#!/usr/bin/env python3 # # ==-- process-stats-dir - summarize one or more Swift -stats-output-dirs --==# # # This source file is part of the Swift.org open source project # # Copyright (c) 2014-2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ==------------------------------------------------------------------------==# # # This file processes the contents of one or more directories generated by # `swiftc -stats-output-dir` and emits summary data, traces etc. for analysis. import argparse import csv import io import itertools import json import os import platform import re import sys import time import urllib from collections import namedtuple from operator import attrgetter from jobstats import (list_stats_dir_profiles, load_stats_dir, merge_all_jobstats) if sys.version_info[0] < 3: import urllib2 Request = urllib2.Request URLOpen = urllib2.urlopen else: import urllib.request import urllib.parse import urllib.error Request = urllib.request.Request URLOpen = urllib.request.urlopen MODULE_PAT = re.compile(r'^(\w+)\.') def module_name_of_stat(name): return re.match(MODULE_PAT, name).groups()[0] def stat_name_minus_module(name): return re.sub(MODULE_PAT, '', name) # Perform any custom processing of args here, in particular the # select_stats_from_csv_baseline step, which is a bit subtle. def vars_of_args(args): vargs = vars(args) if args.select_stats_from_csv_baseline is not None: with io.open(args.select_stats_from_csv_baseline, 'r', encoding='utf-8') as f: b = read_stats_dict_from_csv(f) # Sniff baseline stat-names to figure out if they're module-qualified # even when the user isn't asking us to _output_ module-grouped data. all_triples = all(len(k.split('.')) == 3 for k in b.keys()) if args.group_by_module or all_triples: vargs['select_stat'] = set(stat_name_minus_module(k) for k in b.keys()) else: vargs['select_stat'] = b.keys() return vargs # Passed args with 2-element remainder ["old", "new"], return a list of tuples # of the form [(name, (oldstats, newstats))] where each name is a common subdir # of each of "old" and "new", and the stats are those found in the respective # dirs. def load_paired_stats_dirs(args): assert len(args.remainder) == 2 paired_stats = [] (old, new) = args.remainder vargs = vars_of_args(args) for p in sorted(os.listdir(old)): full_old = os.path.join(old, p) full_new = os.path.join(new, p) if not (os.path.exists(full_old) and os.path.isdir(full_old) and os.path.exists(full_new) and os.path.isdir(full_new)): continue old_stats = load_stats_dir(full_old, **vargs) new_stats = load_stats_dir(full_new, **vargs) if len(old_stats) == 0 or len(new_stats) == 0: continue paired_stats.append((p, (old_stats, new_stats))) return paired_stats def write_catapult_trace(args): allstats = [] vargs = vars_of_args(args) for path in args.remainder: allstats += load_stats_dir(path, **vargs) allstats.sort(key=attrgetter('start_usec')) for i in range(len(allstats)): allstats[i].jobid = i json.dump([s.to_catapult_trace_obj() for s in allstats], args.output) def write_lnt_values(args): vargs = vars_of_args(args) for d in args.remainder: stats = load_stats_dir(d, **vargs) merged = merge_all_jobstats(stats, **vargs) j = merged.to_lnt_test_obj(args) if args.lnt_submit is None: json.dump(j, args.output, indent=4) else: url = args.lnt_submit print("\nsubmitting to LNT server: " + url) json_report = {'input_data': json.dumps(j), 'commit': '1'} data = urllib.urlencode(json_report) response_str = URLOpen(Request(url, data)) response = json.loads(response_str.read()) print("### response:") print(response) if 'success' in response: print("server response:\tSuccess") else: print("server response:\tError") print("error:\t", response['error']) sys.exit(1) def show_paired_incrementality(args): fieldnames = ["old_pct", "old_skip", "new_pct", "new_skip", "delta_pct", "delta_skip", "name"] out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab') out.writeheader() vargs = vars_of_args(args) for (name, (oldstats, newstats)) in load_paired_stats_dirs(args): olddriver = merge_all_jobstats((x for x in oldstats if x.is_driver_job()), **vargs) newdriver = merge_all_jobstats((x for x in newstats if x.is_driver_job()), **vargs) if olddriver is None or newdriver is None: continue oldpct = olddriver.incrementality_percentage() newpct = newdriver.incrementality_percentage() deltapct = newpct - oldpct oldskip = olddriver.driver_jobs_skipped() newskip = newdriver.driver_jobs_skipped() deltaskip = newskip - oldskip out.writerow(dict(name=name, old_pct=oldpct, old_skip=oldskip, new_pct=newpct, new_skip=newskip, delta_pct=deltapct, delta_skip=deltaskip)) def show_incrementality(args): fieldnames = ["incrementality", "name"] out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab') out.writeheader() vargs = vars_of_args(args) for path in args.remainder: stats = load_stats_dir(path, **vargs) for s in stats: if s.is_driver_job(): pct = s.incrementality_percentage() out.writerow(dict(name=os.path.basename(path), incrementality=pct)) def diff_and_pct(old, new): if old == 0: if new == 0: return (0, 0.0) else: return (new, 100.0) delta = (new - old) delta_pct = round((float(delta) / float(old)) * 100.0, 2) return (delta, delta_pct) def update_epoch_value(d, name, epoch, value): changed = 0 if name in d: (existing_epoch, existing_value) = d[name] if existing_epoch > epoch: print("note: keeping newer value %d from epoch %d for %s" % (existing_value, existing_epoch, name)) epoch = existing_epoch value = existing_value elif existing_value == value: epoch = existing_epoch else: (_, delta_pct) = diff_and_pct(existing_value, value) print("note: changing value %d -> %d (%.2f%%) for %s" % (existing_value, value, delta_pct, name)) changed = 1 d[name] = (epoch, value) return (epoch, value, changed) def read_stats_dict_from_csv(f, select_stat=''): infieldnames = ["epoch", "name", "value"] c = csv.DictReader(f, infieldnames, dialect='excel-tab', quoting=csv.QUOTE_NONNUMERIC) d = {} sre = re.compile('.*' if len(select_stat) == 0 else '|'.join(select_stat)) for row in c: epoch = int(row["epoch"]) name = row["name"] if sre.search(name) is None: continue value = int(row["value"]) update_epoch_value(d, name, epoch, value) return d # The idea here is that a "baseline" is a (tab-separated) CSV file full of # the counters you want to track, each prefixed by an epoch timestamp of # the last time the value was reset. # # When you set a fresh baseline, all stats in the provided stats dir are # written to the baseline. When you set against an _existing_ baseline, # only the counters mentioned in the existing baseline are updated, and # only if their values differ. # # Finally, since it's a line-oriented CSV file, you can put: # # mybaseline.csv merge=union # # in your .gitattributes file, and forget about merge conflicts. The reader # function above will take the later epoch anytime it detects duplicates, # so union-merging is harmless. Duplicates will be eliminated whenever the # next baseline-set is done. def set_csv_baseline(args): existing = None vargs = vars_of_args(args) if os.path.exists(args.set_csv_baseline): with io.open(args.set_csv_baseline, "r", encoding='utf-8', newline='\n') as f: ss = vargs['select_stat'] existing = read_stats_dict_from_csv(f, select_stat=ss) print("updating %d baseline entries in %s" % (len(existing), args.set_csv_baseline)) else: print("making new baseline " + args.set_csv_baseline) fieldnames = ["epoch", "name", "value"] def _open(path): if sys.version_info[0] < 3: return open(path, 'wb') return io.open(path, "w", encoding='utf-8', newline='\n') with _open(args.set_csv_baseline) as f: out = csv.DictWriter(f, fieldnames, dialect='excel-tab', quoting=csv.QUOTE_NONNUMERIC) m = merge_all_jobstats((s for d in args.remainder for s in load_stats_dir(d, **vargs)), **vargs) if m is None: print("no stats found") return 1 changed = 0 newepoch = int(time.time()) for name in sorted(m.stats.keys()): epoch = newepoch value = m.stats[name] if existing is not None: if name not in existing: continue (epoch, value, chg) = update_epoch_value(existing, name, epoch, value) changed += chg out.writerow(dict(epoch=int(epoch), name=name, value=int(value))) if existing is not None: print("changed %d entries in baseline" % changed) return 0 OutputRow = namedtuple("OutputRow", ["name", "old", "new", "delta", "delta_pct"]) def compare_stats(args, old_stats, new_stats): for name in sorted(old_stats.keys()): old = old_stats[name] new = new_stats.get(name, 0) (delta, delta_pct) = diff_and_pct(old, new) yield OutputRow(name=name, old=int(old), new=int(new), delta=int(delta), delta_pct=delta_pct) IMPROVED = -1 UNCHANGED = 0 REGRESSED = 1 def row_state(row, args): delta_pct_over_thresh = abs(row.delta_pct) > args.delta_pct_thresh if (row.name.startswith("time.") or '.time.' in row.name): # Timers are judged as changing if they exceed # the percentage _and_ absolute-time thresholds delta_usec_over_thresh = abs(row.delta) > args.delta_usec_thresh if delta_pct_over_thresh and delta_usec_over_thresh: return (REGRESSED if row.delta > 0 else IMPROVED) elif delta_pct_over_thresh: return (REGRESSED if row.delta > 0 else IMPROVED) return UNCHANGED def write_comparison(args, old_stats, new_stats): rows = list(compare_stats(args, old_stats, new_stats)) sort_key = (attrgetter('delta_pct') if args.sort_by_delta_pct else attrgetter('name')) regressed = [r for r in rows if row_state(r, args) == REGRESSED] unchanged = [r for r in rows if row_state(r, args) == UNCHANGED] improved = [r for r in rows if row_state(r, args) == IMPROVED] regressions = len(regressed) if args.markdown: def format_time(v): if abs(v) > 1000000: return "{:.1f}s".format(v / 1000000.0) elif abs(v) > 1000: return "{:.1f}ms".format(v / 1000.0) else: return "{:.1f}us".format(v) def format_field(field, row): if field == 'name': if args.group_by_module: return stat_name_minus_module(row.name) else: return row.name elif field == 'delta_pct': s = str(row.delta_pct) + "%" if args.github_emoji: if row_state(row, args) == REGRESSED: s += " :no_entry:" elif row_state(row, args) == IMPROVED: s += " :white_check_mark:" return s else: v = int(getattr(row, field)) if row.name.startswith('time.'): return format_time(v) else: return "{:,d}".format(v) def format_table(elts): out = args.output out.write('\n') out.write(' | '.join(OutputRow._fields)) out.write('\n') out.write(' | '.join('---:' for _ in OutputRow._fields)) out.write('\n') for e in elts: out.write(' | '.join(format_field(f, e) for f in OutputRow._fields)) out.write('\n') def format_details(name, elts, is_closed): out = args.output details = '
\n' if is_closed else '
\n' out.write(details) out.write('%s (%d)\n' % (name, len(elts))) if args.group_by_module: def keyfunc(e): return module_name_of_stat(e.name) elts.sort(key=attrgetter('name')) for mod, group in itertools.groupby(elts, keyfunc): groupelts = list(group) groupelts.sort(key=sort_key, reverse=args.sort_descending) out.write(details) out.write('%s in %s (%d)\n' % (name, mod, len(groupelts))) format_table(groupelts) out.write('
\n') else: elts.sort(key=sort_key, reverse=args.sort_descending) format_table(elts) out.write('
\n') closed_regressions = (args.close_regressions or len(regressed) == 0) format_details('Regressed', regressed, closed_regressions) format_details('Improved', improved, True) format_details('Unchanged (delta < %s%% or delta < %s)' % (args.delta_pct_thresh, format_time(args.delta_usec_thresh)), unchanged, True) else: rows.sort(key=sort_key, reverse=args.sort_descending) out = csv.DictWriter(args.output, OutputRow._fields, dialect='excel-tab') out.writeheader() for row in rows: if row_state(row, args) != UNCHANGED: out.writerow(row._asdict()) return regressions def compare_to_csv_baseline(args): vargs = vars_of_args(args) with io.open(args.compare_to_csv_baseline, 'r', encoding='utf-8') as f: old_stats = read_stats_dict_from_csv(f, select_stat=vargs['select_stat']) m = merge_all_jobstats((s for d in args.remainder for s in load_stats_dir(d, **vargs)), **vargs) old_stats = dict((k, v) for (k, (_, v)) in old_stats.items()) new_stats = m.stats return write_comparison(args, old_stats, new_stats) # Summarize immediate difference between two stats-dirs, optionally def compare_stats_dirs(args): if len(args.remainder) != 2: raise ValueError("Expected exactly 2 stats-dirs") vargs = vars_of_args(args) (old, new) = args.remainder old_stats = merge_all_jobstats(load_stats_dir(old, **vargs), **vargs) new_stats = merge_all_jobstats(load_stats_dir(new, **vargs), **vargs) return write_comparison(args, old_stats.stats, new_stats.stats) # Evaluate a boolean expression in terms of the provided stats-dir; all stats # are projected into python dicts (thus variables in the eval expr) named by # the last identifier in the stat definition. This means you can evaluate # things like 'NumIRInsts < 1000' or # 'NumTypesValidated == NumTypesDeserialized' def evaluate(args): if len(args.remainder) != 1: raise ValueError("Expected exactly 1 stats-dir to evaluate against") d = args.remainder[0] vargs = vars_of_args(args) merged = merge_all_jobstats(load_stats_dir(d, **vargs), **vargs) env = {} ident = re.compile(r'(\w+)$') for (k, v) in merged.stats.items(): if k.startswith("time.") or '.time.' in k: continue m = re.search(ident, k) if m: i = m.groups()[0] if args.verbose: print("%s => %s" % (i, v)) env[i] = v try: if eval(args.evaluate, env): return 0 else: print("evaluate condition failed: '%s'" % args.evaluate) return 1 except Exception as e: print(e) return 1 # Evaluate a boolean expression in terms of deltas between the provided two # stats-dirs; works like evaluate() above but on absolute differences def evaluate_delta(args): if len(args.remainder) != 2: raise ValueError("Expected exactly 2 stats-dirs to evaluate-delta") (old, new) = args.remainder vargs = vars_of_args(args) old_stats = merge_all_jobstats(load_stats_dir(old, **vargs), **vargs) new_stats = merge_all_jobstats(load_stats_dir(new, **vargs), **vargs) env = {} ident = re.compile(r'(\w+)$') for r in compare_stats(args, old_stats.stats, new_stats.stats): if r.name.startswith("time.") or '.time.' in r.name: continue m = re.search(ident, r.name) if m: i = m.groups()[0] if args.verbose: print("%s => %s" % (i, r.delta)) env[i] = r.delta try: if eval(args.evaluate_delta, env): return 0 else: print("evaluate-delta condition failed: '%s'" % args.evaluate_delta) return 1 except Exception as e: print(e) return 1 def render_profiles(args): flamegraph_pl = args.flamegraph_script if flamegraph_pl is None: import distutils.spawn flamegraph_pl = distutils.spawn.find_executable("flamegraph.pl") if flamegraph_pl is None: print("Need flamegraph.pl in $PATH, or pass --flamegraph-script") vargs = vars_of_args(args) for statsdir in args.remainder: jobprofs = list_stats_dir_profiles(statsdir, **vargs) index_path = os.path.join(statsdir, "profile-index.html") all_profile_types = set([k for keys in [j.profiles.keys() for j in jobprofs if j.profiles is not None] for k in keys]) with open(index_path, "wb") as index: for ptype in all_profile_types: index.write("

Profile type: " + ptype + "

\n") index.write("