//===--- FloatingPointToString.swift -------------------------*- Swift -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2018-2025 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===---------------------------------------------------------------------===// // // Converts floating-point types to "optimal" text formats. // // The "optimal" form is one with a minimum number of significant // digits which will parse to exactly the original value. This form // is ideal for JSON serialization and general printing where you // don't have specific requirements on the number of significant // digits. // //===---------------------------------------------------------------------===// /// /// For binary16, this code uses a simple approach that is normally /// implemented with variable-length arithmetic. However, due to the /// limited range of binary16, this can be implemented with only /// 32-bit integer arithmetic. /// /// For other formats, we use a modified form of the Grisu2 /// algorithm from Florian Loitsch; "Printing Floating-Point Numbers /// Quickly and Accurately with Integers", 2010. /// https://doi.org/10.1145/1806596.1806623 /// /// Some of the Grisu2 modifications were suggested by the "Errol /// paper": Marc Andrysco, Ranjit Jhala, Sorin Lerner; "Printing /// Floating-Point Numbers: A Faster, Always Correct Method", 2016. /// https://doi.org/10.1145/2837614.2837654 /// In particular, the Errol paper explored the impact of higher-precision /// fixed-width arithmetic on Grisu2 and showed a way to rapidly test /// the correctness of Grisu-style algorithms. /// /// A few further improvements were inspired by the Ryu algorithm /// from Ulf Anders; "Ryū: fast float-to-string conversion", 2018. /// https://doi.org/10.1145/3296979.3192369 /// /// The full algorithm is extensively commented in the Float64 version /// below; refer to that for details. /// /// In summary, this implementation is: /// /// * Fast. It uses only fixed-width integer arithmetic and has /// constant memory requirements. For double-precision values on /// 64-bit processors, it is competitive with Ryu. For double-precision /// values on 32-bit processors, and higher-precision values on all /// processors, it is considerably faster. /// /// * Always Accurate. Except for NaNs, converting the decimal form /// back to binary will always yield an equal value. For the IEEE /// 754 formats, the round trip will produce exactly the same bit /// pattern in memory. This assumes, of course, that the conversion /// from text to binary uses a correctly-rounded algorithm such as /// Clinger 1990 or Eisel-Lemire 2021. /// /// * Always Short. This always selects an accurate result with the /// minimum number of significant digits. /// /// * Always Close. Among all accurate, short results, this always /// chooses the result that is closest to the exact floating-point /// value. (In case of an exact tie, it rounds the last digit even.) /// /// Beyond the requirements above, the precise text form has been /// tuned to try to maximize readability: /// * Always include a '.' or an 'e' so the result is obviously /// a floating-point value /// * Exponential form always has 1 digit before the decimal point /// * When present, a '.' is never the first or last character /// * There is a consecutive range of integer values that can be /// represented in any particular type (-2^54...2^54 for double). /// We do not use exponential form for integral numbers in this /// range. /// * Generally follow existing practice: Don't use use exponential /// form for fractional values bigger than 10^-4; always write at /// least 2 digits for an exponent. /// * Apart from the above, we do prefer shorter output. /// Note: If you want to compare performance of this implementation /// versus some others, keep in mind that this implementation does /// deliberately sacrifice some performance. Any attempt to compare /// the performance of this implementation to others should /// try to compensate for the following: /// * The output ergonomics described above do take some time. /// It would be faster to always emit the form "123456e-78" // (See `finishFormatting()`) /// * The implementations in published papers generally include /// large tables with every power of 10 computed out. We've /// factored these tables down to conserve code size, which /// requires some additional work to reconstruct the needed power /// of 10. (See the `intervalContainingPowerOf10_*` functions) /// /// This Swift implementation was ported from an earlier C version; /// the output is exactly the same in all cases. /// A few notes on the Swift transcription: /// * We use MutableSpan and MutableRawSpan to /// identify blocks of working memory. /// * We use unsafe/unchecked operations extensively, supported by /// several years of analysis and testing of the original C /// implementation to ensure that no unsafety actually occurs. For /// Float32, that testing was exhaustive -- we verified all 4 /// billion possible Float32 values. /// * The Swift code uses an idiom of building up to 8 digit characters /// in a UInt64 and then writing the whole block to memory. /// * The Swift version is slightly faster than the C version; /// mostly thanks to various minor algorithmic tweaks that were /// found during the translation process. /// // ---------------------------------------------------------------------------- // ================================================================ // // Float16 // // ================================================================ #if (os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64) // Float16 is not currently supported on Intel x86_64 macOS, // (including macCatalyst on x86_64) but this symbol somehow got // exported there. // This preserves that export. // Note: Other platforms that don't support Float16 should // NOT export this. @available(SwiftStdlib 5.3, *) @_silgen_name("swift_float16ToString") public func _float16ToStringImpl( _ textBuffer: UnsafeMutablePointer, _ bufferLength: UInt, _ value: Float, _ debug: Bool ) -> UInt64 { fatalError() } #else // Support Legacy ABI on top of new implementation @available(SwiftStdlib 5.3, *) @_silgen_name("swift_float16ToString") public func _float16ToStringImpl( _ textBuffer: UnsafeMutablePointer, _ bufferLength: UInt, _ value: Float16, _ debug: Bool ) -> UInt64 { // Code below works with raw memory. var buffer = unsafe MutableSpan( _unchecked: textBuffer, count: Int(bufferLength)) let textRange = _Float16ToASCII(value: value, buffer: &buffer) let textLength = textRange.upperBound - textRange.lowerBound // Move the text to the start of the buffer if textRange.lowerBound != 0 { unsafe _memmove( dest: textBuffer, src: textBuffer + textRange.lowerBound, size: UInt(truncatingIfNeeded: textLength)) } return UInt64(truncatingIfNeeded: textLength) } // Convert a Float16 to an optimal ASCII representation. // See notes above for comments on the output format here. // Inputs: // * `value`: Float16 input // * `buffer`: Buffer to place the result // Returns: Range of bytes within `buffer` that contain the result // // Buffer must be at least 32 bytes long and must be pre-filled // with "0" characters, e.g., via // `InlineArray<32,UTF8.CodeUnit>(repeating:0x30)` @available(SwiftStdlib 5.3, *) internal func _Float16ToASCII( value f: Float16, buffer utf8Buffer: inout MutableSpan ) -> Range { // We need a MutableRawSpan in order to use wide store/load operations // TODO: Tune this value down to the actual minimum for Float16 precondition(utf8Buffer.count >= 32) var buffer = utf8Buffer.mutableBytes // Step 1: Handle various input cases: let binaryExponent: Int let significand: Float16.RawSignificand let exponentBias = (1 << (Float16.exponentBitCount - 1)) - 2 // 14 if (f.exponentBitPattern == 0x1f) { // NaN or Infinity if (f.isInfinite) { return _infinity(buffer: &buffer, sign: f.sign) } else { // f.isNaN let quietBit = (f.significandBitPattern >> (Float16.significandBitCount - 1)) & 1 let payloadMask = UInt16(1 &<< (Float16.significandBitCount - 2)) - 1 let payload16 = f.significandBitPattern & payloadMask return nan_details( buffer: &buffer, sign: f.sign, quiet: quietBit != 0, payloadHigh: 0, payloadLow: UInt64(truncatingIfNeeded:payload16)) } } else if (f.exponentBitPattern == 0) { if (f.isZero) { return _zero(buffer: &buffer, sign: f.sign) } else { // Subnormal binaryExponent = 1 - exponentBias significand = f.significandBitPattern &<< 2 } } else { // normal binaryExponent = Int(f.exponentBitPattern) &- exponentBias let hiddenBit = Float16.RawSignificand(1) << Float16.significandBitCount significand = (f.significandBitPattern &+ hiddenBit) &<< 2 } // Step 2: Determine the exact target interval let halfUlp: Float16.RawSignificand = 2 let quarterUlp = halfUlp >> 1 let upperMidpointExact = significand &+ halfUlp let lowerMidpointExact = significand &- ((f.significandBitPattern == 0) ? quarterUlp : halfUlp) var firstDigit = 1 var nextDigit = firstDigit // Emit the text form differently depending on what range it's in. // We use `storeBytes(of:toUncheckedByteOffset:as:)` for most of // the output, but are careful to use the checked/safe form // `storeBytes(of:toByteOffset:as:)` for the last byte so that we // reliably crash if we overflow the provided buffer. // Step 3: If it's < 10^-5, format as exponential form if binaryExponent < -13 || (binaryExponent == -13 && significand < 0x1a38) { var decimalExponent = -5 var u = (UInt32(upperMidpointExact) << (28 - 13 &+ binaryExponent)) &* 100000 var l = (UInt32(lowerMidpointExact) << (28 - 13 &+ binaryExponent)) &* 100000 var t = (UInt32(significand) << (28 - 13 &+ binaryExponent)) &* 100000 let mask = (UInt32(1) << 28) - 1 if t < ((1 << 28) / 10) { u &*= 100 l &*= 100 t &*= 100 decimalExponent &-= 2 } if t < (1 << 28) { u &*= 10 l &*= 10 t &*= 10 decimalExponent &-= 1 } let uDigit = u >> 28 if uDigit == (l >> 28) { // More than one digit, so write first digit, ".", then the rest unsafe buffer.storeBytes( of: 0x30 + UInt8(truncatingIfNeeded: uDigit), toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 unsafe buffer.storeBytes( of: 0x2e, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 while true { u = (u & mask) &* 10 l = (l & mask) &* 10 t = (t & mask) &* 10 let uDigit = u >> 28 if uDigit != (l >> 28) { // Stop before emitting the last digit break } unsafe buffer.storeBytes( of: 0x30 &+ UInt8(truncatingIfNeeded: uDigit), toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } } let digit = 0x30 &+ (t &+ (1 << 27)) >> 28 unsafe buffer.storeBytes( of: UInt8(truncatingIfNeeded: digit), toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 unsafe buffer.storeBytes( of: 0x65, // "e" toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 unsafe buffer.storeBytes( of: 0x2d, // "-" toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 unsafe buffer.storeBytes( of: UInt8(truncatingIfNeeded: -decimalExponent / 10 &+ 0x30), toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 // Last write on this branch, so use a safe checked store buffer.storeBytes( of: UInt8(truncatingIfNeeded: -decimalExponent % 10 &+ 0x30), toByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } else { // Step 4: Greater than 10^-5, so use decimal format "123.45" // (Note: Float16 is never big enough to need exponential for // positive exponents) // First, split into integer and fractional parts: let intPart : Float16.RawSignificand let fractionPart : Float16.RawSignificand if binaryExponent < 13 { intPart = significand >> (13 &- binaryExponent) fractionPart = significand &- (intPart &<< (13 &- binaryExponent)) } else { intPart = significand &<< (binaryExponent &- 13) fractionPart = significand &- (intPart >> (binaryExponent &- 13)) } // Step 5: Emit the integer part let text = _intToEightDigits(UInt32(intPart)) unsafe buffer.storeBytes( of: text, toUncheckedByteOffset: nextDigit, as: UInt64.self) nextDigit &+= 8 // Skip leading zeros if intPart < 10 { firstDigit &+= 7 } else if intPart < 100 { firstDigit &+= 6 } else if intPart < 1000 { firstDigit &+= 5 } else if intPart < 10000 { firstDigit &+= 4 } else { firstDigit &+= 3 } // After the integer part comes a period... unsafe buffer.storeBytes( of: 0x2e, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 if fractionPart == 0 { // Step 6: No fraction, so ".0" and we're done // "0" write is free since buffer is pre-initialized nextDigit &+= 1 } else { // Step 7: Emit the fractional part by repeatedly // multiplying by 10 to produce successive digits: var u = UInt32(upperMidpointExact) &<< (28 - 13 &+ binaryExponent) var l = UInt32(lowerMidpointExact) &<< (28 - 13 &+ binaryExponent) var t = UInt32(fractionPart) &<< (28 - 13 &+ binaryExponent) let mask = (UInt32(1) << 28) - 1 var uDigit: UInt8 = 0 var lDigit: UInt8 = 0 while true { u = (u & mask) &* 10 l = (l & mask) &* 10 uDigit = UInt8(truncatingIfNeeded: u >> 28) lDigit = UInt8(truncatingIfNeeded: l >> 28) if uDigit != lDigit { t = (t & mask) &* 10 break } // This overflows, but we don't care at this point. t &*= 10 unsafe buffer.storeBytes( of: 0x30 &+ uDigit, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } t &+= 1 << 27 if (t & mask) == 0 { // Exactly 1/2 t = (t >> 28) & ~1 // Round last digit even // Rounding `t` even can end up moving `t` below // `l`. Detect and correct for this possibility. // Exhaustive testing shows that the only input value // affected by this is 0.015625 == 2^-6, which // incorrectly prints as "0.01562" without this fix. // With this, it prints correctly as "0.01563" if t < lDigit || (t == lDigit && l > 0) { t += 1 } } else { t >>= 28 } // Last write on this branch, so use a checked store buffer.storeBytes( of: UInt8(truncatingIfNeeded: 0x30 + t), toByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } } if f.sign == .minus { buffer.storeBytes( of: 0x2d, toByteOffset: firstDigit &- 1, as: UInt8.self) // "-" firstDigit &-= 1 } return firstDigit.., _ bufferLength: UInt, _ value: Float32, _ debug: Bool ) -> UInt64 { // Code below works with raw memory. var buffer = unsafe MutableSpan( _unchecked: textBuffer, count: Int(bufferLength)) let textRange = _Float32ToASCII(value: value, buffer: &buffer) let textLength = textRange.upperBound - textRange.lowerBound // Move the text to the start of the buffer if textRange.lowerBound != 0 { unsafe _memmove( dest: textBuffer, src: textBuffer + textRange.lowerBound, size: UInt(truncatingIfNeeded: textLength)) } return UInt64(truncatingIfNeeded: textLength) } // Convert a Float32 to an optimal ASCII representation. // See notes above for comments on the output format here. // See _Float64ToASCII for comments on the algorithm. // Inputs: // * `value`: Float32 input // * `buffer`: Buffer to place the result // Returns: Range of bytes within `buffer` that contain the result // // Buffer must be at least 32 bytes long and must be pre-filled // with "0" characters, e.g., via // `InlineArray<32,UTF8.CodeUnit>(repeating:0x30)` internal func _Float32ToASCII( value f: Float32, buffer utf8Buffer: inout MutableSpan ) -> Range { // Note: The algorithm here is the same as for Float64, only // with narrower arithmetic. Refer to `_Float64ToASCII` for // more detailed comments and explanation. // We need a MutableRawSpan in order to use wide store/load operations // TODO: Tune this limit down to the actual minimum we need here // TODO: `assert` that the buffer is filled with 0x30 bytes (in debug builds) precondition(utf8Buffer.count >= 32) var buffer = utf8Buffer.mutableBytes // Step 1: Handle the special cases, decompose the input let binaryExponent: Int let significand: Float.RawSignificand let exponentBias = (1 << (Float.exponentBitCount - 1)) - 2 // 126 if (f.exponentBitPattern == 0xff) { if (f.isInfinite) { return _infinity(buffer: &buffer, sign: f.sign) } else { // f.isNaN let quietBit = (f.significandBitPattern >> (Float.significandBitCount - 1)) & 1 let payloadMask = UInt32(1 << (Float.significandBitCount - 2)) - 1 let payload32 = f.significandBitPattern & payloadMask return nan_details( buffer: &buffer, sign: f.sign, quiet: quietBit != 0, payloadHigh: 0, payloadLow: UInt64(truncatingIfNeeded:payload32)) } } else if (f.exponentBitPattern == 0) { if (f.isZero) { return _zero(buffer: &buffer, sign: f.sign) } else { // f.isSubnormal binaryExponent = 1 - exponentBias significand = f.significandBitPattern &<< Float.exponentBitCount } } else { binaryExponent = Int(f.exponentBitPattern) &- exponentBias significand = ((f.significandBitPattern &+ (1 << Float.significandBitCount)) &<< Float.exponentBitCount) } // Step 2: Determine the exact unscaled target interval let halfUlp: Float.RawSignificand = 1 << (Float.exponentBitCount - 1) let quarterUlp = halfUlp >> 1 let upperMidpointExact = significand &+ halfUlp let lowerMidpointExact = significand &- ((f.significandBitPattern == 0) ? quarterUlp : halfUlp) let isOddSignificand = ((f.significandBitPattern & 1) != 0) // Step 3: Estimate the base 10 exponent var base10Exponent = decimalExponentFor2ToThe(binaryExponent) // Step 4: Compute power-of-10 scale factor var powerOfTenRoundedDown: UInt64 = 0 var powerOfTenRoundedUp: UInt64 = 0 let bulkFirstDigits = 1 let powerOfTenExponent = _intervalContainingPowerOf10_Binary32( p: -base10Exponent &+ bulkFirstDigits &- 1, lower: &powerOfTenRoundedDown, upper: &powerOfTenRoundedUp) let extraBits = binaryExponent &+ powerOfTenExponent // Step 5: Scale the interval (with rounding) // Experimentally, 11 is as large as we can go here without // introducing errors. // We need 7 to generate 2 digits at a time below. // 11 should allow us to generate 3 digits at a time, but // that doesn't seem to be any faster. let integerBits = 11 let fractionBits = 64 - integerBits var u: UInt64 var l: UInt64 if isOddSignificand { // Narrow the interval (odd significand) let u1 = _multiply64x32RoundingDown( powerOfTenRoundedDown, upperMidpointExact) u = u1 >> (integerBits - extraBits) let l1 = _multiply64x32RoundingUp( powerOfTenRoundedUp, lowerMidpointExact) let bias = UInt64((1 &<< (integerBits &- extraBits)) &- 1) l = (l1 &+ bias) >> (integerBits &- extraBits) } else { // Widen the interval (even significand) let u1 = _multiply64x32RoundingUp( powerOfTenRoundedUp, upperMidpointExact) let bias = UInt64((1 &<< (integerBits &- extraBits)) &- 1) u = (u1 &+ bias) >> (integerBits &- extraBits) let l1 = _multiply64x32RoundingDown( powerOfTenRoundedDown, lowerMidpointExact) l = l1 >> (integerBits &- extraBits) } // Step 6: Align first digit, adjust exponent while u < (UInt64(1) &<< fractionBits) { base10Exponent &-= 1 l &*= 10 u &*= 10 } // Step 7: Generate decimal digits into the destination buffer var t = u var delta = u &- l let fractionMask: UInt64 = (1 << fractionBits) - 1 // Overwrite the first digit at index 7: let firstDigit = 7 let digit = (t >> fractionBits) &+ 0x30 t &= fractionMask unsafe buffer.storeBytes( of: UInt8(truncatingIfNeeded: digit), toUncheckedByteOffset: firstDigit, as: UInt8.self) var nextDigit = firstDigit &+ 1 // Generate 2 digits at a time... while (delta &* 10) < ((t &* 10) & fractionMask) { delta &*= 100 t &*= 100 let d12 = Int(truncatingIfNeeded: t >> fractionBits) let text = unsafe asciiDigitTable[unchecked: d12] unsafe buffer.storeBytes( of: text, toUncheckedByteOffset: nextDigit, as: UInt16.self) nextDigit &+= 2 t &= fractionMask } // ... and a final single digit, if necessary if delta < t { delta &*= 10 t &*= 10 let text = 0x30 + UInt8(truncatingIfNeeded: t >> fractionBits) unsafe buffer.storeBytes( of: text, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 t &= fractionMask } // Adjust the final digit to be closer to the original value let isBoundary = (f.significandBitPattern == 0) if delta > t &+ (1 << fractionBits) { let skew: UInt64 if isBoundary { skew = delta &- delta / 3 &- t } else { skew = delta / 2 &- t } let one = UInt64(1) << (64 - integerBits) let lastAccurateBit = UInt64(1) << 24 let fractionMask = (one - 1) & ~(lastAccurateBit - 1) let oneHalf = one >> 1 var lastDigit = unsafe buffer.unsafeLoad( fromUncheckedByteOffset: nextDigit &- 1, as: UInt8.self) if ((skew &+ (lastAccurateBit >> 1)) & fractionMask) == oneHalf { // Skew is integer + 1/2, round even after adjustment let adjust = skew >> (64 - integerBits) lastDigit &-= UInt8(truncatingIfNeeded: adjust) lastDigit &= ~1 } else { // Round nearest let adjust = (skew &+ oneHalf) >> (64 - integerBits) lastDigit &-= UInt8(truncatingIfNeeded: adjust) } unsafe buffer.storeBytes( of: lastDigit, toUncheckedByteOffset: nextDigit &- 1, as: UInt8.self) } // Step 8: Finish formatting let forceExponential = ((binaryExponent > 25) || (binaryExponent == 25 && !isBoundary)) return _finishFormatting( buffer: &buffer, sign: f.sign, firstDigit: firstDigit, nextDigit: nextDigit, forceExponential: forceExponential, base10Exponent: base10Exponent) } // ================================================================ // // Float64 // // ================================================================ // Support Legacy ABI on top of new implementation @_silgen_name("swift_float64ToString") @usableFromInline internal func _float64ToStringImpl( _ textBuffer: UnsafeMutablePointer, _ bufferLength: UInt, _ value: Float64, _ debug: Bool ) -> UInt64 { // Code below works with raw memory. var buffer = unsafe MutableSpan( _unchecked: textBuffer, count: Int(bufferLength)) let textRange = _Float64ToASCII(value: value, buffer: &buffer) let textLength = textRange.upperBound - textRange.lowerBound // Move the text to the start of the buffer if textRange.lowerBound != 0 { unsafe _memmove( dest: textBuffer, src: textBuffer + textRange.lowerBound, size: UInt(truncatingIfNeeded: textLength)) } return UInt64(truncatingIfNeeded: textLength) } // Convert a Float64 to an optimal ASCII representation. // See notes above for comments on the output format here. // The algorithm is extensively commented inline; the comments // at the top of this source file give additional context. // Inputs: // * `value`: Float64 input // * `buffer`: Buffer to place the result // Returns: Range of bytes within `buffer` that contain the result // // Buffer must be at least 32 bytes long and must be pre-filled // with "0" characters, e.g., via // `InlineArray<32,UTF8.CodeUnit>(repeating:0x30)` internal func _Float64ToASCII( value d: Float64, buffer utf8Buffer: inout MutableSpan ) -> Range { // We need a MutableRawSpan in order to use wide store/load operations precondition(utf8Buffer.count >= 32) var buffer = utf8Buffer.mutableBytes // // Step 1: Handle the special cases, decompose the input // let binaryExponent: Int let significand: Double.RawSignificand let exponentBias = 1022 // (1 << (Double.exponentBitCount - 1)) - 2 if (d.exponentBitPattern == 0x7ff) { if (d.isInfinite) { return _infinity(buffer: &buffer, sign: d.sign) } else { // d.isNaN let quietBit = (d.significandBitPattern >> (Double.significandBitCount - 1)) & 1 let payloadMask = (UInt64(1) &<< (Double.significandBitCount - 2)) - 1 let payload64 = d.significandBitPattern & payloadMask return nan_details( buffer: &buffer, sign: d.sign, quiet: quietBit != 0, payloadHigh: 0, payloadLow: UInt64(truncatingIfNeeded:payload64)) } } else if (d.exponentBitPattern == 0) { if (d.isZero) { return _zero(buffer: &buffer, sign: d.sign) } else { // d.isSubnormal binaryExponent = 1 - exponentBias significand = d.significandBitPattern &<< Double.exponentBitCount } } else { binaryExponent = Int(d.exponentBitPattern) &- exponentBias significand = ((d.significandBitPattern &+ (1 << Double.significandBitCount)) &<< Double.exponentBitCount) } // The input has been decomposed as significand * 2^binaryExponent, // where `significand` is a 64-bit fraction with the binary // point at the far left. // Step 2: Determine the exact unscaled target interval // Grisu-style algorithms construct the shortest decimal digit // sequence within a specific interval. To build the appropriate // interval, we start by computing the midpoints between this // floating-point value and the adjacent ones. Note that this // step is an exact computation. let halfUlp: Double.RawSignificand = 1 << (Double.exponentBitCount - 1) let quarterUlp = halfUlp >> 1 let upperMidpointExact = significand &+ halfUlp let lowerMidpointExact = significand &- ((d.significandBitPattern == 0) ? quarterUlp : halfUlp) let isOddSignificand = ((d.significandBitPattern & 1) != 0) // Step 3: Estimate the base 10 exponent // Grisu algorithms are based in part on a simple technique for // generating a base-10 form for a binary floating-point number. // Start with a binary floating-point number `f * 2^e` and then // estimate the decimal exponent `p`. You can then rewrite your // original number as: // // ``` // f * 2^e * 10^-p * 10^p // ``` // // The last term is part of our output, and a good estimate for // `p` will ensure that `2^e * 10^-p` is close to 1. Multiplying // the first three terms then yields a fraction suitable for // producing the decimal digits. Here we use a very fast estimate // of `p` that is never off by more than 1; we'll have // opportunities later to correct any error. var base10Exponent = decimalExponentFor2ToThe(binaryExponent) // Step 4: Compute power-of-10 scale factor // Compute `10^-p` to 128-bit precision. We generate // both over- and under-estimates to ensure we can exactly // bound the later use of these values. // The `powerOfTenRounded{Up,Down}` values are 128-bit // pure fractions with the decimal point at the far left. var powerOfTenRoundedDown: _UInt128 = 0 var powerOfTenRoundedUp: _UInt128 = 0 // Note the extra factor of 10^bulkFirstDigits -- that will give // us a headstart on digit generation later on. (In contrast, Ryu // uses an extra factor of 10^17 here to get all the digits up // front, but then has to back out any extra digits. Doing that // with a 17-digit value requires 64-bit division, which is the // root cause of Ryu's poor performance on 32-bit processors. We // also might have to back out extra digits if 7 is too many, but // will only need 32-bit division in that case.) let bulkFirstDigits = 7 let bulkFirstDigitFactor: UInt32 = 1000000 // 10^(bulkFirstDigits - 1) let powerOfTenExponent = _intervalContainingPowerOf10_Binary64( p: -base10Exponent &+ bulkFirstDigits &- 1, lower: &powerOfTenRoundedDown, upper: &powerOfTenRoundedUp) let extraBits = binaryExponent + powerOfTenExponent // Step 5: Scale the interval (with rounding) // As mentioned above, the final digit generation works // with an interval, so we actually apply the scaling // to the upper and lower midpoint values separately. // As part of the scaling here, we'll switch from a pure // fraction with zero bit integer portion and 128-bit fraction // to a fixed-point form with 32 bits in the integer portion. let integerBits = 32 let roundingBias = _UInt128((1 &<< UInt64(truncatingIfNeeded: integerBits &- extraBits)) &- 1) var u: _UInt128 var l: _UInt128 if isOddSignificand { // Case A: Narrow the interval (odd significand) // Loitsch' original Grisu2 always rounds so as to narrow the // interval. Since our digit generation will select a value // within the scaled interval, narrowing the interval // guarantees that we will find a digit sequence that converts // back to the original value. // This ensures accuracy but, as explained in Loitsch' paper, // this carries a risk that there will be a shorter digit // sequence outside of our narrowed interval that we will // miss. This risk obviously gets lower with increased // precision, but it wasn't until the Errol paper that anyone // had a good way to test whether a particular implementation // had sufficient precision. That paper shows a way to enumerate // the worst-case numbers; those numbers that are extremely close // to the mid-points between adjacent floating-point values. // These are the values that might sit just outside of the // narrowed interval. By testing these values, we can verify // the correctness of our implementation. // Multiply out the upper midpoint, rounding down... let u1 = _multiply128x64RoundingDown( powerOfTenRoundedDown, upperMidpointExact) // Account for residual binary exponent and adjust // to the fixed-point format u = u1 >> (integerBits - extraBits) // Conversely for the lower midpoint... let l1 = _multiply128x64RoundingUp( powerOfTenRoundedUp, lowerMidpointExact) l = (l1 + roundingBias) >> (integerBits - extraBits) } else { // Case B: Widen the interval (even significand) // As explained in Errol Theorem 6, in certain cases there is // a short decimal representation at the exact boundary of the // scaled interval. When such a number is converted back to // binary, it will get rounded to the adjacent even // significand. // So when the significand is even, we round so as to widen // the interval in order to ensure that the exact midpoints // are considered. Of couse, this ensures that we find a // short result but carries a risk of selecting a result // outside of the exact scaled interval (which would be // inaccurate). // (This technique of rounding differently for even/odd significands // seems to be new; I've not seen it described in any of the // papers on floating-point printing.) // The same testing approach described above (based on results // in the Errol paper) also applies // to this case. let u1 = _multiply128x64RoundingUp( powerOfTenRoundedUp, upperMidpointExact) u = (u1 &+ roundingBias) >> (integerBits - extraBits) let l1 = _multiply128x64RoundingDown( powerOfTenRoundedDown, lowerMidpointExact) l = l1 >> (integerBits - extraBits) } // Step 6: Align the first digit, adjust exponent // Calculations above used an estimate for the power-of-ten scale. // Here, we compensate for any error in that estimate by testing // whether we have the expected number of digits in the integer // portion and correcting as necessary. This also serves to // prune leading zeros from subnormals. // Except for subnormals, this loop never runs more than once. // For subnormals, this might run as many as 16 times. let minimumU = _UInt128(bulkFirstDigitFactor) << (128 - integerBits) while u < minimumU { base10Exponent -= 1 l &*= 10 u &*= 10 } // Step 7: Produce decimal digits // One standard approach generates digits for the scaled upper and // lower boundaries and stops at the first digit that // differs. For example, note that 0.1234 is the shortest decimal // between u = 0.123456 and l = 0.123345. // Grisu optimizes this by generating digits for the upper bound // (multiplying by 10 to isolate each digit) while simultaneously // scaling the interval width `delta`. As we remove each digit // from the upper bound, the remainder is the difference between // the base-10 value generated so far and the true upper bound. // When that remainder is less than the scaled width of the // interval, we know the current digits specify a value within the // target interval. // The logic below actually blends three different digit-generation // strategies: // * The first digits are already in the integer portion of the // fixed-point value, thanks to the `bulkFirstDigits` factor above. // We can just break those down and write them out. // * If we generated too many digits, we use a Ryu-inspired technique // to backtrack. // * If we generated too few digits (the usual case), we use an // optimized form of the Grisu2 method to produce the remaining // values. // // Generate digits and build the output. // // Generate digits for `t` with interval width `delta = u - l` // As above, these are fixed-point with 32-bit integer, 96-bit fraction var t = u var delta = u &- l let fractionMask = (_UInt128(1) << 96) - 1 var nextDigit = 5 var firstDigit = nextDigit // Our initial scaling gave us the first 7 digits already: let d12345678 = UInt32(truncatingIfNeeded: t._high >> 32) t &= fractionMask if delta >= t { // Oops! We have too many digits. Back out the extra ones to // get the right answer. This is similar to Ryu, but since // we've only produced seven digits, we only need 32-bit // arithmetic here. (Ryu needs 64-bit arithmetic to back out // digits, which severely compromises performance on 32-bit // processors. The same problem occurs with Ryu for 128-bit // floats on 64-bit processors.) // A few notes: // * Our target hardware always supports 32-bit hardware division, // so this should be reasonably fast. // * For small integers (like "2.0"), Ryu would have to back out 16 // digits; we only have to back out 6. // * Very few double-precision values actually need fewer than 7 // digits. So this is rarely used except in workloads that // specifically use double for small integers. // Why this is critical for performance: In order to use the // 8-digits-at-a-time optimization below, we need at least 30 // bits in the integer part of our fixed-point format above. // If we only use bulkDigits = 1, that leaves only 128 - 30 = // 98 bit accuracy for our scaling step, which isn't enough // (experiments suggest that binary64 needs ~110 bits for // correctness). So we have to use a large bulkDigits value // to make full use of the 128-bit scaling above, which forces // us to have some form of logic to handle the case of too // many digits. The alternatives are either to use >128 bit // arithmetic, or to back up and repeat the original scaling // with bulkDigits = 1. let uHigh = u._high let lHigh = (l &+ _UInt128(UInt64.max))._high let tHigh: UInt64 if d.significand == 0 { tHigh = (uHigh &+ lHigh &* 2) / 3 } else { tHigh = (uHigh &+ lHigh) / 2 } var u0 = UInt32(truncatingIfNeeded: uHigh >> (64 - integerBits)) var l0 = UInt32(truncatingIfNeeded: lHigh >> (64 - integerBits)) if lHigh & ((1 << (64 - integerBits)) - 1) != 0 { l0 &+= 1 } var t0 = UInt32(truncatingIfNeeded: tHigh >> (64 - integerBits)) var t0digits = 8 var u1 = u0 / 10 var l1 = (l0 &+ 9) / 10 var trailingZeros = (t == 0) var droppedDigit = UInt32( truncatingIfNeeded: ((tHigh &* 10) >> (64 - integerBits)) % 10) while u1 >= l1 && u1 != 0 { u0 = u1 l0 = l1 trailingZeros = trailingZeros && (droppedDigit == 0) droppedDigit = t0 % 10 t0 /= 10 t0digits -= 1 u1 = u0 / 10 l1 = (l0 &+ 9) / 10 } // Correct the final digit if droppedDigit > 5 || (droppedDigit == 5 && !trailingZeros) { // > 0.5000 t0 &+= 1 } else if droppedDigit == 5 && trailingZeros { // == 0.5000 t0 &+= 1 t0 &= ~1 } // t0 has t0digits digits. Write them out let text = _intToEightDigits(t0) buffer.storeBytes( of: text, toByteOffset: nextDigit, as: UInt64.self) nextDigit &+= 8 // Skip the leading zeros firstDigit &+= 9 - t0digits } else { // Our initial scaling did not produce too many digits. The // `d12345678` value holds the first 7 digits (plus a leading // zero). The remainder of this algorithm is basically just a // heavily-optimized variation of Grisu2. // Write out exactly 8 digits, assuming little-endian. let chars = _intToEightDigits(d12345678) unsafe buffer.storeBytes( of: chars, toUncheckedByteOffset: nextDigit, as: UInt64.self) nextDigit &+= 8 firstDigit &+= 1 // >90% of random binary64 values need at least 15 digits. // We have seven so there's probably at least 8 more, which // we can grab all at once. let TenToTheEighth = 100000000 as _UInt128 // 10^(15-bulkFirstDigits) let d0 = delta * TenToTheEighth var t0 = t * TenToTheEighth // The integer part of t0 is the next 8 digits let next8Digits = UInt32(truncatingIfNeeded: t0._high >> 32) t0 &= fractionMask if d0 < t0 { // We got 8 more digits! (So number is at least 15 digits) // Write them out: let chars = _intToEightDigits(next8Digits) unsafe buffer.storeBytes( of: chars, toUncheckedByteOffset: nextDigit, as: UInt64.self) nextDigit &+= 8 t = t0 delta = d0 } // Generate remaining digits one at a time, following Grisu: while (delta < t) { delta &*= 10 t &*= 10 unsafe buffer.storeBytes( of: UInt8(truncatingIfNeeded: t._high >> 32) &+ 0x30, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 t &= fractionMask } // Adjust the final digit to be closer to the original value. // This accounts for the fact that sometimes there is more than // one shortest digit sequence. // For example, consider how the above would work if you had the // value 0.1234 and computed u = 0.1257, l = 0.1211. The above // digit generation works with `u`, so produces 0.125. But the // values 0.122, 0.123, and 0.124 are just as short and 0.123 is // therefore the best choice, since it's closest to the original // value. // We know delta and t are both less than 10.0 here, so we can // shed some excess integer bits to simplify the following: let adjustIntegerBits = 4 // Integer bits for "adjust" phase let deltaHigh64 = UInt64( truncatingIfNeeded: delta >> (64 - integerBits + adjustIntegerBits)) let tHigh64 = UInt64( truncatingIfNeeded: t >> (64 - integerBits + adjustIntegerBits)) let one = UInt64(1) << (64 - adjustIntegerBits) let adjustFractionMask = one - 1 let oneHalf = one >> 1 if deltaHigh64 >= tHigh64 &+ one { // The `skew` is the difference between our // computed digits and the original exact value. var skew: UInt64 if (d.significandBitPattern == 0) { skew = deltaHigh64 &- deltaHigh64 / 3 &- tHigh64 } else { skew = deltaHigh64 / 2 &- tHigh64 } var lastDigit = unsafe buffer.unsafeLoad( fromUncheckedByteOffset: nextDigit - 1, as: UInt8.self) // We use the `skew` to figure out whether there's // a better base-10 value than our current one. if (skew & adjustFractionMask) == oneHalf { // Difference is an integer + exactly 1/2, so ... let adjust = skew >> (64 - adjustIntegerBits) lastDigit &-= UInt8(truncatingIfNeeded: adjust) // ... we round the last digit even. lastDigit &= ~1 } else { let adjust = (skew + oneHalf) >> (64 - adjustIntegerBits) lastDigit &-= UInt8(truncatingIfNeeded: adjust) } buffer.storeBytes( of: lastDigit, toByteOffset: nextDigit - 1, as: UInt8.self) } } // Step 8: Finalize formatting by rearranging // the digits and filling in decimal points, // exponents, and zero padding. let isBoundary = (d.significandBitPattern == 0) let forceExponential = ((binaryExponent > 54) || (binaryExponent == 54 && !isBoundary)) return _finishFormatting( buffer: &buffer, sign: d.sign, firstDigit: firstDigit, nextDigit: nextDigit, forceExponential: forceExponential, base10Exponent: base10Exponent) } // ================================================================ // // Float80 // // ================================================================ // Float80 is only available on Intel x86/x86_64 processors on certain operating systems // This matches the condition for the Float80 type #if !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS)))) && (arch(i386) || arch(x86_64)) // Support Legacy ABI on top of new implementation @_silgen_name("swift_float80ToString") @usableFromInline internal func _float80ToStringImpl( _ textBuffer: UnsafeMutablePointer, _ bufferLength: UInt, _ value: Float80, _ debug: Bool ) -> UInt64 { // Code below works with raw memory. var buffer = unsafe MutableSpan( _unchecked: textBuffer, count: Int(bufferLength)) let textRange = _Float80ToASCII(value: value, buffer: &buffer) let textLength = textRange.upperBound - textRange.lowerBound // Move the text to the start of the buffer if textRange.lowerBound != 0 { unsafe _memmove( dest: textBuffer, src: textBuffer + textRange.lowerBound, size: UInt(truncatingIfNeeded: textLength)) } return UInt64(truncatingIfNeeded: textLength) } // Convert a Float80 to an optimal ASCII representation. // See notes above for comments on the output format here. // See _Float64ToASCII for comments on the algorithm. // Inputs: // * `value`: Float80 input // * `buffer`: Buffer to place the result // Returns: Range of bytes within `buffer` that contain the result // // Buffer must be at least 32 bytes long and must be pre-filled // with "0" characters, e.g., via // `InlineArray<32,UTF8.CodeUnit>(repeating:0x30)` internal func _Float80ToASCII( value f: Float80, buffer utf8Buffer: inout MutableSpan ) -> Range { // We need a MutableRawSpan in order to use wide store/load operations precondition(utf8Buffer.count >= 32) var buffer = utf8Buffer.mutableBytes // Step 1: Handle special cases, decompose the input // The Intel 80-bit floating point format has some quirks that // make this a lot more complex than the corresponding logic for // the IEEE 754 portable formats. // f.significandBitPattern is processed to try to mimic the // semantics of IEEE portable formats. But for the following, // we need the actual raw bits: let rawSignificand = f._representation.explicitSignificand let binaryExponent: Int let significand: Float80.RawSignificand let exponentBias = (1 << (Float80.exponentBitCount - 1)) - 2 // 16382 let isBoundary = f.significandBitPattern == 0 if f.exponentBitPattern == 0x7fff { // NaN or Infinity // 80387 semantics and 80287 semantics differ somewhat; // we follow 80387 semantics here. // See: Wikipedia.org "Extended Precision" // See: Intel's "Floating Point Reference Sheet" // https://software.intel.com/content/dam/develop/external/us/en/documents/floating-point-reference-sheet.pdf let selector = rawSignificand >> 62 let payload = rawSignificand & ((1 << 62) - 1) switch selector { case 0: // ∞ or snan on 287, invalid on 387 fallthrough case 1: // Pseudo-NaN: snan on 287, invalid on 387 // Invalid patterns treated as plain "nan" return nan_details( buffer: &buffer, sign: .plus, quiet: true, payloadHigh: 0, payloadLow: payload) case 2: if payload == 0 { // snan on 287, ∞ on 387 return _infinity(buffer: &buffer, sign: f.sign) } else { // snan on 287 and 387 return nan_details( buffer: &buffer, sign: f.sign, quiet: false, payloadHigh: 0, payloadLow: payload) } case 3: // Zero payload and sign bit set is "indefinite" (treated as qNaN here), // otherwise qNaN on 387, sNaN on 287 return nan_details( buffer: &buffer, sign: f.sign, quiet: true, payloadHigh: 0, payloadLow: payload) default: fatalError() } } else if f.exponentBitPattern == 0 { if rawSignificand == 0 { // Zero return _zero(buffer: &buffer, sign: f.sign) } else { // subnormal binaryExponent = 1 - exponentBias significand = rawSignificand } } else if rawSignificand >> 63 == 1 { // Normal binaryExponent = Int(bitPattern:f.exponentBitPattern) - exponentBias significand = rawSignificand } else { return nan_details( buffer: &buffer, sign: .plus, quiet: true, payloadHigh: 0, payloadLow: 0) } // Step 2: Determine the exact unscaled target interval let halfUlp = UInt64(1) << 63 let quarterUlp = halfUlp >> 1 let threeQuarterUlp = halfUlp + quarterUlp // Significand is the upper 64 bits of our 128-bit franction // Upper midpoint adds 1/2 ULP: let upperMidpointExact = _UInt128(_low: halfUlp, _high: significand) // Lower midpoint subtracts 1 ULP and then adds 1/2 or 3/4 ULP: let lowerMidpointExact = _UInt128( _low: isBoundary ? threeQuarterUlp : halfUlp, _high: significand - 1) let forceExponential = (binaryExponent > 65 || (binaryExponent == 65 && !isBoundary)) return _backend_256bit( buffer: &buffer, upperMidpointExact: upperMidpointExact, lowerMidpointExact: lowerMidpointExact, sign: f.sign, isBoundary: isBoundary, isOddSignificand: (f.significandBitPattern & 1) != 0, binaryExponent: binaryExponent, forceExponential: forceExponential) } #endif // ================================================================ // // Float128 // // ================================================================ #if false // Note: We don't need _float128ToStringImpl, since that's only for // backwards compatibility, and the legacy ABI never supported // Float128. internal func _Float128ToASCII( value d: Float128, buffer utf8Buffer: inout MutableSpan ) -> Range { // TODO: Write Me! // Note: All the interesting parts are already implemented in _backend_256bit(...), // so this can easily be implemented someday by just copyihng _Float80ToASCII // and making the obvious changes. (See the introductory parts of // _Float64ToASCII for the structure common to all IEEE 754 formats.) } #endif // ================================================================ // // Float80/Float128 common backend // // This uses 256-bit fixed-width arithmetic to efficiently compute the // optimal form for a decomposed float80 or binary128 value. It is // less heavily commented than the 128-bit Double implementation // above; see that implementation for detailed explanation of the // logic here. // // Float80 could be handled more efficiently with 192-bit fixed-width // arithmetic. But the code size savings from sharing this logic // between float80 and binary128 are substantial, and the resulting // float80 performance is still much better than competing // implementations. // // Also in the interest of code size savings, this eschews some of the // optimizations used by the 128-bit Double implementation above. // Those optimizations are simple to reintroduce if you're interested // in further performance improvements. // // If you are interested in extreme code size, you can also use this // backend for binary32 and binary64, eliminating the separate 128-bit // implementation. That variation offers surprisingly reasonable // performance overall. // // ================================================================ #if !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS)))) && (arch(i386) || arch(x86_64)) fileprivate func _backend_256bit( buffer: inout MutableRawSpan, upperMidpointExact: _UInt128, lowerMidpointExact: _UInt128, sign: FloatingPointSign, isBoundary: Bool, isOddSignificand: Bool, binaryExponent: Int, forceExponential: Bool ) -> Range { // Step 3: Estimate the base 10 exponent var base10Exponent = decimalExponentFor2ToThe(binaryExponent) // Step 4: Compute a power-of-10 scale factor var powerOfTenRoundedDown = _UInt256() var powerOfTenRoundedUp = _UInt256() let powerOfTenExponent = _intervalContainingPowerOf10_Binary128( p: -base10Exponent, lower: &powerOfTenRoundedDown, upper: &powerOfTenRoundedUp) let extraBits = binaryExponent &+ powerOfTenExponent // Step 5: Scale the interval (with rounding) let integerBits = 14 let high64FractionBits = 64 - integerBits var u: _UInt256 var l: _UInt256 if isOddSignificand { // Narrow the interval (odd significand) u = powerOfTenRoundedDown u.multiplyRoundingDown(by: upperMidpointExact) u.shiftRightRoundingDown(by: integerBits &- extraBits) l = powerOfTenRoundedUp l.multiplyRoundingUp(by: lowerMidpointExact) l.shiftRightRoundingUp(by: integerBits &- extraBits) } else { // Widen the interval (even significand) u = powerOfTenRoundedUp u.multiplyRoundingUp(by: upperMidpointExact) u.shiftRightRoundingUp(by: integerBits &- extraBits) l = powerOfTenRoundedDown l.multiplyRoundingDown(by: lowerMidpointExact) l.shiftRightRoundingDown(by: integerBits &- extraBits) } // Step 6: Align first digit, adjust exponent while u.high._high < (UInt64(1) << high64FractionBits) { base10Exponent &-= 1 l.multiply(by: UInt32(10)) u.multiply(by: UInt32(10)) } var t = u var delta = u &- l // Step 7: Generate digits // Leave 8 bytes at the beginning for finishFormatting to use let firstDigit = 8 var nextDigit = firstDigit buffer.storeBytes( of: 0x30 + UInt8(truncatingIfNeeded: t.extractIntegerPart(integerBits)), toByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 // It would be nice to generate 8 digits at a time and take // advantage of intToEightDigits, but our integer portion has only // 14 bits. We can't make that bigger without either sacrificing // too much precision for correct Float128 or folding the first // digits into the scaling (as we do with Double) which would // require a back-out phase here (as we do with Double). // If there is at least one more digit possible... if delta < t { // Try grabbing four digits at a time var d0 = delta var t0 = t d0.multiply(by: 10000) t0.multiply(by: 10000) var d1234 = t0.extractIntegerPart(integerBits) while d0 < t0 { let d12 = d1234 / 100 let d34 = d1234 % 100 unsafe buffer.storeBytes( of: asciiDigitTable[Int(bitPattern:d12)], toUncheckedByteOffset: nextDigit, as: UInt16.self) unsafe buffer.storeBytes( of: asciiDigitTable[Int(bitPattern:d34)], toUncheckedByteOffset: nextDigit &+ 2, as: UInt16.self) nextDigit &+= 4 t = t0 delta = d0 d0.multiply(by: 10000) t0.multiply(by: 10000) d1234 = t0.extractIntegerPart(integerBits) } // Finish by generating one digit at a time... while delta < t { delta.multiply(by: UInt32(10)) t.multiply(by: UInt32(10)) let digit = UInt8(truncatingIfNeeded: t.extractIntegerPart(integerBits)) unsafe buffer.storeBytes( of: 0x30 &+ digit, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } } // Adjust the final digit to be closer to the original value // We've already consumed most of our available precision, and only // need a couple of integer bits, so we can narrow down to // 64 bits here. let deltaHigh64 = delta.high._high let tHigh64 = t.high._high if deltaHigh64 >= tHigh64 &+ (UInt64(1) << high64FractionBits) { let skew: UInt64 if isBoundary { skew = deltaHigh64 &- deltaHigh64 / 3 &- tHigh64 } else { skew = deltaHigh64 / 2 &- tHigh64 } let one = UInt64(1) << high64FractionBits let fractionMask = one - 1 let oneHalf = one >> 1 var lastDigit = unsafe buffer.unsafeLoad( fromUncheckedByteOffset: nextDigit &- 1, as: UInt8.self) if (skew & fractionMask) == oneHalf { let adjust = skew >> high64FractionBits lastDigit &-= UInt8(truncatingIfNeeded: adjust) lastDigit &= ~1 } else { let adjust = (skew + oneHalf) >> high64FractionBits lastDigit &-= UInt8(truncatingIfNeeded: adjust) } buffer.storeBytes( of: lastDigit, toByteOffset: nextDigit &- 1, as: UInt8.self) } return _finishFormatting( buffer: &buffer, sign: sign, firstDigit: firstDigit, nextDigit: nextDigit, forceExponential: forceExponential, base10Exponent: base10Exponent) } #endif // ================================================================ // // Common Helper functions // // ================================================================ // Code above computes the appropriate significant digits and stores // them in `buffer` between `firstDigit` and `nextDigit`. // `finishFormatting` converts this into the final text form, // inserting decimal points, minus signs, exponents, etc, as // necessary. To minimize the work here, this assumes that there are // at least 5 unused bytes at the beginning of `buffer` before // `firstDigit` and that all unused bytes are filled with `"0"` (0x30) // characters. fileprivate func _finishFormatting( buffer: inout MutableRawSpan, sign: FloatingPointSign, firstDigit: Int, nextDigit: Int, forceExponential: Bool, base10Exponent: Int ) -> Range { // Performance note: This could be made noticeably faster by // writing the output consistently in exponential form with no // decimal point, e.g., "31415926e-07". But the extra cost seems // worthwhile to achieve "3.1415926" instead. var firstDigit = firstDigit var nextDigit = nextDigit let digitCount = nextDigit &- firstDigit if base10Exponent < -4 || forceExponential { // Exponential form: "-1.23456789e+123" // Rewrite "123456789" => "1.23456789" by moving the first // digit to the left one byte and overwriting a period. // (This is one reason we left empty space to the left of the digits.) // We don't do this for single-digit significands: "1e+78", "5e-324" if digitCount > 1 { let t = unsafe buffer.unsafeLoad( fromUncheckedByteOffset: firstDigit, as: UInt8.self) unsafe buffer.storeBytes( of: 0x2e, toUncheckedByteOffset: firstDigit, as: UInt8.self) firstDigit &-= 1 unsafe buffer.storeBytes( of: t, toUncheckedByteOffset: firstDigit, as: UInt8.self) } // Append the exponent: unsafe buffer.storeBytes( of: 0x65, // "e" toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 var e = base10Exponent let expSign: UInt8 if base10Exponent < 0 { expSign = 0x2d // "-" e = 0 &- e } else { expSign = 0x2b // "+" } unsafe buffer.storeBytes( of: expSign, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 if e > 99 { if e > 999 { let d = asciiDigitTable[e / 100] unsafe buffer.storeBytes( of: d, toUncheckedByteOffset: nextDigit, as: UInt16.self) nextDigit &+= 2 } else { let d = 0x30 &+ UInt8(truncatingIfNeeded: (e / 100)) unsafe buffer.storeBytes( of: d, toUncheckedByteOffset: nextDigit, as: UInt8.self) nextDigit &+= 1 } e = e % 100 } let d = unsafe asciiDigitTable[unchecked: e] buffer.storeBytes( of: d, toByteOffset: nextDigit, as: UInt16.self) nextDigit &+= 2 } else if base10Exponent < 0 { // "-0.000123456789" // We need up to 5 leading characters before the digits. // Note that the formatters above all insert extra leading "0" characters // to the beginning of the buffer, so we don't need to memset() here, // just back up the start to include them... firstDigit &+= base10Exponent - 1 // ... and then overwrite a decimal point to get "0." at the beginning buffer.storeBytes( of: 0x2e, // "." toByteOffset: firstDigit &+ 1, as: UInt8.self) } else if base10Exponent &+ 1 < digitCount { // "123456.789" // We move the first digits forward one position // so we can insert a decimal point in the middle. // Note: This is the only case where we actually move // more than one digit around in the buffer. // TODO: Find out how to use C memmove() here firstDigit &-= 1 for i in 0...(base10Exponent &+ 1) { let t = unsafe buffer.unsafeLoad( fromUncheckedByteOffset: firstDigit &+ i &+ 1, as: UInt8.self) unsafe buffer.storeBytes( of: t, toUncheckedByteOffset: firstDigit &+ i, as: UInt8.self) } buffer.storeBytes( of: 0x2e, toByteOffset: firstDigit &+ base10Exponent &+ 1, as: UInt8.self) } else { // "12345678900.0" // Fill trailing zeros, put ".0" at the end // so the result is obviously floating-point. // Remember buffer was initialized with "0" nextDigit = firstDigit &+ base10Exponent &+ 3 buffer.storeBytes( of: 0x2e, toByteOffset: nextDigit &- 2, as: UInt8.self) } if sign == .minus { buffer.storeBytes( of: 0x2d, // "-" toByteOffset: firstDigit &- 1, as: UInt8.self) firstDigit &-= 1 } return unsafe Range(_uncheckedBounds: (lower: firstDigit, upper: nextDigit)) } // Table with ASCII strings for all 2-digit decimal numbers. // Stored as little-endian UInt16s for efficiency fileprivate let asciiDigitTable: _InlineArray<100, UInt16> = [ 0x3030, 0x3130, 0x3230, 0x3330, 0x3430, 0x3530, 0x3630, 0x3730, 0x3830, 0x3930, 0x3031, 0x3131, 0x3231, 0x3331, 0x3431, 0x3531, 0x3631, 0x3731, 0x3831, 0x3931, 0x3032, 0x3132, 0x3232, 0x3332, 0x3432, 0x3532, 0x3632, 0x3732, 0x3832, 0x3932, 0x3033, 0x3133, 0x3233, 0x3333, 0x3433, 0x3533, 0x3633, 0x3733, 0x3833, 0x3933, 0x3034, 0x3134, 0x3234, 0x3334, 0x3434, 0x3534, 0x3634, 0x3734, 0x3834, 0x3934, 0x3035, 0x3135, 0x3235, 0x3335, 0x3435, 0x3535, 0x3635, 0x3735, 0x3835, 0x3935, 0x3036, 0x3136, 0x3236, 0x3336, 0x3436, 0x3536, 0x3636, 0x3736, 0x3836, 0x3936, 0x3037, 0x3137, 0x3237, 0x3337, 0x3437, 0x3537, 0x3637, 0x3737, 0x3837, 0x3937, 0x3038, 0x3138, 0x3238, 0x3338, 0x3438, 0x3538, 0x3638, 0x3738, 0x3838, 0x3938, 0x3039, 0x3139, 0x3239, 0x3339, 0x3439, 0x3539, 0x3639, 0x3739, 0x3839, 0x3939 ] // The constants below assume we're on a little-endian processor fileprivate func _infinity( buffer: inout MutableRawSpan, sign: FloatingPointSign ) -> Range { if sign == .minus { buffer.storeBytes( of: 0x666e692d, // "-inf" toByteOffset: 0, as: UInt32.self) return 0..<4 } else { buffer.storeBytes( of: 0x00666e69, // "inf\0" toByteOffset: 0, as: UInt32.self) return 0..<3 } } fileprivate func _zero( buffer: inout MutableRawSpan, sign: FloatingPointSign ) -> Range { if sign == .minus { buffer.storeBytes( of: 0x302e302d, // "-0.0" toByteOffset: 0, as: UInt32.self) return 0..<4 } else { buffer.storeBytes( of: 0x00302e30, // "0.0\0" toByteOffset: 0, as: UInt32.self) return 0..<3 } } fileprivate let hexdigits: _InlineArray<16, UInt8> = [ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 ] fileprivate func _hexWithoutLeadingZeros( buffer: inout MutableRawSpan, offset: inout Int, value: UInt64 ) { var shift = 60 while (shift > 0) && ((value >> shift) & 0xf == 0) { shift -= 4 } while shift >= 0 { let d = hexdigits[Int(truncatingIfNeeded: (value >> shift) & 0xf)] shift -= 4 buffer.storeBytes( of: d, toByteOffset: offset, as: UInt8.self) offset += 1 } } fileprivate func _hexWithLeadingZeros( buffer: inout MutableRawSpan, offset: inout Int, value: UInt64 ) { var shift = 60 while shift >= 0 { let d = hexdigits[Int(truncatingIfNeeded: (value >> shift) & 0xf)] shift -= 4 buffer.storeBytes( of: d, toByteOffset: offset, as: UInt8.self) offset += 1 } } fileprivate func nan_details( buffer: inout MutableRawSpan, sign: FloatingPointSign, quiet: Bool, payloadHigh: UInt64, payloadLow: UInt64 ) -> Range { // value is a NaN of some sort var i = 0 if sign == .minus { buffer.storeBytes( of: 0x2d, // "-" toByteOffset: 0, as: UInt8.self) i = 1 } if !quiet { buffer.storeBytes( of: 0x73, // "s" toByteOffset: i, as: UInt8.self) i += 1 } buffer.storeBytes(of: 0x6e, toByteOffset: i, as: UInt8.self) // "n" buffer.storeBytes(of: 0x61, toByteOffset: i + 1, as: UInt8.self) // "a" buffer.storeBytes(of: 0x6e, toByteOffset: i + 2, as: UInt8.self) // "n" i += 3 if payloadHigh != 0 || payloadLow != 0 { buffer.storeBytes(of: 0x28, toByteOffset: i, as: UInt8.self) // "(" i += 1 buffer.storeBytes(of: 0x30, toByteOffset: i, as: UInt8.self) // "0" i += 1 buffer.storeBytes(of: 0x78, toByteOffset: i, as: UInt8.self) // "x" i += 1 if payloadHigh == 0 { _hexWithoutLeadingZeros(buffer: &buffer, offset: &i, value: payloadLow) } else { _hexWithoutLeadingZeros(buffer: &buffer, offset: &i, value: payloadHigh) _hexWithLeadingZeros(buffer: &buffer, offset: &i, value: payloadLow) } buffer.storeBytes(of: 0x29, toByteOffset: i, as: UInt8.self) // ")" i += 1 } return 0.. UInt64 { // Break into two numbers of 4 decimal digits each let div8 = n / 10000 let mod8 = n &- div8 &* 10000 let fours = UInt64(div8) | (UInt64(mod8) << 32) // Break into 4 numbers of 2 decimal digits each let mask100: UInt64 = 0x0000007f0000007f let div4 = ((fours &* 10486) >> 20) & mask100 let mod4 = fours &- 100 &* div4 let pairs = div4 | (mod4 &<< 16) // Break into 8 numbers of a single decimal digit each let mask10: UInt64 = 0x000f000f000f000f let div2 = ((pairs &* 103) >> 10) & mask10 let mod2 = pairs &- 10 &* div2 let singles = div2 | (mod2 &<< 8) // Convert 8 digits to ASCII characters return singles &+ 0x3030303030303030 } // ================================================================ // // Arithmetic Helpers // // The code above works with fixed-point values. Standard // addition/subtraction/comparison works fine, but we need rounding // control when multiplying such values. // // For exmaple, `multiply128x64RoundingDown` multiplies a 0.128 // fixed-point value by a 0.64 fixed-point fraction, returning a 0.128 // value that's been rounded down from the exact 192-bit result. // // ================================================================ @inline(__always) fileprivate func _multiply64x32RoundingDown( _ lhs: UInt64, _ rhs: UInt32 ) -> UInt64 { let mask32 = UInt64(UInt32.max) let t = ((lhs & mask32) * UInt64(rhs)) >> 32 return t + (lhs >> 32) * UInt64(rhs) } @inline(__always) fileprivate func _multiply64x32RoundingUp( _ lhs: UInt64, _ rhs: UInt32 ) -> UInt64 { let mask32 = UInt64(UInt32.max) let t = (((lhs & mask32) * UInt64(rhs)) + mask32) >> 32 return t + (lhs >> 32) * UInt64(rhs) } @inline(__always) fileprivate func _multiply128x64RoundingDown( _ lhs: _UInt128, _ rhs: UInt64 ) -> _UInt128 { let lhsHigh = _UInt128(truncatingIfNeeded: lhs._high) let lhsLow = _UInt128(truncatingIfNeeded: lhs._low) let rhs128 = _UInt128(truncatingIfNeeded: rhs) return (lhsHigh &* rhs128) &+ ((lhsLow &* rhs128) >> 64) } @inline(__always) fileprivate func _multiply128x64RoundingUp( _ lhs: _UInt128, _ rhs: UInt64 ) -> _UInt128 { let lhsHigh = _UInt128(truncatingIfNeeded: lhs._high) let lhsLow = _UInt128(truncatingIfNeeded: lhs._low) let rhs128 = _UInt128(truncatingIfNeeded: rhs) let h = lhsHigh &* rhs128 let l = lhsLow &* rhs128 let bias = (_UInt128(1) << 64) &- 1 return h + ((l &+ bias) &>> 64) } // Custom 256-bit unsigned integer type, with various arithmetic // helpers as methods. // Used by 80- and 128-bit floating point formatting logic above... fileprivate struct _UInt256 { var high: _UInt128 var low: _UInt128 init() { self.high = 0 self.low = 0 } init(high: UInt64, _ midHigh: UInt64, _ midLow: UInt64, low: UInt64) { self.high = _UInt128(_low: midHigh, _high: high) self.low = _UInt128(_low: low, _high: midLow) } init(high: _UInt128, low: _UInt128) { self.high = high self.low = low } mutating func shiftRightRoundingDown(by shift: Int) { assert(shift < 32 && shift >= 0) var t = _UInt128(low._low >> shift) t |= _UInt128(low._high) &<< (64 - shift) let newlow = t._low t = _UInt128(t._high) t |= _UInt128(high._low) &<< (64 - shift) low = _UInt128(_low: newlow, _high: t._low) t = _UInt128(t._high) t |= _UInt128(high._high) &<< (64 - shift) high = t } mutating func shiftRightRoundingUp(by shift: Int) { assert(shift < 32 && shift >= 0) let bias = (UInt64(1) &<< shift) - 1 var t = _UInt128((low._low + bias) >> shift) t |= _UInt128(low._high) &<< (64 - shift) let newlow = t._low t = _UInt128(t._high) t |= _UInt128(high._low) &<< (64 - shift) low = _UInt128(_low: newlow, _high: t._low) t = _UInt128(t._high) t |= _UInt128(high._high) &<< (64 - shift) high = t } mutating func multiply(by rhs: UInt32) { var t = _UInt128(low._low) &* _UInt128(rhs) let newlow = t._low t = _UInt128(t._high) &+ _UInt128(low._high) &* _UInt128(rhs) low = _UInt128(_low: newlow, _high: t._low) t = _UInt128(t._high) &+ _UInt128(high._low) &* _UInt128(rhs) let newmidhigh = t._low t = _UInt128(t._high) &+ _UInt128(high._high) &* _UInt128(rhs) high = _UInt128(_low: newmidhigh, _high: t._low) assert(t._high == 0) } mutating func multiplyRoundingDown(by rhs: _UInt128) { var current = _UInt128(low._low) * _UInt128(rhs._low) current = _UInt128(current._high) var t = _UInt128(low._low) &* _UInt128(rhs._high) current += _UInt128(t._low) var next = _UInt128(t._high) t = _UInt128(low._high) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) current = next + _UInt128(current._high) t = _UInt128(low._high) &* _UInt128(rhs._high) current += _UInt128(t._low) next = _UInt128(t._high) t = _UInt128(high._low) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) let newlow = current._low current = next + _UInt128(current._high) t = _UInt128(high._low) &* _UInt128(rhs._high) current += _UInt128(t._low) next = _UInt128(t._high) t = _UInt128(high._high) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) low = _UInt128(_low: newlow, _high: current._low) current = next + _UInt128(current._high) t = _UInt128(high._high) &* _UInt128(rhs._high) high = current + t } mutating func multiplyRoundingUp(by rhs: _UInt128) { var current = _UInt128(low._low) &* _UInt128(rhs._low) current += _UInt128(UInt64.max) current = _UInt128(current._high) var t = _UInt128(low._low) &* _UInt128(rhs._high) current += _UInt128(t._low) var next = _UInt128(t._high) t = _UInt128(low._high) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) current += _UInt128(UInt64.max) current = next + _UInt128(current._high) t = _UInt128(low._high) &* _UInt128(rhs._high) current += _UInt128(t._low) next = _UInt128(t._high) t = _UInt128(high._low) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) let newlow = current._low current = next + _UInt128(current._high) t = _UInt128(high._low) &* _UInt128(rhs._high) current += _UInt128(t._low) next = _UInt128(t._high) t = _UInt128(high._high) &* _UInt128(rhs._low) current += _UInt128(t._low) next += _UInt128(t._high) low = _UInt128(_low: newlow, _high: current._low) current = next + _UInt128(current._high) t = _UInt128(high._high) &* _UInt128(rhs._high) high = current + t } mutating func extractIntegerPart(_ bits: Int) -> UInt { assert(bits < 16) let integral = high._high >> (64 &- bits) high = _UInt128( _low: high._low, _high: high._high &- (integral &<< (64 &- bits))) return UInt(truncatingIfNeeded: integral) } static func &- (lhs: _UInt256, rhs: _UInt256) -> _UInt256 { var t = _UInt128(lhs.low._low) &+ _UInt128(~rhs.low._low) &+ 1 let newlowlow = t._low t = _UInt128(t._high) &+ _UInt128(lhs.low._high) &+ _UInt128(~rhs.low._high) let newlow = _UInt128(_low: newlowlow, _high: t._low) t = _UInt128(t._high) &+ _UInt128(lhs.high._low) &+ _UInt128(~rhs.high._low) let newhigh = _UInt128( _low: t._low, _high: t._high &+ lhs.high._high &+ ~rhs.high._high) return _UInt256(high: newhigh, low: newlow) } static func < (lhs: _UInt256, rhs: _UInt256) -> Bool { return (lhs.high < rhs.high) || (lhs.high == rhs.high && lhs.low < rhs.low) } } // ================================================================ // // Powers of 10 // // ================================================================ @inline(__always) fileprivate func _intervalContainingPowerOf10_Binary32( p: Int, lower: inout UInt64, upper: inout UInt64 ) -> Int { if p >= 0 { let base = powersOf10_Exact128[p &* 2 &+ 1] lower = base if p < 28 { upper = base } else { upper = base &+ 1 } } else { let base = powersOf10_negativeBinary32[p &+ 40] lower = base upper = base &+ 1 } return binaryExponentFor10ToThe(p) } @inline(__always) fileprivate func _intervalContainingPowerOf10_Binary64( p: Int, lower: inout _UInt128, upper: inout _UInt128 ) -> Int { if p >= 0 && p <= 55 { let upper64 = powersOf10_Exact128[p &* 2 &+ 1] let lower64 = powersOf10_Exact128[p &* 2] upper = _UInt128(_low: lower64, _high: upper64) lower = upper return binaryExponentFor10ToThe(p) } let index = p &+ 400 let mainPower = index / 28 let baseHigh = powersOf10_Binary64[mainPower &* 2 &+ 1] let baseLow = powersOf10_Binary64[mainPower &* 2] let extraPower = index &- mainPower &* 28 let baseExponent = binaryExponentFor10ToThe(p &- extraPower) if extraPower == 0 { lower = _UInt128(_low: baseLow, _high: baseHigh) upper = lower &+ 1 return baseExponent } else { let extra = powersOf10_Exact128[extraPower &* 2 &+ 1] lower = ((_UInt128(truncatingIfNeeded:baseHigh) &* _UInt128(truncatingIfNeeded:extra)) &+ ((_UInt128(truncatingIfNeeded:baseLow) &* _UInt128(truncatingIfNeeded:extra)) &>> 64)) upper = lower &+ 2 return baseExponent &+ binaryExponentFor10ToThe(extraPower) } } @inline(__always) fileprivate func binaryExponentFor10ToThe(_ p: Int) -> Int { return Int(((Int64(p) &* 55732705) >> 24) &+ 1) } @inline(__always) fileprivate func decimalExponentFor2ToThe(_ p: Int) -> Int { return Int((Int64(p) &* 20201781) >> 26) } // Each of the constant values here have an implicit binary point at // the extreme left and when not exact, are rounded _down_ from the // exact values. For example, the first row of the first table says // that: // // 0x0.8b61313bbabce2c6 x 2^-132 // // is the result of rounding down the exact binary value of 10^-40 to // 64 significant bits. The logic above uses these tables to compute // bounds for the exact value of the power of 10. // Note the binary exponent is not stored; it is computed by the // `binaryExponentFor10ToThe(p)` function. // This covers the negative powers of 10 for Float32. // Positive powers of 10 come from the next table below. // Table size: 320 bytes fileprivate let powersOf10_negativeBinary32: _InlineArray<_, UInt64> = [ 0x8b61313bbabce2c6, // x 2^-132 ~= 10^-40 0xae397d8aa96c1b77, // x 2^-129 ~= 10^-39 0xd9c7dced53c72255, // x 2^-126 ~= 10^-38 0x881cea14545c7575, // x 2^-122 ~= 10^-37 0xaa242499697392d2, // x 2^-119 ~= 10^-36 0xd4ad2dbfc3d07787, // x 2^-116 ~= 10^-35 0x84ec3c97da624ab4, // x 2^-112 ~= 10^-34 0xa6274bbdd0fadd61, // x 2^-109 ~= 10^-33 0xcfb11ead453994ba, // x 2^-106 ~= 10^-32 0x81ceb32c4b43fcf4, // x 2^-102 ~= 10^-31 0xa2425ff75e14fc31, // x 2^-99 ~= 10^-30 0xcad2f7f5359a3b3e, // x 2^-96 ~= 10^-29 0xfd87b5f28300ca0d, // x 2^-93 ~= 10^-28 0x9e74d1b791e07e48, // x 2^-89 ~= 10^-27 0xc612062576589dda, // x 2^-86 ~= 10^-26 0xf79687aed3eec551, // x 2^-83 ~= 10^-25 0x9abe14cd44753b52, // x 2^-79 ~= 10^-24 0xc16d9a0095928a27, // x 2^-76 ~= 10^-23 0xf1c90080baf72cb1, // x 2^-73 ~= 10^-22 0x971da05074da7bee, // x 2^-69 ~= 10^-21 0xbce5086492111aea, // x 2^-66 ~= 10^-20 0xec1e4a7db69561a5, // x 2^-63 ~= 10^-19 0x9392ee8e921d5d07, // x 2^-59 ~= 10^-18 0xb877aa3236a4b449, // x 2^-56 ~= 10^-17 0xe69594bec44de15b, // x 2^-53 ~= 10^-16 0x901d7cf73ab0acd9, // x 2^-49 ~= 10^-15 0xb424dc35095cd80f, // x 2^-46 ~= 10^-14 0xe12e13424bb40e13, // x 2^-43 ~= 10^-13 0x8cbccc096f5088cb, // x 2^-39 ~= 10^-12 0xafebff0bcb24aafe, // x 2^-36 ~= 10^-11 0xdbe6fecebdedd5be, // x 2^-33 ~= 10^-10 0x89705f4136b4a597, // x 2^-29 ~= 10^-9 0xabcc77118461cefc, // x 2^-26 ~= 10^-8 0xd6bf94d5e57a42bc, // x 2^-23 ~= 10^-7 0x8637bd05af6c69b5, // x 2^-19 ~= 10^-6 0xa7c5ac471b478423, // x 2^-16 ~= 10^-5 0xd1b71758e219652b, // x 2^-13 ~= 10^-4 0x83126e978d4fdf3b, // x 2^-9 ~= 10^-3 0xa3d70a3d70a3d70a, // x 2^-6 ~= 10^-2 0xcccccccccccccccc, // x 2^-3 ~= 10^-1 ] // All the powers of 10 that can be represented exactly // in 128 bits, represented as binary floating-point values // using the same convention as in the previous table, only // with 128 bit significands. // This table is used in four places: // * The high order 64 bits are used for positive powers of 10 // when converting Float32. // * The full 128-bit value is used for 10^0 through 10^55 for Float64. // * The first 28 entries are combined with the next table for // all other Float64 values. // * This is combined with the 256-bit table below for Float80/Float128 // support. // Table size: 896 bytes fileprivate let powersOf10_Exact128: _InlineArray<_, UInt64> = [ // Low order ... high order 0x0000000000000000, 0x8000000000000000, // x 2^1 == 10^0 exactly 0x0000000000000000, 0xa000000000000000, // x 2^4 == 10^1 exactly 0x0000000000000000, 0xc800000000000000, // x 2^7 == 10^2 exactly 0x0000000000000000, 0xfa00000000000000, // x 2^10 == 10^3 exactly 0x0000000000000000, 0x9c40000000000000, // x 2^14 == 10^4 exactly 0x0000000000000000, 0xc350000000000000, // x 2^17 == 10^5 exactly 0x0000000000000000, 0xf424000000000000, // x 2^20 == 10^6 exactly 0x0000000000000000, 0x9896800000000000, // x 2^24 == 10^7 exactly 0x0000000000000000, 0xbebc200000000000, // x 2^27 == 10^8 exactly 0x0000000000000000, 0xee6b280000000000, // x 2^30 == 10^9 exactly 0x0000000000000000, 0x9502f90000000000, // x 2^34 == 10^10 exactly 0x0000000000000000, 0xba43b74000000000, // x 2^37 == 10^11 exactly 0x0000000000000000, 0xe8d4a51000000000, // x 2^40 == 10^12 exactly 0x0000000000000000, 0x9184e72a00000000, // x 2^44 == 10^13 exactly 0x0000000000000000, 0xb5e620f480000000, // x 2^47 == 10^14 exactly 0x0000000000000000, 0xe35fa931a0000000, // x 2^50 == 10^15 exactly 0x0000000000000000, 0x8e1bc9bf04000000, // x 2^54 == 10^16 exactly 0x0000000000000000, 0xb1a2bc2ec5000000, // x 2^57 == 10^17 exactly 0x0000000000000000, 0xde0b6b3a76400000, // x 2^60 == 10^18 exactly 0x0000000000000000, 0x8ac7230489e80000, // x 2^64 == 10^19 exactly 0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly 0x0000000000000000, 0xd8d726b7177a8000, // x 2^70 == 10^21 exactly 0x0000000000000000, 0x878678326eac9000, // x 2^74 == 10^22 exactly 0x0000000000000000, 0xa968163f0a57b400, // x 2^77 == 10^23 exactly 0x0000000000000000, 0xd3c21bcecceda100, // x 2^80 == 10^24 exactly 0x0000000000000000, 0x84595161401484a0, // x 2^84 == 10^25 exactly 0x0000000000000000, 0xa56fa5b99019a5c8, // x 2^87 == 10^26 exactly 0x0000000000000000, 0xcecb8f27f4200f3a, // x 2^90 == 10^27 exactly 0x4000000000000000, 0x813f3978f8940984, // x 2^94 == 10^28 exactly 0x5000000000000000, 0xa18f07d736b90be5, // x 2^97 == 10^29 exactly 0xa400000000000000, 0xc9f2c9cd04674ede, // x 2^100 == 10^30 exactly 0x4d00000000000000, 0xfc6f7c4045812296, // x 2^103 == 10^31 exactly 0xf020000000000000, 0x9dc5ada82b70b59d, // x 2^107 == 10^32 exactly 0x6c28000000000000, 0xc5371912364ce305, // x 2^110 == 10^33 exactly 0xc732000000000000, 0xf684df56c3e01bc6, // x 2^113 == 10^34 exactly 0x3c7f400000000000, 0x9a130b963a6c115c, // x 2^117 == 10^35 exactly 0x4b9f100000000000, 0xc097ce7bc90715b3, // x 2^120 == 10^36 exactly 0x1e86d40000000000, 0xf0bdc21abb48db20, // x 2^123 == 10^37 exactly 0x1314448000000000, 0x96769950b50d88f4, // x 2^127 == 10^38 exactly 0x17d955a000000000, 0xbc143fa4e250eb31, // x 2^130 == 10^39 exactly 0x5dcfab0800000000, 0xeb194f8e1ae525fd, // x 2^133 == 10^40 exactly 0x5aa1cae500000000, 0x92efd1b8d0cf37be, // x 2^137 == 10^41 exactly 0xf14a3d9e40000000, 0xb7abc627050305ad, // x 2^140 == 10^42 exactly 0x6d9ccd05d0000000, 0xe596b7b0c643c719, // x 2^143 == 10^43 exactly 0xe4820023a2000000, 0x8f7e32ce7bea5c6f, // x 2^147 == 10^44 exactly 0xdda2802c8a800000, 0xb35dbf821ae4f38b, // x 2^150 == 10^45 exactly 0xd50b2037ad200000, 0xe0352f62a19e306e, // x 2^153 == 10^46 exactly 0x4526f422cc340000, 0x8c213d9da502de45, // x 2^157 == 10^47 exactly 0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly 0x3c0cdd765f114000, 0xdaf3f04651d47b4c, // x 2^163 == 10^49 exactly 0xa5880a69fb6ac800, 0x88d8762bf324cd0f, // x 2^167 == 10^50 exactly 0x8eea0d047a457a00, 0xab0e93b6efee0053, // x 2^170 == 10^51 exactly 0x72a4904598d6d880, 0xd5d238a4abe98068, // x 2^173 == 10^52 exactly 0x47a6da2b7f864750, 0x85a36366eb71f041, // x 2^177 == 10^53 exactly 0x999090b65f67d924, 0xa70c3c40a64e6c51, // x 2^180 == 10^54 exactly 0xfff4b4e3f741cf6d, 0xd0cf4b50cfe20765, // x 2^183 == 10^55 exactly ] // Every 28th power of 10 across the full range of Double. // Combined with a 64-bit exact power of 10 from the previous // table, this lets us reconstruct a 128-bit lower bound for // any power of 10 across the full range of double with a single // 64-bit by 128-bit multiplication. // The published algorithms generally use a full table here of // 800 128-bit values (6400 bytes). Breaking it into two tables // gives a significant code-size savings for a modest performance // penalty. // Table size: 464 bytes fileprivate let powersOf10_Binary64: _InlineArray<_, UInt64> = [ // low-order half, high-order half 0x3931b850df08e738, 0x95fe7e07c91efafa, // x 2^-1328 ~= 10^-400 0xba954f8e758fecb3, 0x9774919ef68662a3, // x 2^-1235 ~= 10^-372 0x9028bed2939a635c, 0x98ee4a22ecf3188b, // x 2^-1142 ~= 10^-344 0x47b233c92125366e, 0x9a6bb0aa55653b2d, // x 2^-1049 ~= 10^-316 0x4ee367f9430aec32, 0x9becce62836ac577, // x 2^-956 ~= 10^-288 0x6f773fc3603db4a9, 0x9d71ac8fada6c9b5, // x 2^-863 ~= 10^-260 0xc47bc5014a1a6daf, 0x9efa548d26e5a6e1, // x 2^-770 ~= 10^-232 0x80e8a40eccd228a4, 0xa086cfcd97bf97f3, // x 2^-677 ~= 10^-204 0xb8ada00e5a506a7c, 0xa21727db38cb002f, // x 2^-584 ~= 10^-176 0xc13e60d0d2e0ebba, 0xa3ab66580d5fdaf5, // x 2^-491 ~= 10^-148 0xc2974eb4ee658828, 0xa54394fe1eedb8fe, // x 2^-398 ~= 10^-120 0xcb4ccd500f6bb952, 0xa6dfbd9fb8e5b88e, // x 2^-305 ~= 10^-92 0x3f2398d747b36224, 0xa87fea27a539e9a5, // x 2^-212 ~= 10^-64 0xdde50bd1d5d0b9e9, 0xaa242499697392d2, // x 2^-119 ~= 10^-36 0xfdc20d2b36ba7c3d, 0xabcc77118461cefc, // x 2^-26 ~= 10^-8 0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly 0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly 0x3b25a55f43294bcb, 0xb0de65388cc8ada8, // x 2^253 ~= 10^76 0x58edec91ec2cb657, 0xb2977ee300c50fe7, // x 2^346 ~= 10^104 0x29babe4598c311fb, 0xb454e4a179dd1877, // x 2^439 ~= 10^132 0x577b986b314d6009, 0xb616a12b7fe617aa, // x 2^532 ~= 10^160 0x0c11ed6d538aeb2f, 0xb7dcbf5354e9bece, // x 2^625 ~= 10^188 0x6d953e2bd7173692, 0xb9a74a0637ce2ee1, // x 2^718 ~= 10^216 0x9d6d1ad41abe37f1, 0xbb764c4ca7a4440f, // x 2^811 ~= 10^244 0x4b2d8644d8a74e18, 0xbd49d14aa79dbc82, // x 2^904 ~= 10^272 0xe0470a63e6bd56c3, 0xbf21e44003acdd2c, // x 2^997 ~= 10^300 0x505f522e53053ff2, 0xc0fe908895cf3b44, // x 2^1090 ~= 10^328 0xcca845ab2beafa9a, 0xc2dfe19c8c055535, // x 2^1183 ~= 10^356 0x1027fff56784f444, 0xc4c5e310aef8aa17, // x 2^1276 ~= 10^384 ] // Needed by 80- and 128-bit formatters above // We could cut this in half by keeping only the positive powers and doing // a single additional 256-bit multiplication by 10^-4984 to recover the negative powers. // Table size: 5728 bytes fileprivate let powersOf10_Binary128: _InlineArray<_, UInt64> = [ // Low-order ... high-order 0xaec2e6aff96b46ae, 0xf91044c2eff84750, 0x2b55c9e70e00c557, 0xb6536903bf8f2bda, // x 2^-16556 ~= 10^-4984 0xda1b3c3dd3889587, 0x73a7380aba84a6b1, 0xbddb2dfde3f8a6e3, 0xb9e5428330737362, // x 2^-16370 ~= 10^-4928 0xa2d23c57cfebb9ec, 0x9f165c039ead6d77, 0x88227fdfc13ab53d, 0xbd89006346a9a34d, // x 2^-16184 ~= 10^-4872 0x0333d510cf27e5a5, 0x4e3cc383eaa17b7b, 0xe05fe4207ca3d508, 0xc13efc51ade7df64, // x 2^-15998 ~= 10^-4816 0xff242c569bc1f539, 0x5c67ba58680c4cce, 0x3c55f3f947fef0e9, 0xc50791bd8dd72edb, // x 2^-15812 ~= 10^-4760 0xe4b75ae27bec50bf, 0x25b0419765fdfcdb, 0x0915564d8ab057ee, 0xc8e31de056f89c19, // x 2^-15626 ~= 10^-4704 0x548b1e80a94f3434, 0xe418e9217ce83755, 0x801e38463183fc88, 0xccd1ffc6bba63e21, // x 2^-15440 ~= 10^-4648 0x541950a0fdc2b4d9, 0xeea173da1f0eb7b4, 0xcfadf6b2aa7c4f43, 0xd0d49859d60d40a3, // x 2^-15254 ~= 10^-4592 0x7e64501be95ad76b, 0x451e855d8acef835, 0x9e601e707a2c3488, 0xd4eb4a687c0253e8, // x 2^-15068 ~= 10^-4536 0xdadd9645f360cb51, 0xf290163350ecb3eb, 0xa8edffdccfe4db4b, 0xd9167ab0c1965798, // x 2^-14882 ~= 10^-4480 0x7e447db3018ffbdf, 0x4fa1860c08a85923, 0xb17cd86e7fcece75, 0xdd568fe9ab559344, // x 2^-14696 ~= 10^-4424 0x61cd4655bf64d265, 0xb19fd88fe285b3bc, 0x1151250681d59705, 0xe1abf2cd11206610, // x 2^-14510 ~= 10^-4368 0xa5703f5ce7a619ec, 0x361243a84b55574d, 0x025a8e1e5dbb41d6, 0xe6170e21b2910457, // x 2^-14324 ~= 10^-4312 0xb93897a6cf5d3e61, 0x18746fcc6a190db9, 0x66e849253e5da0c2, 0xea984ec57de69f13, // x 2^-14138 ~= 10^-4256 0x309043d12ab5b0ac, 0x79c93cff11f09319, 0xf5a7800f23ef67b8, 0xef3023b80a732d93, // x 2^-13952 ~= 10^-4200 0xa3baa84c049b52b9, 0xbec466ee1b586342, 0x0e85fc7f4edbd3ca, 0xf3defe25478e074a, // x 2^-13766 ~= 10^-4144 0xd1f4628316b15c7a, 0xae16192410d3135e, 0x4268a54f70bd28c4, 0xf8a551706112897c, // x 2^-13580 ~= 10^-4088 0x9eb9296cc5749dba, 0x48324e275376dfdd, 0x5052e9289f0f2333, 0xfd83933eda772c0b, // x 2^-13394 ~= 10^-4032 0xff6aae669a5a0d8a, 0x24fed95087b9006e, 0x01b02378a405b421, 0x813d1dc1f0c754d6, // x 2^-13207 ~= 10^-3976 0xf993f18de00dc89b, 0x15617da021b89f92, 0xb782db1fc6aba49b, 0x83c4e245ed051dc1, // x 2^-13021 ~= 10^-3920 0xc6a0d64a712172b1, 0x2217669197ac1504, 0x4250be2eeba87d15, 0x86595584116caf3c, // x 2^-12835 ~= 10^-3864 0x0bdc0c67a220687b, 0x44a66a6d6fd6537b, 0x3f1f93f1943ca9b6, 0x88fab70d8b44952a, // x 2^-12649 ~= 10^-3808 0xb60b57164ad28122, 0xde5bd4572c25a830, 0x2c87f18b39478aa2, 0x8ba947b223e5783e, // x 2^-12463 ~= 10^-3752 0xbd59568efdb9bfee, 0x292f8f2c98d7f44c, 0x4054f5360249ebd1, 0x8e6549867da7d11a, // x 2^-12277 ~= 10^-3696 0x9fa0721e66791acc, 0x1789061d717d454c, 0xc1187fa0c18adbbe, 0x912effea7015b2c5, // x 2^-12091 ~= 10^-3640 0x982b64e953ac4e27, 0x45efb05f20cf48b3, 0x4b4de34e0ebc3e06, 0x9406af8f83fd6265, // x 2^-11905 ~= 10^-3584 0xa53f5950eec21dca, 0x3bd8754763bdbca1, 0xac73f0226eff5ea1, 0x96ec9e7f9004839b, // x 2^-11719 ~= 10^-3528 0x320e19f88f1161b7, 0x72e93fe0cce7cfd9, 0x2184706ea46a4c38, 0x99e11423765ec1d0, // x 2^-11533 ~= 10^-3472 0x491aba48dfc0e36e, 0xd3de560ee34022b2, 0xddadb80577b906bd, 0x9ce4594a044e0f1b, // x 2^-11347 ~= 10^-3416 0x06789d038697142f, 0x7a466a75be73db21, 0x60dbd8aa443b560f, 0x9ff6b82ef415d222, // x 2^-11161 ~= 10^-3360 0x40ed8056af76ac43, 0x08251c601e346456, 0x7401c6f091f87727, 0xa3187c82120dace6, // x 2^-10975 ~= 10^-3304 0x8c643ee307bffec6, 0xf369a11c6f66c05a, 0x4d5b32f713d7f476, 0xa649f36e8583e81a, // x 2^-10789 ~= 10^-3248 0xe32f5e080e36b4be, 0x3adf30ff2eb163d4, 0xb4b39dd9ddb8d317, 0xa98b6ba23e2300c7, // x 2^-10603 ~= 10^-3192 0x6b9d538c192cfb1b, 0x1c5af3bd4d2c60b5, 0xec41c1793d69d0d1, 0xacdd3555869159d1, // x 2^-10417 ~= 10^-3136 0x1adadaeedf7d699c, 0x71043692494aa743, 0x3ca5a7540d9d56c9, 0xb03fa252bd05a815, // x 2^-10231 ~= 10^-3080 0xec3e4e5fc6b03617, 0x47c9b16afe8fdf74, 0x92e1bc1fbb33f18d, 0xb3b305fe328e571f, // x 2^-10045 ~= 10^-3024 0x1d42fa68b12bdb23, 0xac46a7b3f2b4b34e, 0xa908fd4a88728b6a, 0xb737b55e31cdde04, // x 2^-9859 ~= 10^-2968 0x887dede507f2b618, 0x359a8fa0d014b9a7, 0x7c4c65d15c614c56, 0xbace07232df1c802, // x 2^-9673 ~= 10^-2912 0x504708e718b4b669, 0xfb4d9440822af452, 0xef84cc99cb4c5d17, 0xbe7653b01aae13e5, // x 2^-9487 ~= 10^-2856 0x5b7977525516bff0, 0x75913092420c9b35, 0xcfc147ade4843a24, 0xc230f522ee0a7fc2, // x 2^-9301 ~= 10^-2800 0xad5d11883cc1302b, 0x860a754894b9a0bc, 0x4668677d5f46c29b, 0xc5fe475d4cd35cff, // x 2^-9115 ~= 10^-2744 0x42032f9f971bfc07, 0x9fb576046ab35018, 0x474b3cb1fe1d6a7f, 0xc9dea80d6283a34c, // x 2^-8929 ~= 10^-2688 0xd3e7fbb72403a4dd, 0x8ca223055819af54, 0xd6ea3b733029ef0b, 0xcdd276b6e582284f, // x 2^-8743 ~= 10^-2632 0xba2431d885f2b7d9, 0xc9879fc42869f610, 0x3736730a9e47fef8, 0xd1da14bc489025ea, // x 2^-8557 ~= 10^-2576 0xa11edbcd65dd1844, 0xcb8edae81a295887, 0x3d24e68dc1027246, 0xd5f5e5681a4b9285, // x 2^-8371 ~= 10^-2520 0xa0f076652f69ad08, 0x9d19c341f5f42f2a, 0x742ab8f3864562c8, 0xda264df693ac3e30, // x 2^-8185 ~= 10^-2464 0x29f760ef115f2824, 0xe0ee47c041c9de0f, 0x8c119f3680212413, 0xde6bb59f56672cda, // x 2^-7999 ~= 10^-2408 0x8b90230b3409c9d3, 0x9d76eef2c1543e65, 0x43190b523f872b9c, 0xe2c6859f5c284230, // x 2^-7813 ~= 10^-2352 0xd44ce9993bc6611e, 0x777c9b2dfbede079, 0x2a0969bf88679396, 0xe7372943179706fc, // x 2^-7627 ~= 10^-2296 0xe8c5f5a63fd0fbd1, 0x0ccc12293f1d7a58, 0x131565be33dda91a, 0xebbe0df0c8201ac5, // x 2^-7441 ~= 10^-2240 0xdb97988dd6b776f4, 0xeb2106f435f7e1d5, 0xccfb1cc2ef1f44de, 0xf05ba3330181c750, // x 2^-7255 ~= 10^-2184 0x2fcbc8df94a1d54b, 0x796d0a8120801513, 0x5f8385b3a882ff4c, 0xf5105ac3681f2716, // x 2^-7069 ~= 10^-2128 0xc8700c11071a40f5, 0x23cb9e9df9331fe4, 0x166c15f456786c27, 0xf9dca895a3226409, // x 2^-6883 ~= 10^-2072 0x9589f4637a50cbb5, 0xea8242b0030e4a51, 0x6c656c3b1f2c9d91, 0xfec102e2857bc1f9, // x 2^-6697 ~= 10^-2016 0xc4be56c83349136c, 0x6188db81ac8e775d, 0xfa70b9a2ca60b004, 0x81def119b76837c8, // x 2^-6510 ~= 10^-1960 0xb85d39054658b363, 0xe7df06bc613fda21, 0x6a22490e8e9ec98b, 0x8469e0b6f2b8bd9b, // x 2^-6324 ~= 10^-1904 0x800b1e1349fef248, 0x469cfd2e6ca32a77, 0x69138459b0fa72d4, 0x87018eefb53c6325, // x 2^-6138 ~= 10^-1848 0xb62593291c768919, 0xc098e6ed0bfbd6f6, 0x6c83ad1260ff20f4, 0x89a63ba4c497b50e, // x 2^-5952 ~= 10^-1792 0x92ee7fce474479d3, 0xe02017175bf040c6, 0xd82ef2860273de8d, 0x8c5827f711735b46, // x 2^-5766 ~= 10^-1736 0x7b0e6375ca8c77d9, 0x5f07e1e10097d47f, 0x416d7f9ab1e67580, 0x8f17964dfc3961f2, // x 2^-5580 ~= 10^-1680 0xc8d869ed561af1ce, 0x8b6648e941de779b, 0x56700866b85d57fe, 0x91e4ca5db93dbfec, // x 2^-5394 ~= 10^-1624 0xfc04df783488a410, 0x64d1f15da2c146b1, 0x43cf71d5c4fd7868, 0x94c0092dd4ef9511, // x 2^-5208 ~= 10^-1568 0xfbaf03b48a965a64, 0x9b6122aa2b72a13c, 0x387898a6e22f821b, 0x97a9991fd8b3afc0, // x 2^-5022 ~= 10^-1512 0x50f7f7c13119aadd, 0xe415d8b25694250a, 0x8f8857e875e7774e, 0x9aa1c1f6110c0dd0, // x 2^-4836 ~= 10^-1456 0xce214403545fd685, 0xf36d1ad779b90e09, 0xa5c58d5f91a476d7, 0x9da8ccda75b341b5, // x 2^-4650 ~= 10^-1400 0x63ddfb68f971b0c5, 0x2822e38faf74b26e, 0x6e1f7f1642ebaac8, 0xa0bf0465b455e921, // x 2^-4464 ~= 10^-1344 0xf0d00cec9daf7444, 0x6bf3eea6f661a32a, 0xfad2be1679765f27, 0xa3e4b4a65e97b76a, // x 2^-4278 ~= 10^-1288 0x463b4ab4bd478f57, 0x6f6583b5b36d5426, 0x800cfab80c4e2eb1, 0xa71a2b283c14fba6, // x 2^-4092 ~= 10^-1232 0xef163df2fa96e983, 0xa825f32bc8f6b080, 0x850b0c5976b21027, 0xaa5fb6fbc115010b, // x 2^-3906 ~= 10^-1176 0x7db1b3f8e100eb43, 0x2862b1f61d64ddc3, 0x61363686961a41e5, 0xadb5a8bdaaa53051, // x 2^-3720 ~= 10^-1120 0xfd349cf00ba1e09a, 0x6d282fe1b7112879, 0xc6f075c4b81fc72d, 0xb11c529ec0d87268, // x 2^-3534 ~= 10^-1064 0xf7221741b221cf6f, 0x3739f15b06ac3c76, 0xb4e4be5b6455ef96, 0xb494086bbfea00c3, // x 2^-3348 ~= 10^-1008 0xc4e5a2f864c403bb, 0x6e33cdcda4367276, 0x24d256c540a50309, 0xb81d1f9569068d8e, // x 2^-3162 ~= 10^-952 0x276e3f0f67f0553b, 0x00de73d9d5be6974, 0x6d4aa5b50bb5dc0d, 0xbbb7ef38bb827f2d, // x 2^-2976 ~= 10^-896 0x51a34a3e674484ed, 0x1fb6069f8b26f840, 0x925624c0d7d93317, 0xbf64d0275747de70, // x 2^-2790 ~= 10^-840 0xcc775c8cb6de1dbc, 0x6d60d02eac6309ee, 0x8e5a2e5116baf191, 0xc3241cf0094a8e70, // x 2^-2604 ~= 10^-784 0x6023c8fa17d7b105, 0x069cf8f51d2e5e65, 0xb0560c246f90e9e8, 0xc6f631e782d57096, // x 2^-2418 ~= 10^-728 0x92c17acb2d08d5fd, 0xc26ffb8e81532725, 0x2ffff1289a804c5a, 0xcadb6d313c8736fc, // x 2^-2232 ~= 10^-672 0x47df78ab9e92897a, 0xc02b302a892b81dc, 0xa855e127113c887b, 0xced42ec885d9dbbe, // x 2^-2046 ~= 10^-616 0xdaf2dec03ec0c322, 0x72db3bc15b0c7014, 0xe00bad8dfc0d8c8e, 0xd2e0d889c213fd60, // x 2^-1860 ~= 10^-560 0xd3a04799e4473ac8, 0xa116409a2fdf1e9e, 0xc654d07271e6c39f, 0xd701ce3bd387bf47, // x 2^-1674 ~= 10^-504 0x5c8a5dc65d745a24, 0x2726c48a85389fa7, 0x84c663cee6b86e7c, 0xdb377599b6074244, // x 2^-1488 ~= 10^-448 0xd7ebc61ba77a9e66, 0x8bf77d4bc59b35b1, 0xcb285ceb2fed040d, 0xdf82365c497b5453, // x 2^-1302 ~= 10^-392 0x744ce999bfed213a, 0x363b1f2c568dc3e2, 0xfd1b1b2308169b25, 0xe3e27a444d8d98b7, // x 2^-1116 ~= 10^-336 0x6a40608fe10de7e7, 0xf910f9f648232f14, 0xd1b3400f8f9cff68, 0xe858ad248f5c22c9, // x 2^-930 ~= 10^-280 0x9bdbfc21260dd1ad, 0x4609ac5c7899ca36, 0xa4f8bf5635246428, 0xece53cec4a314ebd, // x 2^-744 ~= 10^-224 0xd88181aad19d7454, 0xf80f36174730ca34, 0xdc44e6c3cb279ac1, 0xf18899b1bc3f8ca1, // x 2^-558 ~= 10^-168 0xee19bfa6947f8e02, 0xaa09501d5954a559, 0x4d4617b5ff4a16d5, 0xf64335bcf065d37d, // x 2^-372 ~= 10^-112 0xebbc75a03b4d60e6, 0xac2e4f162cfad40a, 0xeed6e2f0f0d56712, 0xfb158592be068d2e, // x 2^-186 ~= 10^-56 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x8000000000000000, // x 2^1 == 10^0 exactly 0x0000000000000000, 0x2000000000000000, 0xbff8f10e7a8921a4, 0x82818f1281ed449f, // x 2^187 == 10^56 exactly 0x51775f71e92bf2f2, 0x74a7ef0198791097, 0x03e2cf6bc604ddb0, 0x850fadc09923329e, // x 2^373 ~= 10^112 0xb204b3d9686f55b5, 0xfb118fc9c217a1d2, 0x90fb44d2f05d0842, 0x87aa9aff79042286, // x 2^559 ~= 10^168 0xd7924bff833149fa, 0xbc10c5c5cda97c8d, 0x82bd6b70d99aaa6f, 0x8a5296ffe33cc92f, // x 2^745 ~= 10^224 0xa67d072d3c7fa14b, 0x7ec63730f500b406, 0xdb0b487b6423e1e8, 0x8d07e33455637eb2, // x 2^931 ~= 10^280 0x546f2a35dc367e47, 0x949063d8a46f0c0e, 0x213a4f0aa5e8a7b1, 0x8fcac257558ee4e6, // x 2^1117 ~= 10^336 0x50611a621c0ee3ae, 0x202d895116aa96be, 0x1c306f5d1b0b5fdf, 0x929b7871de7f22b9, // x 2^1303 ~= 10^392 0xffa6738a27dcf7a3, 0x3c11d8430d5c4802, 0xa7ea9c8838ce9437, 0x957a4ae1ebf7f3d3, // x 2^1489 ~= 10^448 0x5bf36c0f40bde99d, 0x284ba600ee9f6303, 0xbf1d49cacccd5e68, 0x9867806127ece4f4, // x 2^1675 ~= 10^504 0xa6e937834ed12e58, 0x73f26eb82f6b8066, 0x655494c5c95d77f2, 0x9b63610bb9243e46, // x 2^1861 ~= 10^560 0x0cd4b7660adc6930, 0x8f868688f8eb79eb, 0x02e008393fd60b55, 0x9e6e366733f85561, // x 2^2047 ~= 10^616 0x3efb9807d86d3c6a, 0x84c10a1d22f5adc5, 0x55e04dba4b3bd4dd, 0xa1884b69ade24964, // x 2^2233 ~= 10^672 0xf065089401df33b4, 0x1fc02370c451a755, 0x44b222741eb1ebbf, 0xa4b1ec80f47c84ad, // x 2^2419 ~= 10^728 0xa62d0da836fce7d5, 0x75933380ceb5048c, 0x1cf4a5c3bc09fa6f, 0xa7eb6799e8aec999, // x 2^2605 ~= 10^784 0x7a400df820f096c2, 0x802c4085068d2dd5, 0x3c4a575151b294dc, 0xab350c27feb90acc, // x 2^2791 ~= 10^840 0xf48b51375df06e86, 0x412fe9e72afd355e, 0x870a8d87239d8f35, 0xae8f2b2ce3d5dbe9, // x 2^2977 ~= 10^896 0x881883521930127c, 0xe53fd3fcb5b4df25, 0xdd929f09c3eff5ac, 0xb1fa17404a30e5e8, // x 2^3163 ~= 10^952 0x270cd9f1348eb326, 0x37ed82fe9c75fccf, 0x1931b583a9431d7e, 0xb5762497dbf17a9e, // x 2^3349 ~= 10^1008 0x8919b01a5b3d9ec1, 0x6a7669bdfc6f699c, 0xe30db03e0f8dd286, 0xb903a90f561d25e2, // x 2^3535 ~= 10^1064 0xf0461526b4201aa5, 0x7fe40defe17e55f5, 0x9eb5cb19647508c5, 0xbca2fc30cc19f090, // x 2^3721 ~= 10^1120 0xd67bf35422978bbf, 0x0dbb1c416ebe661f, 0x24bd4c00042ad125, 0xc054773d149bf26b, // x 2^3907 ~= 10^1176 0xdd093192ef5508d0, 0x6eac3085943ccc0f, 0x7ea30dbd7ea479e3, 0xc418753460cdcca9, // x 2^4093 ~= 10^1232 0xfe4ff20db6d25dc2, 0x5d5d5a9519e34a42, 0x764f4cf916b4dece, 0xc7ef52defe87b751, // x 2^4279 ~= 10^1288 0xd8adfb2e00494c5e, 0x72435286baf0e84e, 0xbeb7fbdc1cbe8b37, 0xcbd96ed6466cf081, // x 2^4465 ~= 10^1344 0xe07c1e4384f594af, 0x0c6b90b8874d5189, 0xdce472c619aa3f63, 0xcfd7298db6cb9672, // x 2^4651 ~= 10^1400 0x5dd902c68fa448cf, 0xea8d16bd9544e48e, 0xe47defc14a406e4f, 0xd3e8e55c3c1f43d0, // x 2^4837 ~= 10^1456 0x1223d79357bedca8, 0xeae6c2843752ac35, 0xb7157c60a24a0569, 0xd80f0685a81b2a81, // x 2^5023 ~= 10^1512 0xcff72d64bc79e429, 0xccc52c236decd778, 0xfb0b98f6bbc4f0cb, 0xdc49f3445824e360, // x 2^5209 ~= 10^1568 0x3731f76b905dffbb, 0x5e2bddd7d12a9e42, 0xc6c6c1764e047e15, 0xe09a13d30c2dba62, // x 2^5395 ~= 10^1624 0xeb58d8ef2ada7c09, 0xbc1a3b726b789947, 0x87e8dcfc09dbc33a, 0xe4ffd276eedce658, // x 2^5581 ~= 10^1680 0x249a5c06dc5d5db7, 0xa8f09440be97bfe6, 0xb1a3642a8da3cf4f, 0xe97b9b89d001dab3, // x 2^5767 ~= 10^1736 0xbf34ff7963028cd9, 0xc20578fa3851488b, 0x2d4070f33b21ab7b, 0xee0ddd84924ab88c, // x 2^5953 ~= 10^1792 0x002d0511317361d5, 0xd6919e041129a1a7, 0xa2bf0c63a814e04e, 0xf2b70909cd3fd35c, // x 2^6139 ~= 10^1848 0x1fa87f28acf1dcd2, 0xe7a0a88981d1a0f9, 0x08f13995cf9c2747, 0xf77790f0a48a45ce, // x 2^6325 ~= 10^1904 0x1b6ff8afbe589b72, 0xc851bb3f9aeb1211, 0x7a37993eb21444fa, 0xfc4fea4fd590b40a, // x 2^6511 ~= 10^1960 0xef23a4cbc039f0c2, 0xbb3f8498a972f18e, 0xb7b1ada9cdeba84d, 0x80a046447e3d49f1, // x 2^6698 ~= 10^2016 0x2cc44f2b602b6231, 0xf231f4b7996b7278, 0x0cc6866c5d69b2cb, 0x8324f8aa08d7d411, // x 2^6884 ~= 10^2072 0x822c97629a3a4c69, 0x8a9afcdbc940e6f9, 0x7fe2b4308dcbf1a3, 0x85b64a659077660e, // x 2^7070 ~= 10^2128 0xf66cfcf42d4896b0, 0x1f11852a20ed33c5, 0x1d73ef3eaac3c964, 0x88547abb1d8e5bd9, // x 2^7256 ~= 10^2184 0x63093ad0caadb06c, 0x31be1482014cdaf0, 0x1e34291b1ef566c7, 0x8affca2bd1f88549, // x 2^7442 ~= 10^2240 0xab50f69048738e9a, 0xa126c32ff4882be8, 0x9e9383d73d486881, 0x8db87a7c1e56d873, // x 2^7628 ~= 10^2296 0xe57e659432b0a73e, 0x47a0e15dfc7986b8, 0x9cc5ee51962c011a, 0x907eceba168949b3, // x 2^7814 ~= 10^2352 0x8a6ff950599f8ae5, 0xd1cbbb7d005a76d3, 0x413407cfeeac9743, 0x93530b43e5e2c129, // x 2^8000 ~= 10^2408 0xd4e6b6e847550caa, 0x56a3106227b87706, 0x7efa7d29c44e11b7, 0x963575ce63b6332d, // x 2^8186 ~= 10^2464 0xd835c90b09842263, 0xb69f01a641da2a42, 0x5a848859645d1c6f, 0x9926556bc8defe43, // x 2^8372 ~= 10^2520 0x9b0ae73c204ecd61, 0x0794fd5e5a51ac2f, 0x51edea897b34601f, 0x9c25f29286e9ddb6, // x 2^8558 ~= 10^2576 0x3130484fb0a61d89, 0x32b7105223a27365, 0xb50008d92529e91f, 0x9f3497244186fca4, // x 2^8744 ~= 10^2632 0x8cd036553f38a1e8, 0x5e997e9f45d7897d, 0xf09e780bcc8238d9, 0xa2528e74eaf101fc, // x 2^8930 ~= 10^2688 0xe1f8b43b08b5d0ef, 0xa0eaf3f62dc1777c, 0x3a5828869701a165, 0xa580255203f84b47, // x 2^9116 ~= 10^2744 0x3c7f62e3154fa708, 0x5786f3927eb15bd5, 0x8b231a70eb5444ce, 0xa8bdaa0a0064fa44, // x 2^9302 ~= 10^2800 0x1ebc24a19cd70a2a, 0x843fddd10c7006b8, 0xfa1bde1f473556a4, 0xac0b6c73d065f8cc, // x 2^9488 ~= 10^2856 0x46b6aae34cfd26fc, 0x00db7d919b136c68, 0x7730e00421da4d55, 0xaf69bdf68fc6a740, // x 2^9674 ~= 10^2912 0x1c4edcb83fc4c49d, 0x61c0edd56bbcb3e8, 0x7f959cb702329d14, 0xb2d8f1915ba88ca5, // x 2^9860 ~= 10^2968 0x428c840d247382fe, 0x9cc3b1569b1325a4, 0x40c3a071220f5567, 0xb6595be34f821493, // x 2^10046 ~= 10^3024 0xbeb82e734787ec63, 0xbeff12280d5a1676, 0x11c48d02b8326bd3, 0xb9eb5333aa272e9b, // x 2^10232 ~= 10^3080 0x302349e12f45c73f, 0xb494bcc96d53e49c, 0x566765461bd2f61b, 0xbd8f2f7a1ba47d6d, // x 2^10418 ~= 10^3136 0x5704ebf5f16946ce, 0x431388ec68ac7a26, 0xb889018e4f6e9a52, 0xc1454a673cb9b1ce, // x 2^10604 ~= 10^3192 0x5a30431166af9b23, 0x132d031fc1d1fec0, 0xf85333a94848659f, 0xc50dff6d30c3aefc, // x 2^10790 ~= 10^3248 0x7573d4b3ffe4ba3b, 0xf888498a40220657, 0x1a1aeae7cf8a9d3d, 0xc8e9abc872eb2bc1, // x 2^10976 ~= 10^3304 0xb5eaef7441511eb9, 0xc9cf998035a91664, 0x12e29f09d9061609, 0xccd8ae88cf70ad84, // x 2^11162 ~= 10^3360 0x73aed4f1908f4d01, 0x8c53e7beeca4578f, 0xdf7601457ca20b35, 0xd0db689a89f2f9b1, // x 2^11348 ~= 10^3416 0x5adbd55696e1cdd9, 0x4949d09424b87626, 0xcbdcd02f23cc7690, 0xd4f23ccfb1916df5, // x 2^11534 ~= 10^3472 0x3f500ccf4ea03593, 0x9b80aac81b50762a, 0x44289dd21b589d7a, 0xd91d8fe9a3d019cc, // x 2^11720 ~= 10^3528 0x134ca67a679b84ae, 0x8909e424a112a3cd, 0x95aa118ec1d08317, 0xdd5dc8a2bf27f3f7, // x 2^11906 ~= 10^3584 0xe89e3cf733d9ff40, 0x014344660a175c36, 0x72c4d2cad73b0a7b, 0xe1b34fb846321d04, // x 2^12092 ~= 10^3640 0x68c0a2c6c02dae9a, 0x0b11160a6edb5f57, 0xe20a88f1134f906d, 0xe61e8ff47461cda9, // x 2^12278 ~= 10^3696 0x47fa54906741561a, 0xaa13acba1e5511f5, 0xc7c91d5c341ed39d, 0xea9ff638c54554e1, // x 2^12464 ~= 10^3752 0x365460ed91271c24, 0xabe33496aff629b4, 0xf659ede2159a45ec, 0xef37f1886f4b6690, // x 2^12650 ~= 10^3808 0xe4cbf4acc7fba37f, 0x350e915f7055b1b8, 0x78d946bab954b82f, 0xf3e6f313130ef0ef, // x 2^12836 ~= 10^3864 0xe692accdfa5bd859, 0xf4d4d3202379829e, 0xc9b1474d8f89c269, 0xf8ad6e3fa030bd15, // x 2^13022 ~= 10^3920 0xeca0018ea3b8d1b4, 0xe878edb67072c26d, 0x6b1d2745340e7b14, 0xfd8bd8b770cb469e, // x 2^13208 ~= 10^3976 0xce5fec949ab87cf7, 0x0151dcd7a53488c3, 0xf22e502fcdd4bca2, 0x81415538ce493bd5, // x 2^13395 ~= 10^4032 0x5e1731fbff8c032e, 0xe752f53c2f8fa6c1, 0x7c1735fc3b813c8c, 0x83c92edf425b292d, // x 2^13581 ~= 10^4088 0xb552102ea83f47e6, 0xdf0fd2002ff6b3a3, 0x0367500a8e9a178f, 0x865db7a9ccd2839e, // x 2^13767 ~= 10^4144 0x76507bafe00ec873, 0x71b256ecd954434c, 0xc9ac50475e25293a, 0x88ff2f2bade74531, // x 2^13953 ~= 10^4200 0x5e2075ba289a360b, 0xac376f28b45e5acc, 0x0879b2e5f6ee8b1c, 0x8badd636cc48b341, // x 2^14139 ~= 10^4256 0xab87d85e6311e801, 0xb7f786d14d58173d, 0x2f33c652bd12fab7, 0x8e69eee1f23f2be5, // x 2^14325 ~= 10^4312 0x7fed9b68d77255be, 0x35dc241819de7182, 0xad6a6308a8e8b557, 0x9133bc8f2a130fe5, // x 2^14511 ~= 10^4368 0x728ae72899d4bd12, 0xe5413d9414142a55, 0x9dbaa465efe141a0, 0x940b83f23a55842a, // x 2^14697 ~= 10^4424 0x0f7740145246fb8f, 0x186ef2c39acb4103, 0x888c9ab2fc5b3437, 0x96f18b1742aad751, // x 2^14883 ~= 10^4480 0xd8bb0fba2183c6ef, 0xbf66d66cc34f0197, 0xba00864671d1053f, 0x99e6196979b978f1, // x 2^15069 ~= 10^4536 0x9b71ed2ceb790e49, 0x6faac32d59cc1f5d, 0x61d59d402aae4fea, 0x9ce977ba0ce3a0bd, // x 2^15255 ~= 10^4592 0xa0aa6d5e63991cfb, 0x19482fa0ac45669c, 0x803c1cd864033781, 0x9ffbf04722750449, // x 2^15441 ~= 10^4648 0x95a9949e04b8bff3, 0x900aa3c2f02ac9d4, 0xa28a151725a55e10, 0xa31dcec2fef14b30, // x 2^15627 ~= 10^4704 0x3acf9496dade0ce9, 0xbd8ecf923d23bec0, 0x5b8452af2302fe13, 0xa64f605b4e3352cd, // x 2^15813 ~= 10^4760 0x6204425d2b58e822, 0xdee162a8a1248550, 0x82b84cabc828bf93, 0xa990f3c09110c544, // x 2^15999 ~= 10^4816 0x091a2658e0639f32, 0x66fa2184cee0b861, 0x8d29dd5122e4278d, 0xace2d92db0390b59, // x 2^16185 ~= 10^4872 0x80acda113324758a, 0xded179c26d9ab828, 0x58f8fde02c03a6c6, 0xb045626fb50a35e7, // x 2^16371 ~= 10^4928 0x7128a8aad239ce8f, 0x8737bd250290cd5b, 0xd950102978dbd0ff, 0xb3b8e2eda91a232d, // x 2^16557 ~= 10^4984 ] fileprivate func _intervalContainingPowerOf10_Binary128( p: Int, lower: inout _UInt256, upper: inout _UInt256 ) -> Int { if p >= 0 && p <= 55 { let exactLow = powersOf10_Exact128[p * 2] let exactHigh = powersOf10_Exact128[p * 2 + 1] lower = _UInt256(high: exactHigh, exactLow, 0, low: 0) upper = lower return binaryExponentFor10ToThe(p) } let index = p + 4984 let offset = (index / 56) * 4 lower = _UInt256( high: powersOf10_Binary128[offset + 3], powersOf10_Binary128[offset + 2], powersOf10_Binary128[offset + 1], low: powersOf10_Binary128[offset + 0]) let extraPower = index % 56 var e = binaryExponentFor10ToThe(p - extraPower) if extraPower > 0 { let extra = _UInt128( _low: powersOf10_Exact128[extraPower * 2], _high: powersOf10_Exact128[extraPower * 2 + 1]) lower.multiplyRoundingDown(by: extra) e += binaryExponentFor10ToThe(extraPower) } upper = lower upper.low += 2 return e }