;
} else if (first < 0xE0) {
// Two-byte sequence.
if (ptr == end)
return false;
uint8_t second = *ptr++;
if (!isContinuationByte(second))
return false;
OutUTF32.push_back(((first & 0x1F) << 6) | (second & 0x3F));
} else if (first < 0xF0) {
// Three-byte sequence.
if (end - ptr < 2)
return false;
uint8_t second = *ptr++;
uint8_t third = *ptr++;
if (!isContinuationByte(second) || !isContinuationByte(third))
return false;
OutUTF32.push_back(((first & 0xF) << 12) | ((second & 0x3F) << 6)
| ( third & 0x3F ));
} else if (first < 0xF8) {
// Four-byte sequence.
if (end - ptr < 3)
return false;
uint8_t second = *ptr++;
uint8_t third = *ptr++;
uint8_t fourth = *ptr++;
if (!isContinuationByte(second) || !isContinuationByte(third)
|| !isContinuationByte(fourth))
return false;
OutUTF32.push_back(((first & 0x7) << 18) | ((second & 0x3F) << 12)
| ((third & 0x3F) << 6)
| ( fourth & 0x3F ));
} else {
// Unused sequence length.
return false;
}
}
return true;
}
bool Punycode::encodePunycodeUTF8(StringRef InputUTF8,
std::string &OutPunycode,
bool mapNonSymbolChars) {
std::vector<uint32_t> InputCodePoints;
InputCodePoints.reserve(InputUTF8.size());
if (!convertUTF8toUTF32(InputUTF8, InputCodePoints, mapNonSymbolChars))
return false;
return encodePunycode(InputCodePoints, OutPunycode);
}