//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// @_exported import SwiftMusl // Clang module public let MAP_FAILED: UnsafeMutableRawPointer! = UnsafeMutableRawPointer(bitPattern: -1) // Constants defined by @available(swift, deprecated: 3.0, message: "Please use 'Double.pi' or '.pi' to get the value of correct type and avoid casting.") public let M_PI = Double.pi @available(swift, deprecated: 3.0, message: "Please use 'Double.pi / 2' or '.pi / 2' to get the value of correct type and avoid casting.") public let M_PI_2 = Double.pi / 2 @available(swift, deprecated: 3.0, message: "Please use 'Double.pi / 4' or '.pi / 4' to get the value of correct type and avoid casting.") public let M_PI_4 = Double.pi / 4 @available(swift, deprecated: 3.0, message: "Please use '2.squareRoot()'.") public let M_SQRT2 = 2.squareRoot() @available(swift, deprecated: 3.0, message: "Please use '0.5.squareRoot()'.") public let M_SQRT1_2 = 0.5.squareRoot() // Constants defined by @available(swift, deprecated: 3.0, message: "Please use 'T.radix' to get the radix of a FloatingPoint type 'T'.") public let FLT_RADIX = Double.radix %for type, prefix in [('Float', 'FLT'), ('Double', 'DBL'), ('Float80', 'LDBL')]: % if type == "Float80": #if !os(Android) && (arch(i386) || arch(x86_64)) % end // Where does the 1 come from? C counts the usually-implicit leading // significand bit, but Swift does not. Neither is really right or wrong. @available(swift, deprecated: 3.0, message: "Please use '${type}.significandBitCount + 1'.") public let ${prefix}_MANT_DIG = ${type}.significandBitCount + 1 // Where does the 1 come from? C models floating-point numbers as having a // significand in [0.5, 1), but Swift (following IEEE 754) considers the // significand to be in [1, 2). This rationale applies to ${prefix}_MIN_EXP // as well. @available(swift, deprecated: 3.0, message: "Please use '${type}.greatestFiniteMagnitude.exponent + 1'.") public let ${prefix}_MAX_EXP = ${type}.greatestFiniteMagnitude.exponent + 1 @available(swift, deprecated: 3.0, message: "Please use '${type}.leastNormalMagnitude.exponent + 1'.") public let ${prefix}_MIN_EXP = ${type}.leastNormalMagnitude.exponent + 1 @available(swift, deprecated: 3.0, message: "Please use '${type}.greatestFiniteMagnitude' or '.greatestFiniteMagnitude'.") public let ${prefix}_MAX = ${type}.greatestFiniteMagnitude @available(swift, deprecated: 3.0, message: "Please use '${type}.ulpOfOne' or '.ulpOfOne'.") public let ${prefix}_EPSILON = ${type}.ulpOfOne @available(swift, deprecated: 3.0, message: "Please use '${type}.leastNormalMagnitude' or '.leastNormalMagnitude'.") public let ${prefix}_MIN = ${type}.leastNormalMagnitude @available(swift, deprecated: 3.0, message: "Please use '${type}.leastNonzeroMagnitude' or '.leastNonzeroMagnitude'.") public let ${prefix}_TRUE_MIN = ${type}.leastNonzeroMagnitude % if type == "Float80": #endif % end %end