//===--- PropertyRelations.cpp - Relations between property rules ---------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2021 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Utility functions used during property map construction to record rewrite // loops that describe certain special identities between rewrite rules that // are discovered by the property map. // // For example, a superclass requirement implies an AnyObject layout // requirement in the Swift language; if both are specified in some set of // user-written requirements, the latter requirement is redundant and should // be dropped from the minimal generic signature. // // This is described by recording a rewrite loop connecting the superclass rule // and the AnyObject layout rule via a special rewrite step known as a // "relation". // //===----------------------------------------------------------------------===// #include "swift/AST/Type.h" #include "swift/Basic/Assertions.h" #include "llvm/Support/raw_ostream.h" #include #include "RewriteSystem.h" using namespace swift; using namespace rewriting; RewriteSystem::Relation RewriteSystem::getRelation(unsigned index) const { return Relations[index]; } /// Record a relation that transforms the left hand side when it appears /// at the end of a term to the right hand side. Returns the relation ID, /// which can be passed to RewriteStep::forRelation(). unsigned RewriteSystem::recordRelation(Term lhs, Term rhs) { auto key = std::make_pair(lhs, rhs); auto found = RelationMap.find(key); if (found != RelationMap.end()) return found->second; unsigned index = Relations.size(); Relations.push_back(key); auto inserted = RelationMap.insert(std::make_pair(key, index)); DEBUG_ASSERT(inserted.second); return index; } /// Given a left-hand side symbol [p1] and a right-hand side symbol /// [p2], record a relation ([p1].[p2] => [p1]), which denotes that /// the property p1 implies the property p2. /// /// An example is a superclass requirement that implies a layout /// requirement. unsigned RewriteSystem::recordRelation(Symbol lhsProperty, Symbol rhsProperty) { DEBUG_ASSERT(lhsProperty.isProperty()); DEBUG_ASSERT(rhsProperty.isProperty()); MutableTerm lhsTerm; lhsTerm.add(lhsProperty); lhsTerm.add(rhsProperty); MutableTerm rhsTerm; rhsTerm.add(lhsProperty); // Record a relation ([p1].[p2] => [p1]). return recordRelation( Term::get(lhsTerm, Context), Term::get(rhsTerm, Context)); } /// Record a relation ([concrete: C].[P] => [concrete: C].[concrete: C : P]) /// or ([superclass: C].[P] => [superclass: C].[concrete: C : P]) which combines /// a concrete type symbol (or a superclass symbol) with a protocol /// symbol to form a single a concrete conformance symbol. unsigned RewriteSystem::recordConcreteConformanceRelation( Symbol concreteSymbol, Symbol protocolSymbol, Symbol concreteConformanceSymbol) { ASSERT(protocolSymbol.getKind() == Symbol::Kind::Protocol); ASSERT(protocolSymbol.getProtocol() == concreteConformanceSymbol.getProtocol()); ASSERT(concreteSymbol.getKind() == Symbol::Kind::Superclass || concreteSymbol.getKind() == Symbol::Kind::ConcreteType); MutableTerm lhsTerm; lhsTerm.add(concreteSymbol); lhsTerm.add(protocolSymbol); MutableTerm rhsTerm; rhsTerm.add(concreteSymbol); rhsTerm.add(concreteConformanceSymbol); return recordRelation( Term::get(lhsTerm, Context), Term::get(rhsTerm, Context)); } /// Record a relation ([concrete: C : P].[P:X].[concrete: C.X] => /// [concrete: C : P].[P:X]) which "concretizes" a nested type C.X of a /// type parameter conforming to P known to equal the concrete type C. unsigned RewriteSystem::recordConcreteTypeWitnessRelation( Symbol concreteConformanceSymbol, Symbol associatedTypeSymbol, Symbol typeWitnessSymbol) { ASSERT(concreteConformanceSymbol.getKind() == Symbol::Kind::ConcreteConformance); ASSERT(associatedTypeSymbol.getKind() == Symbol::Kind::AssociatedType); ASSERT(concreteConformanceSymbol.getProtocol() == associatedTypeSymbol.getProtocol()); ASSERT(typeWitnessSymbol.getKind() == Symbol::Kind::ConcreteType); MutableTerm rhsTerm; rhsTerm.add(concreteConformanceSymbol); rhsTerm.add(associatedTypeSymbol); MutableTerm lhsTerm(rhsTerm); lhsTerm.add(typeWitnessSymbol); return recordRelation( Term::get(lhsTerm, Context), Term::get(rhsTerm, Context)); } /// Record a relation ([concrete: C : P].[P:X].[concrete: C] => /// [concrete: C : P].[P:X]) which "ties off" a nested type C.X that is /// equivalent to C. unsigned RewriteSystem::recordSameTypeWitnessRelation( Symbol concreteConformanceSymbol, Symbol associatedTypeSymbol) { ASSERT(concreteConformanceSymbol.getKind() == Symbol::Kind::ConcreteConformance); ASSERT(associatedTypeSymbol.getKind() == Symbol::Kind::AssociatedType); MutableTerm rhsTerm; rhsTerm.add(concreteConformanceSymbol); auto concreteSymbol = Symbol::forConcreteType( concreteConformanceSymbol.getConcreteType(), concreteConformanceSymbol.getSubstitutions(), Context); MutableTerm lhsTerm(rhsTerm); lhsTerm.add(associatedTypeSymbol); lhsTerm.add(concreteSymbol); return recordRelation( Term::get(lhsTerm, Context), Term::get(rhsTerm, Context)); }