EscapeAnalysis: some new and changed utility functions to be used by alias analysis and ARC analysis.

This commit is contained in:
Erik Eckstein
2015-12-17 16:36:43 -08:00
parent fc08b60af4
commit ae6fa34645
3 changed files with 182 additions and 63 deletions

View File

@@ -286,8 +286,16 @@ private:
/// the node's value. /// the node's value.
/// Note that in the false-case the node's value can still escape via /// Note that in the false-case the node's value can still escape via
/// the return instruction. /// the return instruction.
bool escapesInsideFunction() const { bool escapesInsideFunction(bool isNotAliasingArgument) const {
return getEscapeState() > EscapeState::Return; switch (getEscapeState()) {
case EscapeState::None:
case EscapeState::Return:
return false;
case EscapeState::Arguments:
return !isNotAliasingArgument;
case EscapeState::Global:
return true;
}
} }
}; };
@@ -423,7 +431,12 @@ public:
/// taken. This means the node is always created for the "outermost" value /// taken. This means the node is always created for the "outermost" value
/// where V is contained. /// where V is contained.
/// Returns null, if V is not a "pointer". /// Returns null, if V is not a "pointer".
CGNode *getOrCreateNode(ValueBase *V); CGNode *getNode(ValueBase *V, EscapeAnalysis *EA, bool createIfNeeded = true);
/// Gets or creates a node for a SILValue (same as above).
CGNode *getNode(SILValue V, EscapeAnalysis *EA) {
return getNode(V.getDef(), EA, true);
}
/// Gets or creates a content node to which \a AddrNode points to. /// Gets or creates a content node to which \a AddrNode points to.
CGNode *getContentNode(CGNode *AddrNode); CGNode *getContentNode(CGNode *AddrNode);
@@ -444,7 +457,7 @@ public:
/// Returns the node of the "exact" value \p V (no projections are skipped) /// Returns the node of the "exact" value \p V (no projections are skipped)
/// if one exists. /// if one exists.
CGNode *getNodeOrNull(ValueBase *V) { CGNode *lookupNode(ValueBase *V) {
CGNode *Node = Values2Nodes.lookup(V); CGNode *Node = Values2Nodes.lookup(V);
if (Node) if (Node)
return Node->getMergeTarget(); return Node->getMergeTarget();
@@ -502,6 +515,9 @@ public:
/// lookup-up with getNode() anymore. /// lookup-up with getNode() anymore.
void removeFromGraph(ValueBase *V) { Values2Nodes.erase(V); } void removeFromGraph(ValueBase *V) { Values2Nodes.erase(V); }
/// Returns true if there is a path from \p From to \p To.
bool isReachable(CGNode *From, CGNode *To);
public: public:
/// Gets or creates a node for a value \p V. /// Gets or creates a node for a value \p V.
@@ -509,11 +525,13 @@ public:
/// taken. This means the node is always created for the "outermost" value /// taken. This means the node is always created for the "outermost" value
/// where V is contained. /// where V is contained.
/// Returns null, if V is not a "pointer". /// Returns null, if V is not a "pointer".
CGNode *getNode(ValueBase *V, EscapeAnalysis *EA); CGNode *getNodeOrNull(ValueBase *V, EscapeAnalysis *EA) {
return getNode(V, EA, false);
}
/// Gets or creates a node for a SILValue (same as above). /// Gets or creates a node for a SILValue (same as above).
CGNode *getNode(SILValue V, EscapeAnalysis *EA) { CGNode *getNodeOrNull(SILValue V, EscapeAnalysis *EA) {
return getNode(V.getDef(), EA); return getNode(V.getDef(), EA, false);
} }
/// Returns the number of use-points of a node. /// Returns the number of use-points of a node.
@@ -529,9 +547,6 @@ public:
/// e.g. release or apply instructions. /// e.g. release or apply instructions.
bool isUsePoint(ValueBase *V, CGNode *Node); bool isUsePoint(ValueBase *V, CGNode *Node);
/// Returns true if there is a path from \p From to \p To.
bool canEscapeTo(CGNode *From, CGNode *To);
/// Computes the use point information. /// Computes the use point information.
void computeUsePoints(); void computeUsePoints();
@@ -627,7 +642,7 @@ private:
bool isPointer(ValueBase *V); bool isPointer(ValueBase *V);
/// If V is a pointer, set it to global escaping. /// If V is a pointer, set it to global escaping.
void setEscapesGlobal(ConnectionGraph *ConGraph, SILValue V) { void setEscapesGlobal(ConnectionGraph *ConGraph, ValueBase *V) {
if (CGNode *Node = ConGraph->getNode(V, this)) if (CGNode *Node = ConGraph->getNode(V, this))
ConGraph->setEscapesGlobal(Node); ConGraph->setEscapesGlobal(Node);
} }
@@ -704,19 +719,30 @@ public:
/// Returns true if the value \p V can escape to the function call \p FAS. /// Returns true if the value \p V can escape to the function call \p FAS.
/// This means that the called function may access the value \p V. /// This means that the called function may access the value \p V.
bool canEscapeTo(SILValue V, FullApplySite FAS, ConnectionGraph *ConGraph) { /// If \p V has reference semantics, this function returns false if only the
return canEscapeToUsePoint(V, FAS.getInstruction(), ConGraph); /// address of a contained property escapes, but not the object itself.
} bool canEscapeTo(SILValue V, FullApplySite FAS);
/// Returns true if the value \p V or its content can escape to the
/// function call \p FAS.
/// This is the same as above, execpt that it returns true if an address of
/// a contained property escapes.
bool canObjectOrContentEscapeTo(SILValue V, FullApplySite FAS);
/// Returns true if the value \p V can escape to the release-instruction \p /// Returns true if the value \p V can escape to the release-instruction \p
/// RI. This means that \p RI may release \p V or any called destructor may /// RI. This means that \p RI may release \p V or any called destructor may
/// access (or release) \p V. /// access (or release) \p V.
/// Note that if \p RI is a retain-instruction always false is returned. /// Note that if \p RI is a retain-instruction always false is returned.
bool canEscapeTo(SILValue V, RefCountingInst *RI, ConnectionGraph *ConGraph) { bool canEscapeTo(SILValue V, RefCountingInst *RI);
return canEscapeToUsePoint(V, RI, ConGraph);
}
bool canPointToSameMemory(SILValue V1, SILValue V2, ConnectionGraph *ConGraph); /// Returns true if the value \p V can escape to any other pointer \p To.
/// This means that either \p To is the same as \p V or containes a reference
/// to \p V.
bool canEscapeToValue(SILValue V, SILValue To);
/// Returns true if the pointers \p V1 and \p V2 can possibly point to the
/// same memory.
bool canPointToSameMemory(SILValue V1, SILValue V2);
virtual void invalidate(InvalidationKind K) override; virtual void invalidate(InvalidationKind K) override;

View File

@@ -80,7 +80,21 @@ void EscapeAnalysis::ConnectionGraph::clear() {
} }
EscapeAnalysis::CGNode *EscapeAnalysis::ConnectionGraph:: EscapeAnalysis::CGNode *EscapeAnalysis::ConnectionGraph::
getOrCreateNode(ValueBase *V) { getNode(ValueBase *V, EscapeAnalysis *EA, bool createIfNeeded) {
if (isa<FunctionRefInst>(V))
return nullptr;
if (!V->hasValue())
return nullptr;
if (!EA->isPointer(V))
return nullptr;
V = skipProjections(V);
if (!createIfNeeded)
return lookupNode(V);
CGNode * &Node = Values2Nodes[V]; CGNode * &Node = Values2Nodes[V];
if (!Node) { if (!Node) {
if (SILArgument *Arg = dyn_cast<SILArgument>(V)) { if (SILArgument *Arg = dyn_cast<SILArgument>(V)) {
@@ -296,7 +310,7 @@ void EscapeAnalysis::ConnectionGraph::computeUsePoints() {
/// In addition to releasing instructions (see below) we also add block /// In addition to releasing instructions (see below) we also add block
/// arguments as use points. In case of loops, block arguments can /// arguments as use points. In case of loops, block arguments can
/// "extend" the liferange of a reference in upward direction. /// "extend" the liferange of a reference in upward direction.
if (CGNode *ArgNode = getNodeOrNull(BBArg)) { if (CGNode *ArgNode = lookupNode(BBArg)) {
addUsePoint(ArgNode, BBArg); addUsePoint(ArgNode, BBArg);
} }
} }
@@ -314,7 +328,7 @@ void EscapeAnalysis::ConnectionGraph::computeUsePoints() {
int ValueIdx = -1; int ValueIdx = -1;
for (const Operand &Op : I.getAllOperands()) { for (const Operand &Op : I.getAllOperands()) {
ValueBase *OpV = Op.get().getDef(); ValueBase *OpV = Op.get().getDef();
if (CGNode *OpNd = getNodeOrNull(skipProjections(OpV))) { if (CGNode *OpNd = lookupNode(skipProjections(OpV))) {
if (ValueIdx < 0) { if (ValueIdx < 0) {
ValueIdx = addUsePoint(OpNd, &I); ValueIdx = addUsePoint(OpNd, &I);
} else { } else {
@@ -438,22 +452,6 @@ bool EscapeAnalysis::ConnectionGraph::mergeFrom(ConnectionGraph *SourceGraph,
return Changed; return Changed;
} }
EscapeAnalysis::CGNode *EscapeAnalysis::ConnectionGraph::
getNode(ValueBase *V, EscapeAnalysis *EA) {
if (isa<FunctionRefInst>(V))
return nullptr;
if (!V->hasValue())
return nullptr;
if (!EA->isPointer(V))
return nullptr;
V = skipProjections(V);
return getOrCreateNode(V);
}
/// Returns true if \p V is a use of \p Node, i.e. V may (indirectly) /// Returns true if \p V is a use of \p Node, i.e. V may (indirectly)
/// somehow refer to the Node's value. /// somehow refer to the Node's value.
/// Use-points are only values which are relevant for lifeness computation, /// Use-points are only values which are relevant for lifeness computation,
@@ -470,7 +468,7 @@ bool EscapeAnalysis::ConnectionGraph::isUsePoint(ValueBase *V, CGNode *Node) {
return Node->UsePoints.test(Idx); return Node->UsePoints.test(Idx);
} }
bool EscapeAnalysis::ConnectionGraph::canEscapeTo(CGNode *From, CGNode *To) { bool EscapeAnalysis::ConnectionGraph::isReachable(CGNode *From, CGNode *To) {
// See if we can reach the From-node by transitively visiting the // See if we can reach the From-node by transitively visiting the
// predecessor nodes of the To-node. // predecessor nodes of the To-node.
// Usually nodes have few predecessor nodes and the graph depth is small. // Usually nodes have few predecessor nodes and the graph depth is small.
@@ -1121,6 +1119,9 @@ void EscapeAnalysis::analyzeInstruction(SILInstruction *I,
case ValueKind::AllocStackInst: case ValueKind::AllocStackInst:
case ValueKind::AllocRefInst: case ValueKind::AllocRefInst:
case ValueKind::AllocBoxInst: case ValueKind::AllocBoxInst:
ConGraph->getNode(I, this);
return;
case ValueKind::DeallocStackInst: case ValueKind::DeallocStackInst:
case ValueKind::StrongRetainInst: case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainUnownedInst: case ValueKind::StrongRetainUnownedInst:
@@ -1318,7 +1319,7 @@ void EscapeAnalysis::setAllEscaping(SILInstruction *I,
for (const Operand &Op : I->getAllOperands()) { for (const Operand &Op : I->getAllOperands()) {
SILValue OpVal = Op.get(); SILValue OpVal = Op.get();
if (!isNonWritableMemoryAddress(OpVal.getDef())) if (!isNonWritableMemoryAddress(OpVal.getDef()))
setEscapesGlobal(ConGraph, OpVal); setEscapesGlobal(ConGraph, OpVal.getDef());
} }
// Even if the instruction does not write memory it could e.g. return the // Even if the instruction does not write memory it could e.g. return the
// address of global memory. Therefore we have to define it as escaping. // address of global memory. Therefore we have to define it as escaping.
@@ -1469,42 +1470,134 @@ bool EscapeAnalysis::mergeSummaryGraph(ConnectionGraph *SummaryGraph,
return SummaryGraph->mergeFrom(Graph, Mapping); return SummaryGraph->mergeFrom(Graph, Mapping);
} }
bool EscapeAnalysis::canEscapeToUsePoint(SILValue V, ValueBase *UsePoint, bool EscapeAnalysis::canEscapeToUsePoint(SILValue V, ValueBase *UsePoint,
ConnectionGraph *ConGraph) { ConnectionGraph *ConGraph) {
CGNode *Node = ConGraph->getNode(V, this);
assert((FullApplySite::isa(UsePoint) || isa<RefCountingInst>(UsePoint)) &&
"use points are only created for calls and refcount instructions");
CGNode *Node = ConGraph->getNodeOrNull(V, this);
if (!Node) if (!Node)
return false; return true;
// First check if there are escape pathes which we don't explicitly see // First check if there are escape pathes which we don't explicitly see
// in the graph. // in the graph.
switch (Node->getEscapeState()) { if (Node->escapesInsideFunction(isNotAliasingArgument(V)))
case EscapeState::None: return true;
case EscapeState::Return:
break;
case EscapeState::Arguments:
if (!isNotAliasingArgument(V))
return true;
break;
case EscapeState::Global:
return true;
}
// No hidden escapes: check if the Node is reachable from the UsePoint. // No hidden escapes: check if the Node is reachable from the UsePoint.
return ConGraph->isUsePoint(UsePoint, Node); return ConGraph->isUsePoint(UsePoint, Node);
} }
bool EscapeAnalysis::canPointToSameMemory(SILValue V1, SILValue V2, bool EscapeAnalysis::canEscapeTo(SILValue V, FullApplySite FAS) {
ConnectionGraph *ConGraph) { // If it's not a local object we don't know anything about the value.
CGNode *Node1 = ConGraph->getNode(V1, this); if (!pointsToLocalObject(V))
assert(Node1 && "value is not a pointer"); return true;
CGNode *Node2 = ConGraph->getNode(V2, this); auto *ConGraph = getConnectionGraph(FAS.getFunction());
assert(Node2 && "value is not a pointer"); return canEscapeToUsePoint(V, FAS.getInstruction(), ConGraph);
}
// If both nodes escape, the relation of the nodes may not be explicitly bool EscapeAnalysis::canObjectOrContentEscapeTo(SILValue V, FullApplySite FAS) {
// represented in the graph. // If it's not a local object we don't know anything about the value.
if (Node1->escapesInsideFunction() && Node2->escapesInsideFunction()) if (!pointsToLocalObject(V))
return true; return true;
auto *ConGraph = getConnectionGraph(FAS.getFunction());
CGNode *Node = ConGraph->getNodeOrNull(V, this);
if (!Node)
return true;
// First check if there are escape pathes which we don't explicitly see
// in the graph.
if (Node->escapesInsideFunction(isNotAliasingArgument(V)))
return true;
// Check if the object itself can escape to the called function.
SILInstruction *UsePoint = FAS.getInstruction();
if (ConGraph->isUsePoint(UsePoint, Node))
return true;
if (V.getType().hasReferenceSemantics()) {
// Check if the object "content", i.e. a pointer to one of its stored
// properties, can escape to the called function.
CGNode *ContentNode = ConGraph->getContentNode(Node);
if (ContentNode->escapesInsideFunction(false))
return true;
if (ConGraph->isUsePoint(UsePoint, ContentNode))
return true;
}
return false;
}
bool EscapeAnalysis::canEscapeTo(SILValue V, RefCountingInst *RI) {
// If it's not a local object we don't know anything about the value.
if (!pointsToLocalObject(V))
return true;
auto *ConGraph = getConnectionGraph(RI->getFunction());
return canEscapeToUsePoint(V, RI, ConGraph);
}
/// Utility to get the function which contains both values \p V1 and \p V2.
static SILFunction *getCommonFunction(SILValue V1, SILValue V2) {
SILBasicBlock *BB1 = V1->getParentBB();
SILBasicBlock *BB2 = V2->getParentBB();
if (!BB1 || !BB2)
return nullptr;
SILFunction *F = BB1->getParent();
assert(BB2->getParent() == F && "values not in same function");
return F;
}
bool EscapeAnalysis::canEscapeToValue(SILValue V, SILValue To) {
if (!pointsToLocalObject(V))
return true;
SILFunction *F = getCommonFunction(V, To);
if (!F)
return true;
auto *ConGraph = getConnectionGraph(F);
CGNode *Node = ConGraph->getNodeOrNull(V, this);
if (!Node)
return true;
CGNode *ToNode = ConGraph->getNodeOrNull(To, this);
if (!ToNode)
return true;
return ConGraph->isReachable(Node, ToNode);
}
bool EscapeAnalysis::canPointToSameMemory(SILValue V1, SILValue V2) {
// At least one of the values must be a non-escaping local object.
bool isLocal1 = pointsToLocalObject(V1);
bool isLocal2 = pointsToLocalObject(V2);
if (!isLocal1 && !isLocal2)
return true;
SILFunction *F = getCommonFunction(V1, V2);
if (!F)
return true;
auto *ConGraph = getConnectionGraph(F);
CGNode *Node1 = ConGraph->getNodeOrNull(V1, this);
if (!Node1)
return true;
CGNode *Node2 = ConGraph->getNodeOrNull(V2, this);
if (!Node2)
return true;
// Finish the check for one value being a non-escaping local object.
if (isLocal1 && Node1->escapesInsideFunction(isNotAliasingArgument(V1)))
isLocal1 = false;
if (isLocal2 && Node2->escapesInsideFunction(isNotAliasingArgument(V2)))
isLocal2 = false;
if (!isLocal1 && !isLocal2)
return true;
// Check if both nodes may point to the same content.
CGNode *Content1 = ConGraph->getContentNode(Node1); CGNode *Content1 = ConGraph->getContentNode(Node1);
CGNode *Content2 = ConGraph->getContentNode(Node2); CGNode *Content2 = ConGraph->getContentNode(Node2);
return Content1 == Content2; return Content1 == Content2;

View File

@@ -290,7 +290,7 @@ bool StackPromoter::canPromoteAlloc(SILInstruction *AI,
SILInstruction *&DeallocInsertionPoint) { SILInstruction *&DeallocInsertionPoint) {
AllocInsertionPoint = nullptr; AllocInsertionPoint = nullptr;
DeallocInsertionPoint = nullptr; DeallocInsertionPoint = nullptr;
auto *Node = ConGraph->getNode(AI, EA); auto *Node = ConGraph->getNodeOrNull(AI, EA);
if (!Node) if (!Node)
return false; return false;