Merge remote-tracking branch 'origin/master' into master-next

This commit is contained in:
Bob Wilson
2017-07-21 16:18:54 -07:00
9 changed files with 280 additions and 572 deletions

View File

@@ -13,12 +13,11 @@
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/CFG.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/ADT/Statistic.h"
#define DEBUG_TYPE "stack-promotion"
@@ -27,320 +26,82 @@ STATISTIC(NumStackPromoted, "Number of objects promoted to the stack");
using namespace swift;
namespace {
/// Promotes heap allocated objects to the stack.
///
/// It handles alloc_ref instructions of native swift classes: if promoted,
/// the [stack] attribute is set in the alloc_ref and a dealloc_ref [stack] is
/// inserted at the end of the object's lifetime.
class StackPromoter {
// Some analysis we need.
SILFunction *F;
EscapeAnalysis::ConnectionGraph *ConGraph;
DominanceInfo *DT;
EscapeAnalysis *EA;
// We use our own post-dominator tree instead of PostDominatorAnalysis,
// because we ignore unreachable blocks (actually all unreachable sub-graphs).
// Example:
// |
// bb1
// / \
// unreachable bb2
// \
//
// We want to get bb2 as immediate post-dominator of bb1. This is not the case
// with the regular post-dominator tree.
PostDominatorTreeBase PostDomTree;
bool PostDomTreeValid;
/// Worklist for visiting all blocks.
class WorkListType {
/// The nesting depth of stack allocation instructions for each block.
/// A value of -1 means: not known yet.
/// A value of -2 means: not known and not visited yet.
/// All blocks in this map with a value >= -1 are already visited.
llvm::DenseMap<SILBasicBlock *, int> Block2StackDepth;
/// The work list of not yet handled blocks.
llvm::SmallVector<SILBasicBlock *, 8> ToHandle;
public:
bool empty() const { return ToHandle.empty(); }
SILBasicBlock *pop_back_val() { return ToHandle.pop_back_val(); }
/// Insert a block into the worklist and set its stack depth.
void insert(SILBasicBlock *BB, int StackDepth) {
auto Iter = Block2StackDepth.find(BB);
if (Iter != Block2StackDepth.end() && Iter->second >= -1) {
// We already handled the block.
assert(StackDepth >= 0);
if (Iter->second < 0) {
// Update the stack depth if we didn't set it yet for the block.
Iter->second = StackDepth;
} else {
assert(Iter->second == StackDepth &&
"inconsistent stack depth at a CFG merge point");
}
} else {
Block2StackDepth[BB] = StackDepth;
ToHandle.push_back(BB);
}
}
bool insertAsUnhandled(SILBasicBlock *Pred) {
return Block2StackDepth.insert({Pred, -2}).second;
}
int getStackDepth(SILBasicBlock *BB) {
assert(Block2StackDepth.find(BB) != Block2StackDepth.end());
int Depth = Block2StackDepth.lookup(BB);
assert(Depth >= 0 && "EndBlock not reachable from StartBlock");
return Depth;
}
};
/// Tries to promote the allocation \p AI.
bool tryPromoteAlloc(AllocRefInst *ARI);
/// Returns true if the allocation \p AI can be promoted.
/// In this case it sets the \a DeallocInsertionPoint to the instruction
/// where the deallocation must be inserted.
/// It optionally also sets \a AllocInsertionPoint in case the allocation
/// instruction must be moved to another place.
bool canPromoteAlloc(AllocRefInst *ARI,
SILInstruction *&AllocInsertionPoint,
SILInstruction *&DeallocInsertionPoint);
/// Returns the place where to insert the deallocation.
/// Returns null if this doesn't succeed or, in case \p RestartPoint is set,
/// a new iteration should be triggered.
SILInstruction *findDeallocPoint(SILInstruction *StartInst,
SILInstruction *&RestartPoint,
EscapeAnalysis::CGNode *Node,
int NumUsePointsToFind);
/// If \p CurrentBB is in a loop update the \p EndBlock so that it post-
/// dominates the loop.
/// Returns the new EndBlock or null if no one could be found.
SILBasicBlock *updateEndBlock(SILBasicBlock *CurrentBB,
SILBasicBlock *EndBlock,
WorkListType &WorkList);
bool strictlyDominates(SILBasicBlock *A, SILBasicBlock *B) {
return A != B && DT->dominates(A, B);
}
bool strictlyPostDominates(SILBasicBlock *A, SILBasicBlock *B) {
calculatePostDomTree();
return A != B && PostDomTree.dominates(A, B);
}
bool postDominates(SILBasicBlock *A, SILBasicBlock *B) {
calculatePostDomTree();
return PostDomTree.dominates(A, B);
}
SILBasicBlock *getImmediatePostDom(SILBasicBlock *BB) {
calculatePostDomTree();
auto *Node = PostDomTree.getNode(BB);
if (!Node)
return nullptr;
auto *IDomNode = Node->getIDom();
if (!IDomNode)
return nullptr;
return IDomNode->getBlock();
}
void calculatePostDomTree() {
if (!PostDomTreeValid) {
// The StackPromoter acts as a "graph" for which the post-dominator-tree
// is calculated.
PostDomTree.recalculate(*F);
PostDomTreeValid = true;
}
}
class StackPromotion : public SILFunctionTransform {
public:
StackPromotion() {}
StackPromoter(SILFunction *F, EscapeAnalysis::ConnectionGraph *ConGraph,
DominanceInfo *DT, EscapeAnalysis *EA) :
F(F), ConGraph(ConGraph), DT(DT), EA(EA),
PostDomTreeValid(false) { }
private:
/// The entry point to the transformation.
void run() override;
SILFunction *getFunction() const { return F; }
/// Promotes allocations in \p BB.
bool promoteInBlock(SILBasicBlock *BB, EscapeAnalysis *EA,
DeadEndBlocks &DEBlocks);
/// The main entry point for the optimization.
///
/// Returns true if some changes were made.
bool promote();
/// Tries to promote the allocation \p ARI.
bool tryPromoteAlloc(AllocRefInst *ARI, EscapeAnalysis *EA,
DeadEndBlocks &DEBlocks);
};
bool StackPromoter::promote() {
llvm::SetVector<SILBasicBlock *> ReachableBlocks;
// First step: find blocks which end up in a no-return block (terminated by
// an unreachable instruction).
// Search for function-exiting blocks, i.e. return and throw.
for (SILBasicBlock &BB : *F) {
TermInst *TI = BB.getTerminator();
if (TI->isFunctionExiting())
ReachableBlocks.insert(&BB);
}
// Propagate the reachability up the control flow graph.
unsigned Idx = 0;
while (Idx < ReachableBlocks.size()) {
SILBasicBlock *BB = ReachableBlocks[Idx++];
for (SILBasicBlock *Pred : BB->getPredecessorBlocks())
ReachableBlocks.insert(Pred);
}
void StackPromotion::run() {
SILFunction *F = getFunction();
DEBUG(llvm::dbgs() << "** StackPromotion in " << F->getName() << " **\n");
auto *EA = PM->getAnalysis<EscapeAnalysis>();
DeadEndBlocks DEBlocks(F);
bool Changed = false;
// Search the whole function for stack promotable allocations.
for (SILBasicBlock &BB : *F) {
Changed |= promoteInBlock(&BB, EA, DEBlocks);
}
if (!Changed)
return;
// Don't stack promote any allocation inside a code region which ends up in
// a no-return block. Such allocations may missing their final release.
// We would insert the deallocation too early, which may result in a
// use-after-free problem.
if (ReachableBlocks.count(&BB) == 0)
continue;
// Make sure that all stack allocating instructions are nested correctly.
StackNesting SN;
if (SN.correctStackNesting(F) == StackNesting::Changes::CFG) {
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
} else {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
for (auto Iter = BB.begin(); Iter != BB.end();) {
// The allocation instruction may be moved, so increment Iter prior to
// doing the optimization.
SILInstruction *I = &*Iter++;
if (auto *ARI = dyn_cast<AllocRefInst>(I)) {
Changed |= tryPromoteAlloc(ARI);
}
bool StackPromotion::promoteInBlock(SILBasicBlock *BB, EscapeAnalysis *EA,
DeadEndBlocks &DEBlocks) {
bool Changed = false;
for (auto Iter = BB->begin(); Iter != BB->end();) {
// The allocation instruction may be moved, so increment Iter prior to
// doing the optimization.
SILInstruction *I = &*Iter++;
if (auto *ARI = dyn_cast<AllocRefInst>(I)) {
// Don't stack promote any allocation inside a code region which ends up
// in a no-return block. Such allocations may missing their final release.
// We would insert the deallocation too early, which may result in a
// use-after-free problem.
if (DEBlocks.isDeadEnd(BB))
return false;
Changed |= tryPromoteAlloc(ARI, EA, DEBlocks);
}
}
return Changed;
}
bool StackPromoter::tryPromoteAlloc(AllocRefInst *ARI) {
SILInstruction *AllocInsertionPoint = nullptr;
SILInstruction *DeallocInsertionPoint = nullptr;
if (!canPromoteAlloc(ARI, AllocInsertionPoint, DeallocInsertionPoint))
return false;
if (AllocInsertionPoint) {
// Check if any operands of the alloc_ref prevents us from moving the
// instruction.
for (const Operand &Op : ARI->getAllOperands()) {
if (!DT->properlyDominates(Op.get(), AllocInsertionPoint))
return false;
}
}
DEBUG(llvm::dbgs() << "Promoted " << *ARI);
DEBUG(llvm::dbgs() << " in " << ARI->getFunction()->getName() << '\n');
NumStackPromoted++;
SILBuilder B(DeallocInsertionPoint);
// It's an object allocation. We set the [stack] attribute in the alloc_ref.
ARI->setStackAllocatable();
if (AllocInsertionPoint)
ARI->moveBefore(AllocInsertionPoint);
/// And create a dealloc_ref [stack] at the end of the object's lifetime.
B.createDeallocRef(ARI->getLoc(), ARI, true);
return true;
}
namespace {
/// Iterator which iterates over all basic blocks of a function which are not
/// terminated by an unreachable inst.
class NonUnreachableBlockIter :
public std::iterator<std::forward_iterator_tag, SILBasicBlock, ptrdiff_t> {
SILFunction::iterator BaseIterator;
SILFunction::iterator End;
void skipUnreachables() {
while (true) {
if (BaseIterator == End)
return;
if (!isa<UnreachableInst>(BaseIterator->getTerminator()))
return;
BaseIterator++;
}
}
public:
NonUnreachableBlockIter(SILFunction::iterator BaseIterator,
SILFunction::iterator End) :
BaseIterator(BaseIterator), End(End) {
skipUnreachables();
}
NonUnreachableBlockIter() = default;
SILBasicBlock &operator*() const { return *BaseIterator; }
SILBasicBlock &operator->() const { return *BaseIterator; }
NonUnreachableBlockIter &operator++() {
BaseIterator++;
skipUnreachables();
return *this;
}
NonUnreachableBlockIter operator++(int unused) {
NonUnreachableBlockIter Copy = *this;
++*this;
return Copy;
}
friend bool operator==(NonUnreachableBlockIter lhs,
NonUnreachableBlockIter rhs) {
return lhs.BaseIterator == rhs.BaseIterator;
}
};
} // end anonymous namespace
namespace llvm {
/// Use the StackPromoter as a wrapper for the function. It holds the list of
/// basic blocks excluding all unreachable blocks.
template <> struct GraphTraits<StackPromoter *>
: public GraphTraits<swift::SILBasicBlock*> {
typedef StackPromoter *GraphType;
typedef swift::SILBasicBlock *NodeRef;
static NodeRef getEntryNode(GraphType SP) {
return &SP->getFunction()->front();
}
typedef pointer_iterator<NonUnreachableBlockIter> nodes_iterator;
static nodes_iterator nodes_begin(GraphType SP) {
return nodes_iterator(NonUnreachableBlockIter(SP->getFunction()->begin(),
SP->getFunction()->end()));
}
static nodes_iterator nodes_end(GraphType SP) {
return nodes_iterator(NonUnreachableBlockIter(SP->getFunction()->end(),
SP->getFunction()->end()));
}
static unsigned size(GraphType SP) {
return std::distance(SP->getFunction()->begin(), SP->getFunction()->end());
}
};
} // namespace llvm
bool StackPromoter::canPromoteAlloc(AllocRefInst *ARI,
SILInstruction *&AllocInsertionPoint,
SILInstruction *&DeallocInsertionPoint) {
bool StackPromotion::tryPromoteAlloc(AllocRefInst *ARI, EscapeAnalysis *EA,
DeadEndBlocks &DEBlocks) {
if (ARI->isObjC() || ARI->canAllocOnStack())
return false;
AllocInsertionPoint = nullptr;
DeallocInsertionPoint = nullptr;
auto *ConGraph = EA->getConnectionGraph(ARI->getFunction());
auto *Node = ConGraph->getNodeOrNull(ARI, EA);
if (!Node)
return false;
@@ -349,229 +110,55 @@ bool StackPromoter::canPromoteAlloc(AllocRefInst *ARI,
if (Node->escapes())
return false;
// Now we have to determine the lifetime of the allocated object in its
// function.
DEBUG(llvm::dbgs() << "Promote " << *ARI);
// Get all interesting uses of the object (e.g. release instructions). This
// includes uses of objects where the allocation is stored to.
int NumUsePointsToFind = ConGraph->getNumUsePoints(Node);
if (NumUsePointsToFind == 0) {
// There should always be at least one release for an allocated object.
// But in case all paths from this block end in unreachable then the
// final release of the object may be optimized away. We bail out in this
// case.
// Collect all use-points of the allocation. These are refcount instructions
// and apply instructions.
llvm::SmallVector<ValueBase *, 8> BaseUsePoints;
llvm::SmallVector<SILInstruction *, 8> UsePoints;
ConGraph->getUsePoints(Node, BaseUsePoints);
for (ValueBase *UsePoint : BaseUsePoints) {
if (SILInstruction *I = dyn_cast<SILInstruction>(UsePoint)) {
UsePoints.push_back(I);
} else {
// Also block arguments can be use points.
SILBasicBlock *UseBB = cast<SILPHIArgument>(UsePoint)->getParent();
// For simplicity we just add the first instruction of the block as use
// point.
UsePoints.push_back(&UseBB->front());
}
}
ValueLifetimeAnalysis VLA(ARI, UsePoints);
// Check if there is a use point before the allocation (this can happen e.g.
// if the allocated object is stored into another object, which is already
// alive at the allocation point).
// In such a case the value lifetime extends up to the function entry.
if (VLA.isAliveAtBeginOfBlock(ARI->getFunction()->getEntryBlock())) {
DEBUG(llvm::dbgs() << " use before allocation -> don't promote");
return false;
}
// Try to find the point where to insert the deallocation.
// This might need more than one try in case we need to move the allocation
// out of a stack-alloc-dealloc pair. See findDeallocPoint().
SILInstruction *StartInst = ARI;
for (;;) {
SILInstruction *RestartPoint = nullptr;
DeallocInsertionPoint = findDeallocPoint(StartInst, RestartPoint, Node,
NumUsePointsToFind);
if (DeallocInsertionPoint)
return true;
if (!RestartPoint)
return false;
// Retry with moving the allocation up.
AllocInsertionPoint = RestartPoint;
StartInst = RestartPoint;
// Compute the places where the lifetime of the object ends.
ValueLifetimeAnalysis::Frontier Frontier;
if (!VLA.computeFrontier(Frontier, ValueLifetimeAnalysis::UsersMustPostDomDef,
&DEBlocks)) {
DEBUG(llvm::dbgs() << " uses don't post-dom allocation -> don't promote");
return false;
}
NumStackPromoted++;
// We set the [stack] attribute in the alloc_ref.
ARI->setStackAllocatable();
/// And create dealloc_ref [stack] at the end of the object's lifetime.
for (SILInstruction *FrontierInst : Frontier) {
SILBuilder B(FrontierInst);
B.createDeallocRef(ARI->getLoc(), ARI, true);
}
return true;
}
SILInstruction *StackPromoter::findDeallocPoint(SILInstruction *StartInst,
SILInstruction *&RestartPoint,
EscapeAnalysis::CGNode *Node,
int NumUsePointsToFind) {
// In the following we check two requirements for stack promotion:
// 1) Are all uses in the same control region as the alloc? E.g. if the
// allocation is in a loop then there may not be any uses of the object
// outside the loop.
// 2) We need to find an insertion place for the deallocation so that it
// preserves a properly nested stack allocation-deallocation structure.
SILBasicBlock *StartBlock = StartInst->getParent();
// The block where we assume we can insert the deallocation.
SILBasicBlock *EndBlock = StartBlock;
// We visit all instructions starting at the allocation instruction.
WorkListType WorkList;
// It's important that the EndBlock is at the head of the WorkList so that
// we handle it after all other blocks.
WorkList.insert(EndBlock, -1);
WorkList.insert(StartBlock, 0);
for (;;) {
SILBasicBlock *BB = WorkList.pop_back_val();
int StackDepth = 0;
SILBasicBlock::iterator Iter;
if (BB == StartBlock) {
// In the first block we start at the allocation instruction and not at
// the begin of the block.
Iter = StartInst->getIterator();
} else {
// Track all uses in the block arguments.
for (SILArgument *BBArg : BB->getArguments()) {
if (ConGraph->isUsePoint(BBArg, Node))
NumUsePointsToFind--;
}
// Make sure that the EndBlock is not inside a loop (which does not
// contain the StartBlock).
// E.g.:
// %obj = alloc_ref // the allocation
// br loop
// loop:
// the_only_use_of_obj(%obj)
// cond_br ..., loop, exit
// exit:
// ... // this is the new EndBlock
EndBlock = updateEndBlock(BB, EndBlock, WorkList);
if (!EndBlock)
return nullptr;
Iter = BB->begin();
StackDepth = WorkList.getStackDepth(BB);
}
// Visit all instructions of the current block.
while (Iter != BB->end()) {
SILInstruction &I = *Iter++;
if (BB == EndBlock && StackDepth == 0 && NumUsePointsToFind == 0) {
// We found a place to insert the stack deallocation.
return &I;
}
if (I.isAllocatingStack()) {
StackDepth++;
} else if (I.isDeallocatingStack()) {
if (StackDepth == 0) {
// The allocation is inside a stack alloc-dealloc region and we are
// now leaving this region without having found a place for the
// deallocation. E.g.
// E.g.:
// %1 = alloc_stack
// %obj = alloc_ref // the allocation
// dealloc_stack %1
// use_of_obj(%obj)
//
// In this case we can move the alloc_ref before the alloc_stack
// to fix the nesting.
auto *Alloc = dyn_cast<SILInstruction>(I.getOperand(0));
if (!Alloc)
return nullptr;
// This should always be the case, but let's be on the safe side.
if (!postDominates(StartBlock, Alloc->getParent()))
return nullptr;
// Trigger another iteration with a new start point;
RestartPoint = Alloc;
return nullptr;
}
StackDepth--;
}
// Track a use.
if (ConGraph->isUsePoint(&I, Node) != 0)
NumUsePointsToFind--;
}
if (WorkList.empty()) {
if (EndBlock == BB) {
// We reached the EndBlock but didn't find a place for the deallocation
// so far (because we didn't find all uses yet or we entered another
// stack alloc-dealloc region). Let's extend our lifetime region.
// E.g.:
// %obj = alloc_ref // the allocation
// %1 = alloc_stack
// use_of_obj(%obj) // can't insert the deallocation in this block
// cond_br ..., bb1, bb2
// bb1:
// ...
// br bb2
// bb2:
// dealloc_stack %1 // this is the new EndBlock
EndBlock = getImmediatePostDom(EndBlock);
if (!EndBlock)
return nullptr;
}
// Again, it's important that the EndBlock is the first in the WorkList.
WorkList.insert(EndBlock, -1);
}
// Push the successor blocks to the WorkList.
for (SILBasicBlock *Succ : BB->getSuccessors()) {
if (!strictlyDominates(StartBlock, Succ)) {
// The StartBlock is inside a loop but we couldn't find a deallocation
// place in this loop, e.g. because there are uses outside the loop.
// E.g.:
// %container = alloc_ref
// br loop
// loop:
// %obj = alloc_ref // the allocation
// store %obj to %some_field_in_container
// cond_br ..., loop, exit
// exit:
// use(%container)
return nullptr;
}
WorkList.insert(Succ, StackDepth);
}
}
}
SILBasicBlock *StackPromoter::updateEndBlock(SILBasicBlock *CurrentBB,
SILBasicBlock *EndBlock,
WorkListType &WorkList) {
llvm::SmallVector<SILBasicBlock *, 8> PredsToHandle;
PredsToHandle.push_back(CurrentBB);
// Starting from BB, go back the control flow graph until we reach already
// handled blocks.
while (!PredsToHandle.empty()) {
SILBasicBlock *BB = PredsToHandle.pop_back_val();
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
// Make sure that the EndBlock post-dominates all blocks we are visiting.
while (!strictlyPostDominates(EndBlock, Pred)) {
EndBlock = getImmediatePostDom(EndBlock);
if (!EndBlock)
return nullptr;
}
if (WorkList.insertAsUnhandled(Pred))
PredsToHandle.push_back(Pred);
}
}
return EndBlock;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
class StackPromotion : public SILFunctionTransform {
public:
StackPromotion() {}
private:
/// The entry point to the transformation.
void run() override {
DEBUG(llvm::dbgs() << "** StackPromotion **\n");
auto *EA = PM->getAnalysis<EscapeAnalysis>();
auto *DA = PM->getAnalysis<DominanceAnalysis>();
SILFunction *F = getFunction();
if (auto *ConGraph = EA->getConnectionGraph(F)) {
StackPromoter promoter(F, ConGraph, DA->get(F), EA);
if (promoter.promote()) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
}
};
} // end anonymous namespace
SILTransform *swift::createStackPromotion() {