//===--- Stride.swift - Components for stride(...) iteration --------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// A type representing continuous, one-dimensional values that can be offset /// and measured. /// /// You can use a type that conforms to the `Strideable` protocol with the /// `stride(from:to:by:)` and `stride(from:through:by:)` functions. For /// example, you can use `stride(from:to:by:)` to iterate over an /// interval of floating-point values: /// /// for radians in stride(from: 0.0, to: .pi * 2, by: .pi / 2) { /// let degrees = Int(radians * 180 / .pi) /// print("Degrees: \(degrees), radians: \(radians)") /// } /// // Degrees: 0, radians: 0.0 /// // Degrees: 90, radians: 1.5707963267949 /// // Degrees: 180, radians: 3.14159265358979 /// // Degrees: 270, radians: 4.71238898038469 /// /// The last parameter of these functions is of the associated `Stride` /// type---the type that represents the distance between any two instances of /// the `Strideable` type. /// /// Types that have an integer `Stride` can be used as the boundaries of a /// countable range or as the lower bound of an iterable one-sided range. For /// example, you can iterate over a range of `Int` and use sequence and /// collection methods. /// /// var sum = 0 /// for x in 1...100 { /// sum += x /// } /// // sum == 5050 /// /// let digits = (0..<10).map(String.init) /// // ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] /// /// Conforming to the Strideable Protocol /// ===================================== /// /// To add `Strideable` conformance to a custom type, choose a `Stride` type /// that can represent the distance between two instances and implement the /// `advanced(by:)` and `distance(to:)` methods. For example, this /// hypothetical `Date` type stores its value as the number of days before or /// after January 1, 2000: /// /// struct Date: Equatable, CustomStringConvertible { /// var daysAfterY2K: Int /// /// var description: String { /// // ... /// } /// } /// /// The `Stride` type for `Date` is `Int`, inferred from the parameter and /// return types of `advanced(by:)` and `distance(to:)`: /// /// extension Date: Strideable { /// func advanced(by n: Int) -> Date { /// var result = self /// result.daysAfterY2K += n /// return result /// } /// /// func distance(to other: Date) -> Int { /// return other.daysAfterY2K - self.daysAfterY2K /// } /// } /// /// The `Date` type can now be used with the `stride(from:to:by:)` and /// `stride(from:through:by:)` functions and as the bounds of an iterable /// range. /// /// let startDate = Date(daysAfterY2K: 0) // January 1, 2000 /// let endDate = Date(daysAfterY2K: 15) // January 16, 2000 /// /// for date in stride(from: startDate, to: endDate, by: 7) { /// print(date) /// } /// // January 1, 2000 /// // January 8, 2000 /// // January 15, 2000 /// /// - Important: The `Strideable` protocol provides default implementations for /// the equal-to (`==`) and less-than (`<`) operators that depend on the /// `Stride` type's implementations. If a type conforming to `Strideable` is /// its own `Stride` type, it must provide concrete implementations of the /// two operators to avoid infinite recursion. public protocol Strideable: Comparable { /// A type that represents the distance between two values. associatedtype Stride: SignedNumeric, Comparable /// Returns the distance from this value to the given value, expressed as a /// stride. /// /// If this type's `Stride` type conforms to `BinaryInteger`, then for two /// values `x` and `y`, and a distance `n = x.distance(to: y)`, /// `x.advanced(by: n) == y`. Using this method with types that have a /// noninteger `Stride` may result in an approximation. /// /// - Parameter other: The value to calculate the distance to. /// - Returns: The distance from this value to `other`. /// /// - Complexity: O(1) func distance(to other: Self) -> Stride /// Returns a value that is offset the specified distance from this value. /// /// Use the `advanced(by:)` method in generic code to offset a value by a /// specified distance. If you're working directly with numeric values, use /// the addition operator (`+`) instead of this method. /// /// func addOne(to x: T) -> T /// where T.Stride: ExpressibleByIntegerLiteral /// { /// return x.advanced(by: 1) /// } /// /// let x = addOne(to: 5) /// // x == 6 /// let y = addOne(to: 3.5) /// // y = 4.5 /// /// If this type's `Stride` type conforms to `BinaryInteger`, then for a /// value `x`, a distance `n`, and a value `y = x.advanced(by: n)`, /// `x.distance(to: y) == n`. Using this method with types that have a /// noninteger `Stride` may result in an approximation. If the result of /// advancing by `n` is not representable as a value of this type, then a /// runtime error may occur. /// /// - Parameter n: The distance to advance this value. /// - Returns: A value that is offset from this value by `n`. /// /// - Complexity: O(1) func advanced(by n: Stride) -> Self /// Returns the next result of striding by a specified distance. /// /// This method is an implementation detail of `Strideable`; do not call it /// directly. /// /// While striding, `_step(after:from:by:)` is called at each step to /// determine the next result. At the first step, the value of `current` is /// `(index: 0, value: start)`. At each subsequent step, the value of /// `current` is the result returned by this method in the immediately /// preceding step. /// /// If the result of advancing by a given `distance` is not representable as a /// value of this type, then a runtime error may occur. /// /// Implementing `_step(after:from:by:)` to Customize Striding Behavior /// =================================================================== /// /// The default implementation of this method calls `advanced(by:)` to offset /// `current.value` by a specified `distance`. No attempt is made to count the /// number of prior steps, and the result's `index` is always `nil`. /// /// To avoid incurring runtime errors that arise from advancing past /// representable bounds, a conforming type can signal that the result of /// advancing by a given `distance` is not representable by using `Int.min` as /// a sentinel value for the result's `index`. In that case, the result's /// `value` must be either the minimum representable value of this type if /// `distance` is less than zero or the maximum representable value of this /// type otherwise. Fixed-width integer types make use of arithmetic /// operations reporting overflow to implement this customization. /// /// A conforming type may use any positive value for the result's `index` as /// an opaque state that is private to that type. For example, floating-point /// types increment `index` with each step so that the corresponding `value` /// can be computed by multiplying the number of steps by the specified /// `distance`. Serially calling `advanced(by:)` would accumulate /// floating-point rounding error at each step, which is avoided by this /// customization. /// /// - Parameters: /// - current: The result returned by this method in the immediately /// preceding step while striding, or `(index: 0, value: start)` if there /// have been no preceding steps. /// - start: The starting value used for the striding sequence. /// - distance: The amount to step by with each iteration of the striding /// sequence. /// - Returns: A tuple of `index` and `value`; `index` may be `nil`, any /// positive value as an opaque state private to the conforming type, or /// `Int.min` to signal that the notional result of advancing by `distance` /// is unrepresentable, and `value` is the next result after `current.value` /// while striding from `start` by `distance`. /// /// - Complexity: O(1) static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) } extension Strideable { @inlinable public static func < (x: Self, y: Self) -> Bool { return x.distance(to: y) > 0 } @inlinable public static func == (x: Self, y: Self) -> Bool { return x.distance(to: y) == 0 } } extension Strideable { @inlinable // protocol-only public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { return (nil, current.value.advanced(by: distance)) } } extension Strideable where Self: FixedWidthInteger & SignedInteger { @_alwaysEmitIntoClient public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { let value = current.value let (partialValue, overflow) = Self.bitWidth >= Self.Stride.bitWidth || (value < (0 as Self)) == (distance < (0 as Self.Stride)) ? value.addingReportingOverflow(Self(distance)) : (Self(Self.Stride(value) + distance), false) return overflow ? (.min, distance < (0 as Self.Stride) ? .min : .max) : (nil, partialValue) } } extension Strideable where Self: FixedWidthInteger & UnsignedInteger { @_alwaysEmitIntoClient public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { let (partialValue, overflow) = distance < (0 as Self.Stride) ? current.value.subtractingReportingOverflow(Self(-distance)) : current.value.addingReportingOverflow(Self(distance)) return overflow ? (.min, distance < (0 as Self.Stride) ? .min : .max) : (nil, partialValue) } } extension Strideable where Stride: FloatingPoint { @inlinable // protocol-only public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { if let i = current.index { // When Stride is a floating-point type, we should avoid accumulating // rounding error from repeated addition. return (i + 1, start.advanced(by: Stride(i + 1) * distance)) } return (nil, current.value.advanced(by: distance)) } } extension Strideable where Self: FloatingPoint, Self == Stride { @inlinable // protocol-only public static func _step( after current: (index: Int?, value: Self), from start: Self, by distance: Self.Stride ) -> (index: Int?, value: Self) { if let i = current.index { // When both Self and Stride are the same floating-point type, we should // take advantage of fused multiply-add (where supported) to eliminate // intermediate rounding error. return (i + 1, start.addingProduct(Stride(i + 1), distance)) } return (nil, current.value.advanced(by: distance)) } } /// An iterator for a `StrideTo` instance. @frozen public struct StrideToIterator { @usableFromInline internal let _start: Element @usableFromInline internal let _end: Element @usableFromInline internal let _stride: Element.Stride @usableFromInline internal var _current: (index: Int?, value: Element) @inlinable internal init(_start: Element, end: Element, stride: Element.Stride) { self._start = _start _end = end _stride = stride _current = (0, _start) } } extension StrideToIterator: IteratorProtocol { /// Advances to the next element and returns it, or `nil` if no next element /// exists. /// /// Once `nil` has been returned, all subsequent calls return `nil`. @inlinable public mutating func next() -> Element? { let result = _current.value if _stride > 0 ? result >= _end : result <= _end { return nil } _current = Element._step(after: _current, from: _start, by: _stride) return result } } // FIXME: should really be a Collection, as it is multipass /// A sequence of values formed by striding over a half-open interval. /// /// Use the `stride(from:to:by:)` function to create `StrideTo` instances. @frozen public struct StrideTo { @usableFromInline internal let _start: Element @usableFromInline internal let _end: Element @usableFromInline internal let _stride: Element.Stride @inlinable internal init(_start: Element, end: Element, stride: Element.Stride) { _precondition(stride != 0, "Stride size must not be zero") // At start, striding away from end is allowed; it just makes for an // already-empty Sequence. self._start = _start self._end = end self._stride = stride } } extension StrideTo: Sequence { /// Returns an iterator over the elements of this sequence. /// /// - Complexity: O(1). @inlinable public __consuming func makeIterator() -> StrideToIterator { return StrideToIterator(_start: _start, end: _end, stride: _stride) } // FIXME(conditional-conformances): this is O(N) instead of O(1), leaving it // here until a proper Collection conformance is possible @inlinable public var underestimatedCount: Int { var it = self.makeIterator() var count = 0 while it.next() != nil { count += 1 } return count } @inlinable public func _customContainsEquatableElement( _ element: Element ) -> Bool? { if _stride < 0 { if element <= _end || _start < element { return false } } else { if element < _start || _end <= element { return false } } // TODO: Additional implementation work will avoid always falling back to the // predicate version of `contains` when the sequence *does* contain `element`. return nil } } #if SWIFT_ENABLE_REFLECTION extension StrideTo: CustomReflectable { public var customMirror: Mirror { return Mirror(self, children: ["from": _start, "to": _end, "by": _stride]) } } #endif // FIXME(conditional-conformances): This does not yet compile (https://github.com/apple/swift/issues/49024). #if false extension StrideTo: RandomAccessCollection where Element.Stride: BinaryInteger { public typealias Index = Int public typealias SubSequence = Slice> public typealias Indices = Range @inlinable public var startIndex: Index { return 0 } @inlinable public var endIndex: Index { return count } @inlinable public var count: Int { let distance = _start.distance(to: _end) guard distance != 0 && (distance < 0) == (_stride < 0) else { return 0 } return Int((distance - 1) / _stride) + 1 } public subscript(position: Index) -> Element { _failEarlyRangeCheck(position, bounds: startIndex..) -> Slice> { _failEarlyRangeCheck(bounds, bounds: startIndex ..< endIndex) return Slice(base: self, bounds: bounds) } @inlinable public func index(before i: Index) -> Index { _failEarlyRangeCheck(i, bounds: startIndex + 1...endIndex) return i - 1 } @inlinable public func index(after i: Index) -> Index { _failEarlyRangeCheck(i, bounds: startIndex - 1..( from start: T, to end: T, by stride: T.Stride ) -> StrideTo { return StrideTo(_start: start, end: end, stride: stride) } /// An iterator for a `StrideThrough` instance. @frozen public struct StrideThroughIterator { @usableFromInline internal let _start: Element @usableFromInline internal let _end: Element @usableFromInline internal let _stride: Element.Stride @usableFromInline internal var _current: (index: Int?, value: Element) @usableFromInline internal var _didReturnEnd: Bool = false @inlinable internal init(_start: Element, end: Element, stride: Element.Stride) { self._start = _start _end = end _stride = stride _current = (0, _start) } } extension StrideThroughIterator: IteratorProtocol { /// Advances to the next element and returns it, or `nil` if no next element /// exists. /// /// Once `nil` has been returned, all subsequent calls return `nil`. @inlinable public mutating func next() -> Element? { let result = _current.value if _stride > 0 ? result >= _end : result <= _end { // Note the `>=` and `<=` operators above. When `result == _end`, the // following check is needed to prevent advancing `_current` past the // representable bounds of the `Strideable` type unnecessarily. // // If the `Strideable` type is a fixed-width integer, overflowed results // are represented using a sentinel value for `_current.index`, `Int.min`. if result == _end && !_didReturnEnd && _current.index != .min { _didReturnEnd = true return result } return nil } _current = Element._step(after: _current, from: _start, by: _stride) return result } } // FIXME: should really be a Collection, as it is multipass /// A sequence of values formed by striding over a closed interval. /// /// Use the `stride(from:through:by:)` function to create `StrideThrough` /// instances. @frozen public struct StrideThrough { @usableFromInline internal let _start: Element @usableFromInline internal let _end: Element @usableFromInline internal let _stride: Element.Stride @inlinable internal init(_start: Element, end: Element, stride: Element.Stride) { _precondition(stride != 0, "Stride size must not be zero") self._start = _start self._end = end self._stride = stride } } extension StrideThrough: Sequence { /// Returns an iterator over the elements of this sequence. /// /// - Complexity: O(1). @inlinable public __consuming func makeIterator() -> StrideThroughIterator { return StrideThroughIterator(_start: _start, end: _end, stride: _stride) } // FIXME(conditional-conformances): this is O(N) instead of O(1), leaving it // here until a proper Collection conformance is possible @inlinable public var underestimatedCount: Int { var it = self.makeIterator() var count = 0 while it.next() != nil { count += 1 } return count } @inlinable public func _customContainsEquatableElement( _ element: Element ) -> Bool? { if _stride < 0 { if element < _end || _start < element { return false } } else { if element < _start || _end < element { return false } } // TODO: Additional implementation work will avoid always falling back to the // predicate version of `contains` when the sequence *does* contain `element`. return nil } } #if SWIFT_ENABLE_REFLECTION extension StrideThrough: CustomReflectable { public var customMirror: Mirror { return Mirror(self, children: ["from": _start, "through": _end, "by": _stride]) } } #endif // FIXME(conditional-conformances): This does not yet compile (https://github.com/apple/swift/issues/49024). #if false extension StrideThrough: RandomAccessCollection where Element.Stride: BinaryInteger { public typealias Index = ClosedRangeIndex public typealias SubSequence = Slice> @inlinable public var startIndex: Index { let distance = _start.distance(to: _end) return distance == 0 || (distance < 0) == (_stride < 0) ? ClosedRangeIndex(0) : ClosedRangeIndex() } @inlinable public var endIndex: Index { return ClosedRangeIndex() } @inlinable public var count: Int { let distance = _start.distance(to: _end) guard distance != 0 else { return 1 } guard (distance < 0) == (_stride < 0) else { return 0 } return Int(distance / _stride) + 1 } public subscript(position: Index) -> Element { let offset = Element.Stride(position._dereferenced) * _stride return _start.advanced(by: offset) } public subscript(bounds: Range) -> Slice> { return Slice(base: self, bounds: bounds) } @inlinable public func index(before i: Index) -> Index { switch i._value { case .inRange(let n): _precondition(n > 0, "Incrementing past start index") return ClosedRangeIndex(n - 1) case .pastEnd: _precondition(_end >= _start, "Incrementing past start index") return ClosedRangeIndex(count - 1) } } @inlinable public func index(after i: Index) -> Index { switch i._value { case .inRange(let n): return n == (count - 1) ? ClosedRangeIndex() : ClosedRangeIndex(n + 1) case .pastEnd: _preconditionFailure("Incrementing past end index") } } } #endif /// Returns a sequence from a starting value toward, and possibly including, an end /// value, stepping by the specified amount. /// /// You can use this function to stride over values of any type that conforms /// to the `Strideable` protocol, such as integers or floating-point types. /// Starting with `start`, each successive value of the sequence adds `stride` /// until the next value would be beyond `end`. /// /// for radians in stride(from: 0.0, through: .pi * 2, by: .pi / 2) { /// let degrees = Int(radians * 180 / .pi) /// print("Degrees: \(degrees), radians: \(radians)") /// } /// // Degrees: 0, radians: 0.0 /// // Degrees: 90, radians: 1.5707963267949 /// // Degrees: 180, radians: 3.14159265358979 /// // Degrees: 270, radians: 4.71238898038469 /// // Degrees: 360, radians: 6.28318530717959 /// /// You can use `stride(from:through:by:)` to create a sequence that strides /// upward or downward. Pass a negative value as `stride` to create a sequence /// from a higher start to a lower end: /// /// for countdown in stride(from: 3, through: 1, by: -1) { /// print("\(countdown)...") /// } /// // 3... /// // 2... /// // 1... /// /// The value you pass as `end` is not guaranteed to be included in the /// sequence. If stepping from `start` by `stride` does not produce `end`, /// the last value in the sequence will be one step before going beyond `end`. /// /// for multipleOfThree in stride(from: 3, through: 10, by: 3) { /// print(multipleOfThree) /// } /// // 3 /// // 6 /// // 9 /// /// If you pass a value as `stride` that moves away from `end`, the sequence /// contains no values. /// /// for x in stride(from: 0, through: 10, by: -1) { /// print(x) /// } /// // Nothing is printed. /// /// - Parameters: /// - start: The starting value to use for the sequence. If the sequence /// contains any values, the first one is `start`. /// - end: An end value to limit the sequence. `end` is an element of /// the resulting sequence if and only if it can be produced from `start` /// using steps of `stride`. /// - stride: The amount to step by with each iteration. A positive `stride` /// iterates upward; a negative `stride` iterates downward. /// - Returns: A sequence from `start` toward, and possibly including, `end`. /// Each value in the sequence is separated by `stride`. @inlinable public func stride( from start: T, through end: T, by stride: T.Stride ) -> StrideThrough { return StrideThrough(_start: start, end: end, stride: stride) } extension StrideToIterator: Sendable where Element: Sendable, Element.Stride: Sendable { } extension StrideTo: Sendable where Element: Sendable, Element.Stride: Sendable { } extension StrideThroughIterator: Sendable where Element: Sendable, Element.Stride: Sendable { } extension StrideThrough: Sendable where Element: Sendable, Element.Stride: Sendable { }