//===----------------------------------------------------------*- swift -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// /// This file contains Swift wrappers for functions defined in the C++ runtime. /// //===----------------------------------------------------------------------===// import SwiftShims //===----------------------------------------------------------------------===// // Atomics //===----------------------------------------------------------------------===// @_transparent public // @testable func _stdlib_atomicCompareExchangeStrongPtr( object target: UnsafeMutablePointer, expected: UnsafeMutablePointer, desired: UnsafeRawPointer? ) -> Bool { // We use Builtin.Word here because Builtin.RawPointer can't be nil. let (oldValue, won) = unsafe Builtin.cmpxchg_seqcst_seqcst_Word( target._rawValue, UInt(bitPattern: expected.pointee)._builtinWordValue, UInt(bitPattern: desired)._builtinWordValue) unsafe expected.pointee = UnsafeRawPointer(bitPattern: Int(oldValue)) return Bool(won) } /// Atomic compare and exchange of `UnsafeMutablePointer` with sequentially /// consistent memory ordering. Precise semantics are defined in C++11 or C11. /// /// - Warning: This operation is extremely tricky to use correctly because of /// writeback semantics. /// /// It is best to use it directly on an /// `UnsafeMutablePointer>` that is known to point /// directly to the memory where the value is stored. /// /// In a call like this: /// /// _stdlib_atomicCompareExchangeStrongPtr(&foo.property1.property2, ...) /// /// you need to manually make sure that: /// /// - all properties in the chain are physical (to make sure that no writeback /// happens; the compare-and-exchange instruction should operate on the /// shared memory); and /// /// - the shared memory that you are accessing is located inside a heap /// allocation (a class instance property, a `_BridgingBuffer`, a pointer to /// an `Array` element etc.) /// /// If the conditions above are not met, the code will still compile, but the /// compare-and-exchange instruction will operate on the writeback buffer, and /// you will get a *race* while doing writeback into shared memory. @_transparent public // @testable func _stdlib_atomicCompareExchangeStrongPtr( object target: UnsafeMutablePointer>, expected: UnsafeMutablePointer>, desired: UnsafeMutablePointer ) -> Bool { let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound( to: Optional.self) let rawExpected = unsafe UnsafeMutableRawPointer(expected).assumingMemoryBound( to: Optional.self) return unsafe _stdlib_atomicCompareExchangeStrongPtr( object: rawTarget, expected: rawExpected, desired: UnsafeRawPointer(desired)) } /// Atomic compare and exchange of `UnsafeMutablePointer` with sequentially /// consistent memory ordering. Precise semantics are defined in C++11 or C11. /// /// - Warning: This operation is extremely tricky to use correctly because of /// writeback semantics. /// /// It is best to use it directly on an /// `UnsafeMutablePointer>` that is known to point /// directly to the memory where the value is stored. /// /// In a call like this: /// /// _stdlib_atomicCompareExchangeStrongPtr(&foo.property1.property2, ...) /// /// you need to manually make sure that: /// /// - all properties in the chain are physical (to make sure that no writeback /// happens; the compare-and-exchange instruction should operate on the /// shared memory); and /// /// - the shared memory that you are accessing is located inside a heap /// allocation (a class instance property, a `_BridgingBuffer`, a pointer to /// an `Array` element etc.) /// /// If the conditions above are not met, the code will still compile, but the /// compare-and-exchange instruction will operate on the writeback buffer, and /// you will get a *race* while doing writeback into shared memory. @_transparent public // @testable func _stdlib_atomicCompareExchangeStrongPtr( object target: UnsafeMutablePointer?>, expected: UnsafeMutablePointer?>, desired: UnsafeMutablePointer? ) -> Bool { let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound( to: Optional.self) let rawExpected = unsafe UnsafeMutableRawPointer(expected).assumingMemoryBound( to: Optional.self) return unsafe _stdlib_atomicCompareExchangeStrongPtr( object: rawTarget, expected: rawExpected, desired: UnsafeRawPointer(desired)) } @_transparent @discardableResult @_unavailableInEmbedded public // @testable func _stdlib_atomicInitializeARCRef( object target: UnsafeMutablePointer, desired: AnyObject ) -> Bool { // Note: this assumes that AnyObject? is layout-compatible with a RawPointer // that simply points to the same memory. var expected: UnsafeRawPointer? = nil let unmanaged = unsafe Unmanaged.passRetained(desired) let desiredPtr = unsafe unmanaged.toOpaque() let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound( to: Optional.self) let wonRace = unsafe withUnsafeMutablePointer(to: &expected) { unsafe _stdlib_atomicCompareExchangeStrongPtr( object: rawTarget, expected: $0, desired: desiredPtr ) } if !wonRace { // Some other thread initialized the value. Balance the retain that we // performed on 'desired'. unsafe unmanaged.release() } return wonRace } @_transparent @_unavailableInEmbedded public // @testable func _stdlib_atomicLoadARCRef( object target: UnsafeMutablePointer ) -> AnyObject? { let value = Builtin.atomicload_seqcst_Word(target._rawValue) if let unwrapped = unsafe UnsafeRawPointer(bitPattern: Int(value)) { return unsafe Unmanaged.fromOpaque(unwrapped).takeUnretainedValue() } return nil } @_transparent @_alwaysEmitIntoClient @discardableResult public func _stdlib_atomicAcquiringInitializeARCRef( object target: UnsafeMutablePointer, desired: __owned T ) -> Unmanaged { // Note: this assumes that AnyObject? is layout-compatible with a RawPointer // that simply points to the same memory, and that `nil` is represented by an // all-zero bit pattern. let unmanaged = unsafe Unmanaged.passRetained(desired) let desiredPtr = unsafe unmanaged.toOpaque() let (value, won) = Builtin.cmpxchg_acqrel_acquire_Word( target._rawValue, 0._builtinWordValue, Builtin.ptrtoint_Word(desiredPtr._rawValue)) if Bool(won) { return unsafe unmanaged } // Some other thread initialized the value before us. Balance the retain that // we performed on 'desired', and return what we loaded. unsafe unmanaged.release() let ptr = UnsafeRawPointer(Builtin.inttoptr_Word(value)) return unsafe Unmanaged.fromOpaque(ptr) } @_alwaysEmitIntoClient @_transparent public func _stdlib_atomicAcquiringLoadARCRef( object target: UnsafeMutablePointer ) -> Unmanaged? { let value = Builtin.atomicload_acquire_Word(target._rawValue) if Int(value) == 0 { return nil } let opaque = UnsafeRawPointer(Builtin.inttoptr_Word(value)) return unsafe Unmanaged.fromOpaque(opaque) } //===----------------------------------------------------------------------===// // Conversion of primitive types to `String` //===----------------------------------------------------------------------===// @inlinable internal func _rawPointerToString(_ value: Builtin.RawPointer) -> String { var result = _uint64ToString( UInt64(UInt(bitPattern: UnsafeRawPointer(value))), radix: 16, uppercase: false ) for _ in unsafe 0..<(2 * MemoryLayout.size - result.utf16.count) { result = "0" + result } return "0x" + result } #if _runtime(_ObjC) // At runtime, these classes are derived from `__SwiftNativeNSXXXBase`, // which are derived from `NSXXX`. // // The @swift_native_objc_runtime_base attribute // allows us to subclass an Objective-C class and still use the fast Swift // memory allocator. // // NOTE: older runtimes called these _SwiftNativeNSXXX. The two must // coexist, so they were renamed. The old names must not be used in the // new runtime. @_fixed_layout @usableFromInline @objc @_swift_native_objc_runtime_base(__SwiftNativeNSArrayBase) internal class __SwiftNativeNSArray { @inlinable @nonobjc internal init() {} // @objc public init(coder: AnyObject) {} @inlinable deinit {} } @available(*, unavailable) extension __SwiftNativeNSArray: Sendable {} @_fixed_layout @usableFromInline @objc @_swift_native_objc_runtime_base(__SwiftNativeNSMutableArrayBase) internal class _SwiftNativeNSMutableArray { @inlinable @nonobjc internal init() {} // @objc public init(coder: AnyObject) {} @inlinable deinit {} } @available(*, unavailable) extension _SwiftNativeNSMutableArray: Sendable {} @_fixed_layout @usableFromInline @objc @_swift_native_objc_runtime_base(__SwiftNativeNSDictionaryBase) internal class __SwiftNativeNSDictionary { @nonobjc internal init() {} @objc public init(coder: AnyObject) {} deinit {} } @available(*, unavailable) extension __SwiftNativeNSDictionary: Sendable {} @_fixed_layout @usableFromInline @objc @_swift_native_objc_runtime_base(__SwiftNativeNSSetBase) internal class __SwiftNativeNSSet { @nonobjc internal init() {} @objc public init(coder: AnyObject) {} deinit {} } @available(*, unavailable) extension __SwiftNativeNSSet: Sendable {} @objc @_swift_native_objc_runtime_base(__SwiftNativeNSEnumeratorBase) internal class __SwiftNativeNSEnumerator { @nonobjc internal init() {} @objc public init(coder: AnyObject) {} deinit {} } //===----------------------------------------------------------------------===// // Support for reliable testing of the return-autoreleased optimization //===----------------------------------------------------------------------===// @objc internal class __stdlib_ReturnAutoreleasedDummy { @objc internal init() {} // Use 'dynamic' to force Objective-C dispatch, which uses the // return-autoreleased call sequence. @objc internal dynamic func returnsAutoreleased(_ x: AnyObject) -> AnyObject { return x } } /// This function ensures that the return-autoreleased optimization works. /// /// On some platforms (for example, x86_64), the first call to /// `objc_autoreleaseReturnValue` will always autorelease because it would fail /// to verify the instruction sequence in the caller. On x86_64 certain PLT /// entries would be still pointing to the resolver function, and sniffing /// the call sequence would fail. /// /// This code should live in the core stdlib dylib because PLT tables are /// separate for each dylib. /// /// Call this function in a fresh autorelease pool. public func _stdlib_initializeReturnAutoreleased() { #if arch(x86_64) // On x86_64 it is sufficient to perform one cycle of return-autoreleased // call sequence in order to initialize all required PLT entries. let dummy = __stdlib_ReturnAutoreleasedDummy() _ = dummy.returnsAutoreleased(dummy) #endif } #else @_fixed_layout @usableFromInline internal class __SwiftNativeNSArray { @inlinable internal init() {} @inlinable deinit {} } @_fixed_layout @usableFromInline internal class __SwiftNativeNSDictionary { @inlinable internal init() {} @inlinable deinit {} } @_fixed_layout @usableFromInline internal class __SwiftNativeNSSet { @inlinable internal init() {} @inlinable deinit {} } #endif