//===--- SILArgument.h - SIL BasicBlock Argument Representation -*- C++ -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #ifndef SWIFT_SIL_SILARGUMENT_H #define SWIFT_SIL_SILARGUMENT_H #include "swift/AST/LifetimeAnnotation.h" #include "swift/Basic/Compiler.h" #include "swift/SIL/Lifetime.h" #include "swift/SIL/SILArgumentConvention.h" #include "swift/SIL/SILFunctionConventions.h" #include "swift/SIL/SILValue.h" namespace swift { class SILBasicBlock; class SILModule; class SILPhiArgument; class SILUndef; class TermInst; struct SILArgumentKind { enum innerty : std::underlying_type::type { #define ARGUMENT(ID, PARENT) ID = unsigned(SILNodeKind::ID), #define ARGUMENT_RANGE(ID, FIRST, LAST) First_##ID = FIRST, Last_##ID = LAST, #include "swift/SIL/SILNodes.def" } value; explicit SILArgumentKind(ValueKind kind) : value(*SILArgumentKind::fromValueKind(kind)) {} SILArgumentKind(innerty value) : value(value) {} operator innerty() const { return value; } static std::optional fromValueKind(ValueKind kind) { switch (kind) { #define ARGUMENT(ID, PARENT) \ case ValueKind::ID: \ return SILArgumentKind(ID); #include "swift/SIL/SILNodes.def" default: return std::nullopt; } } }; class SILArgument : public ValueBase { friend class SILBasicBlock; SILBasicBlock *parentBlock; ValueDecl *decl; USE_SHARED_UINT8; protected: SILArgument(ValueKind subClassKind, SILBasicBlock *inputParentBlock, SILType type, ValueOwnershipKind ownershipKind, ValueDecl *inputDecl = nullptr, bool reborrow = false, bool pointerEscape = false); // A special constructor, only intended for use in // SILBasicBlock::replacePHIArg and replaceFunctionArg. explicit SILArgument(ValueKind subClassKind, SILType type, ValueOwnershipKind ownershipKind, ValueDecl *inputDecl = nullptr, bool reborrow = false, bool pointerEscape = false) : ValueBase(subClassKind, type), parentBlock(nullptr), decl(inputDecl) { sharedUInt8().SILArgument.valueOwnershipKind = uint8_t(ownershipKind); // When the optimizer creates reborrows, reborrow flag needs to be set by // calling setReborrow. sharedUInt8().SILArgument.reborrow = false; sharedUInt8().SILArgument.pointerEscape = false; } public: void operator=(const SILArgument &) = delete; void operator delete(void *, size_t) = delete; ValueOwnershipKind getOwnershipKind() const { return ValueOwnershipKind(sharedUInt8().SILArgument.valueOwnershipKind); } bool isScoped() const { auto ownershipKind = getOwnershipKind(); if (ownershipKind == OwnershipKind::Owned) { return true; } if (ownershipKind != OwnershipKind::Guaranteed) { return false; } return isReborrow(); } bool isReborrow() const { return ValueOwnershipKind(sharedUInt8().SILArgument.reborrow); } bool isGuaranteedForwarding() const { return getOwnershipKind() == OwnershipKind::Guaranteed && !isReborrow(); } bool hasPointerEscape() const { return ValueOwnershipKind(sharedUInt8().SILArgument.pointerEscape); } void setOwnershipKind(ValueOwnershipKind newKind) { sharedUInt8().SILArgument.valueOwnershipKind = uint8_t(newKind); } void setReborrow(bool isReborrow) { sharedUInt8().SILArgument.reborrow = isReborrow; } void setHasPointerEscape(bool hasPointerEscape) { sharedUInt8().SILArgument.pointerEscape = hasPointerEscape; } SILBasicBlock *getParent() const { return parentBlock; } /// Returns true if this argument is erased from a basic block. /// /// Note that SILArguments which are erased from a SILBasicBlock are not /// destroyed and freed, but are kept in memory. So it's safe to keep a /// pointer to an erased argument and then at a later time check if its /// erased. bool isErased() const { return !parentBlock; } SILFunction *getFunction(); const SILFunction *getFunction() const; SILModule &getModule() const; ValueDecl *getDecl() const { return decl; } static bool classof(const SILInstruction *) = delete; static bool classof(const SILUndef *) = delete; static bool classof(SILNodePointer node) { return node->getKind() >= SILNodeKind::First_SILArgument && node->getKind() <= SILNodeKind::Last_SILArgument; } unsigned getIndex() const; /// Return non-null if \p value is a phi. static SILPhiArgument *asPhi(SILValue value); /// Return non-null if \p value is a terminator result. static SILPhiArgument *isTerminatorResult(SILValue value); /// Return true if this block argument is a phi as opposed to a terminator /// result. bool isPhi() const; /// Return true if this block argument is a terminator result. bool isTerminatorResult() const; /// If this argument is a phi, return the incoming phi value for the given /// predecessor BB. If this argument is not a phi, return an invalid SILValue. SILValue getIncomingPhiValue(SILBasicBlock *predBlock) const; /// If this argument is a phi, populate `OutArray` with the incoming phi /// values for each predecessor BB. If this argument is not a phi, return /// false. /// /// If this block has no predecessors, returnedPhiValues will be empty. bool getIncomingPhiValues(SmallVectorImpl &returnedPhiValues) const; /// If this argument is a phi, populate `OutArray` with each predecessor block /// and its incoming phi value. If this argument is not a phi, return false. /// /// If this block has no predecessors, returnedPredAndPhiValuePairs will be /// empty. bool getIncomingPhiValues(SmallVectorImpl> &returnedPredAndPhiValuePairs) const; /// If this argument is a true phi, populate `OutArray` with the operand in /// each predecessor block associated with an incoming value. bool getIncomingPhiOperands(SmallVectorImpl &returnedPhiOperands) const; /// If this argument is a true phi, for each operand in each predecessor block /// associated with an incoming value, call visitor(op). Visitor must return /// true for iteration to continue. False to stop it. /// /// Returns false if this is not a true phi or that a visitor signaled error /// by returning false. bool visitIncomingPhiOperands(function_ref visitor) const; /// Returns true if we were able to find a single terminator operand value for /// each predecessor of this arguments basic block. The found values are /// stored in OutArray. /// /// Note: this peeks through any projections or cast implied by the /// terminator. e.g. the incoming value for a switch_enum payload argument is /// the enum itself (the operand of the switch_enum). [[nodiscard]] bool getSingleTerminatorOperands( SmallVectorImpl &returnedSingleTermOperands) const; /// Returns true if we were able to find single terminator operand values for /// each predecessor of this arguments basic block. The found values are /// stored in OutArray alongside their predecessor block. /// /// Note: this peeks through any projections or cast implied by the /// terminator. e.g. the incoming value for a switch_enum payload argument is /// the enum itself (the operand of the switch_enum). [[nodiscard]] bool getSingleTerminatorOperands( SmallVectorImpl> &returnedSingleTermOperands) const; /// If this SILArgument's parent block has a single predecessor whose /// terminator has a single operand, return that terminator. TermInst *getSingleTerminator() const; /// Return the terminator instruction for which this argument is a result, /// otherwise return nullptr. TermInst *getTerminatorForResult() const; /// If this terminator result forwards an operand, then return it. /// /// Precondition: this->isTerminatorResult() /// /// TODO: Move this and other APIs into a TerminatorResult abstraction. Operand *forwardedTerminatorResultOperand() const; /// Return the SILArgumentKind of this argument. SILArgumentKind getKind() const { return SILArgumentKind(ValueBase::getKind()); } protected: void setParent(SILBasicBlock *newParentBlock) { parentBlock = newParentBlock; } }; class SILPhiArgument : public SILArgument { friend class SILBasicBlock; SILPhiArgument(SILBasicBlock *parentBlock, SILType type, ValueOwnershipKind ownershipKind, ValueDecl *decl = nullptr, bool isReborrow = false, bool hasPointerEscape = false) : SILArgument(ValueKind::SILPhiArgument, parentBlock, type, ownershipKind, decl, isReborrow, hasPointerEscape) {} // A special constructor, only intended for use in // SILBasicBlock::replacePHIArg. explicit SILPhiArgument(SILType type, ValueOwnershipKind ownershipKind, ValueDecl *decl = nullptr, bool isReborrow = false, bool hasPointerEscape = false) : SILArgument(ValueKind::SILPhiArgument, type, ownershipKind, decl, isReborrow, hasPointerEscape) {} public: /// Return true if this is block argument is a phi, as opposed to a terminator /// result. bool isPhi() const; /// Whether any of the values incoming to this phi are lexical. bool isLexical() const; /// Return true if this block argument is a terminator result. bool isTerminatorResult() const { return !isPhi(); } /// If this argument is a phi, return the incoming phi value for the given /// predecessor BB. If this argument is not a phi, return an invalid SILValue. /// /// FIXME: Once SILPhiArgument actually implies that it is a phi argument, /// this will be guaranteed to return a valid SILValue. SILValue getIncomingPhiValue(SILBasicBlock *predBlock) const; /// If this argument is a true phi, return the operand in the \p predBLock /// associated with an incoming value. /// /// \returns the operand or nullptr if this is not a true phi. Operand *getIncomingPhiOperand(SILBasicBlock *predBlock) const; /// If this argument is a phi, populate `OutArray` with the incoming phi /// values for each predecessor BB. If this argument is not a phi, return /// false. /// /// FIXME: Once SILPhiArgument actually implies that it is a phi argument, /// this will always succeed. bool getIncomingPhiValues(SmallVectorImpl &returnedPhiValues) const; /// If this argument is a phi, populate `OutArray` with each predecessor block /// and its incoming phi value. If this argument is not a phi, return false. /// /// FIXME: Once SILPhiArgument actually implies that it is a phi argument, /// this will always succeed. bool getIncomingPhiValues(SmallVectorImpl> &returnedPredAndPhiValuePairs) const; /// If this argument is a true phi, populate `OutArray` with the operand in /// each predecessor block associated with an incoming value. bool getIncomingPhiOperands(SmallVectorImpl &returnedPhiOperands) const; /// If this argument is a phi, call visitor for each passing the operand for /// each incoming phi values for each predecessor BB. If this argument is not /// a phi, return false. /// /// If visitor returns false, iteration is stopped and we return false. bool visitIncomingPhiOperands(function_ref visitor) const; /// Visit incoming phi operands and the argument into which they are incoming; /// if an operand's value is itself a phi, visit that phi's operands. /// /// Returns false when called on a non-phi and when the visitor returns false. bool visitTransitiveIncomingPhiOperands( function_ref visitor) const; /// Returns true if we were able to find a single terminator operand value for /// each predecessor of this arguments basic block. The found values are /// stored in OutArray. /// /// Note: this peeks through any projections or cast implied by the /// terminator. e.g. the incoming value for a switch_enum payload argument is /// the enum itself (the operand of the switch_enum). [[nodiscard]] bool getSingleTerminatorOperands( SmallVectorImpl &returnedSingleTermOperands) const; /// Returns true if we were able to find single terminator operand values for /// each predecessor of this arguments basic block. The found values are /// stored in OutArray alongside their predecessor block. /// /// Note: this peeks through any projections or cast implied by the /// terminator. e.g. the incoming value for a switch_enum payload argument is /// the enum itself (the operand of the switch_enum). [[nodiscard]] bool getSingleTerminatorOperands( SmallVectorImpl> &returnedSingleTermOperands) const; /// If this SILArgument's parent block has a single predecessor whose /// terminator has a single operand, return that terminator. TermInst *getSingleTerminator() const; /// Return the terminator instruction for which this argument is a result, /// otherwise return nullptr. TermInst *getTerminatorForResult() const; static bool classof(const SILInstruction *) = delete; static bool classof(const SILUndef *) = delete; static bool classof(SILNodePointer node) { return node->getKind() == SILNodeKind::SILPhiArgument; } }; class SILFunctionArgument : public SILArgument { friend class SILBasicBlock; USE_SHARED_UINT32; SILFunctionArgument( SILBasicBlock *parentBlock, SILType type, ValueOwnershipKind ownershipKind, ValueDecl *decl = nullptr, bool isNoImplicitCopy = false, LifetimeAnnotation lifetimeAnnotation = LifetimeAnnotation::None, bool isCapture = false, bool isParameterPack = false) : SILArgument(ValueKind::SILFunctionArgument, parentBlock, type, ownershipKind, decl) { sharedUInt32().SILFunctionArgument.noImplicitCopy = isNoImplicitCopy; sharedUInt32().SILFunctionArgument.lifetimeAnnotation = lifetimeAnnotation; sharedUInt32().SILFunctionArgument.closureCapture = isCapture; sharedUInt32().SILFunctionArgument.parameterPack = isParameterPack; } // A special constructor, only intended for use in // SILBasicBlock::replaceFunctionArg. explicit SILFunctionArgument(SILType type, ValueOwnershipKind ownershipKind, ValueDecl *decl = nullptr) : SILArgument(ValueKind::SILFunctionArgument, type, ownershipKind, decl) { } public: bool isNoImplicitCopy() const { return sharedUInt32().SILFunctionArgument.noImplicitCopy; } void setNoImplicitCopy(bool newValue) { sharedUInt32().SILFunctionArgument.noImplicitCopy = newValue; } bool isClosureCapture() const { return sharedUInt32().SILFunctionArgument.closureCapture; } void setClosureCapture(bool newValue) { sharedUInt32().SILFunctionArgument.closureCapture = newValue; } /// Is this parameter a pack that corresponds to multiple /// formal parameters? (This could mean multiple ParamDecl*s, /// or it could mean a ParamDecl* that's a pack expansion.) Note /// that not all lowered parameters of pack type are parameter packs: /// they can be part of a single formal parameter of tuple type. /// This flag indicates that the lowered parameter has a one-to-many /// relationship with formal parameters. /// /// TODO: preserve the parameter pack references in SIL in a side table /// instead of using a single bit. bool isFormalParameterPack() const { return sharedUInt32().SILFunctionArgument.parameterPack; } void setFormalParameterPack(bool isPack) { sharedUInt32().SILFunctionArgument.parameterPack = isPack; } LifetimeAnnotation getLifetimeAnnotation() const { return LifetimeAnnotation::Case( sharedUInt32().SILFunctionArgument.lifetimeAnnotation); } void setLifetimeAnnotation(LifetimeAnnotation newValue) { sharedUInt32().SILFunctionArgument.lifetimeAnnotation = newValue; } bool isSending() const; Lifetime getLifetime() const { return getType() .getLifetime(*getFunction()) .getLifetimeForAnnotatedValue(getLifetimeAnnotation()); } bool isIndirectResult() const; bool isIndirectErrorResult() const; SILArgumentConvention getArgumentConvention() const; /// Given that this is an entry block argument, and given that it does /// not correspond to an indirect result, return the corresponding /// SILParameterInfo. SILParameterInfo getKnownParameterInfo() const; /// Returns true if this SILArgument is the self argument of its /// function. This means that this will return false always for SILArguments /// of SILFunctions that do not have self argument and for non-function /// argument SILArguments. bool isSelf() const; /// Returns true if this SILArgument is passed via the given convention. bool hasConvention(SILArgumentConvention convention) const { return getArgumentConvention() == convention; } /// Copy all flags stored in this->sharedUInt32() into arg. /// /// By using this API, cloners can be sure they are updated for the addition /// of further flags. void copyFlags(SILFunctionArgument *arg) { setNoImplicitCopy(arg->isNoImplicitCopy()); setLifetimeAnnotation(arg->getLifetimeAnnotation()); setClosureCapture(arg->isClosureCapture()); setFormalParameterPack(arg->isFormalParameterPack()); } static bool classof(const SILInstruction *) = delete; static bool classof(const SILUndef *) = delete; static bool classof(SILNodePointer node) { return node->getKind() == SILNodeKind::SILFunctionArgument; } }; //===----------------------------------------------------------------------===// // Out of line Definitions for SILArgument to avoid Forward Decl issues //===----------------------------------------------------------------------===// /// Return non-null if \p value is a real phi argument. inline SILPhiArgument *SILArgument::asPhi(SILValue value) { if (auto *arg = dyn_cast(value)) { if (arg->isPhi()) return arg; } return nullptr; } inline bool SILArgument::isPhi() const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->isPhi(); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } /// Return non-null if \p value is a terminator result. inline SILPhiArgument *SILArgument::isTerminatorResult(SILValue value) { if (auto *arg = dyn_cast(value)) { if (arg->isTerminatorResult()) return arg; } return nullptr; } inline bool SILArgument::isTerminatorResult() const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->isTerminatorResult(); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline SILValue SILArgument::getIncomingPhiValue(SILBasicBlock *predBlock) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getIncomingPhiValue(predBlock); case SILArgumentKind::SILFunctionArgument: return SILValue(); } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::getIncomingPhiValues( SmallVectorImpl &returnedPhiValues) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getIncomingPhiValues(returnedPhiValues); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::getIncomingPhiValues( SmallVectorImpl> &returnedPredAndPhiValuePairs) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getIncomingPhiValues( returnedPredAndPhiValuePairs); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::getSingleTerminatorOperands( SmallVectorImpl &returnedSingleTermOperands) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getSingleTerminatorOperands( returnedSingleTermOperands); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::getSingleTerminatorOperands( SmallVectorImpl> &returnedSingleTermOperands) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getSingleTerminatorOperands( returnedSingleTermOperands); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline TermInst *SILArgument::getSingleTerminator() const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getSingleTerminator(); case SILArgumentKind::SILFunctionArgument: return nullptr; } llvm_unreachable("Covered switch is not covered?!"); } inline TermInst *SILArgument::getTerminatorForResult() const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getTerminatorForResult(); case SILArgumentKind::SILFunctionArgument: return nullptr; } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::getIncomingPhiOperands( SmallVectorImpl &returnedPhiOperands) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->getIncomingPhiOperands( returnedPhiOperands); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } inline bool SILArgument::visitIncomingPhiOperands( function_ref visitor) const { switch (getKind()) { case SILArgumentKind::SILPhiArgument: return cast(this)->visitIncomingPhiOperands(visitor); case SILArgumentKind::SILFunctionArgument: return false; } llvm_unreachable("Covered switch is not covered?!"); } } // end swift namespace #endif