//===--- MonteCarloE.swift ------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // This test measures performance of Monte Carlo estimation of the e constant. // // We use 'dart' method: we split an interval into N pieces and drop N darts // to this interval. // After that we count number of empty intervals. The probability of being // empty is (1 - 1/N)^N which estimates to e^-1 for large N. // Thus, e = N / Nempty. import TestsUtils public let benchmarks = BenchmarkInfo( name: "MonteCarloE", runFunction: run_MonteCarloE, tags: [.validation, .algorithm], legacyFactor: 20) public func run_MonteCarloE(scale: Int) { var lfsr = LFSR() let n = 10_000 * scale var intervals = [Bool](repeating: false, count: n) for _ in 1...n { let pos = Int(UInt(truncatingIfNeeded: lfsr.next()) % UInt(n)) intervals[pos] = true } let numEmptyIntervals = intervals.filter{!$0}.count // If there are no empty intervals, then obviously the random generator is // not 'random' enough. check(numEmptyIntervals != n) let e_estimate = Double(n)/Double(numEmptyIntervals) let e = 2.71828 check(abs(e_estimate - e) < 0.2) }