//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arc-sequence-opts" #include "GlobalARCSequenceDataflow.h" #include "ARCBBState.h" #include "ARCSequenceOptUtils.h" #include "RCStateTransitionVisitors.h" #include "swift/SILOptimizer/Analysis/ARCAnalysis.h" #include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h" #include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h" #include "swift/Basic/Assertions.h" #include "swift/SIL/SILInstruction.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILSuccessor.h" #include "swift/SIL/CFG.h" #include "swift/SIL/SILModule.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" using namespace swift; //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// namespace { using ARCBBState = ARCSequenceDataflowEvaluator::ARCBBState; using ARCBBStateInfo = ARCSequenceDataflowEvaluator::ARCBBStateInfo; using ARCBBStateInfoHandle = ARCSequenceDataflowEvaluator::ARCBBStateInfoHandle; } // end anonymous namespace //===----------------------------------------------------------------------===// // Top Down Dataflow //===----------------------------------------------------------------------===// /// Analyze a single BB for refcount inc/dec instructions. /// /// If anything was found it will be added to DecToIncStateMap. /// /// NestingDetected will be set to indicate that the block needs to be /// reanalyzed if code motion occurs. bool ARCSequenceDataflowEvaluator::processBBTopDown(ARCBBState &BBState) { LLVM_DEBUG(llvm::dbgs() << ">>>> Top Down!\n"); SILBasicBlock &BB = BBState.getBB(); bool NestingDetected = false; TopDownDataflowRCStateVisitor DataflowVisitor( RCIA, BBState, DecToIncStateMap, SetFactory); // If the current BB is the entry BB, initialize a state corresponding to each // of its owned parameters. This enables us to know that if we see a retain // before any decrements that the retain is known safe. // // We do not handle guaranteed parameters here since those are handled in the // code in GlobalARCPairingAnalysis. This is because even if we don't do // anything, we will still pair the retain, releases and then the guaranteed // parameter will ensure it is known safe to remove them. if (BB.isEntry()) { auto Args = BB.getArguments(); for (unsigned i = 0, e = Args.size(); i != e; ++i) { DataflowVisitor.visit(Args[i]); } } std::function checkIfRefCountInstIsMatched = [&DecToIncStateMap = DecToIncStateMap](SILInstruction *Inst) { assert(isa(Inst) || isa(Inst)); return DecToIncStateMap.find(Inst) != DecToIncStateMap.end(); }; // For each instruction I in BB... for (auto &I : BB) { LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I); auto Result = DataflowVisitor.visit(I.asSILNode()); // If this instruction can have no further effects on another instructions, // continue. This happens for instance if we have cleared all of the state // we are tracking. if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects) continue; // Make sure that we propagate out whether or not nesting was detected. NestingDetected |= Result.NestingDetected; // This SILValue may be null if we were unable to find a specific RCIdentity // that the instruction "visits". SILValue CurrentRC = Result.RCIdentity; // For all other [(SILValue, TopDownState)] we are tracking... for (auto &OtherState : BBState.getTopDownStates()) { // If the other state's value is blotted, skip it. if (!OtherState.has_value()) continue; // If we visited an increment or decrement successfully (and thus Op is // set), if this is the state for this operand, skip it. We already // processed it. if (CurrentRC && OtherState->first == CurrentRC) continue; OtherState->second.updateForSameLoopInst(&I, AA); OtherState->second.checkAndResetKnownSafety( &I, OtherState->first, checkIfRefCountInstIsMatched, RCIA, AA); } } return NestingDetected; } void ARCSequenceDataflowEvaluator::mergePredecessors( ARCBBStateInfoHandle &DataHandle) { bool HasAtLeastOnePred = false; SILBasicBlock *BB = DataHandle.getBB(); ARCBBState &BBState = DataHandle.getState(); // For each successor of BB... for (SILBasicBlock *PredBB : BB->getPredecessorBlocks()) { // Try to look up the data handle for it. If we don't have any such state, // then the predecessor must be unreachable from the entrance and thus is // uninteresting to us. auto PredDataHandle = getTopDownBBState(PredBB); if (!PredDataHandle) continue; LLVM_DEBUG(llvm::dbgs() << " Merging Pred: " << PredDataHandle->getID() << "\n"); // If the predecessor is the head of a backedge in our traversal, clear any // state we are tracking now and clear the state of the basic block. There // is some sort of control flow here that we do not understand. if (PredDataHandle->isBackedge(BB)) { BBState.clear(); break; } ARCBBState &PredBBState = PredDataHandle->getState(); // If we found the state but the state is for a trap BB, skip it. Trap BBs // leak all reference counts and do not reference semantic objects // in any manner. // // TODO: I think this is a copy paste error, since we a trap BB should have // an unreachable at its end. See if this can be removed. if (PredBBState.isTrapBB()) continue; if (HasAtLeastOnePred) { BBState.mergePredTopDown(PredBBState); continue; } BBState.initPredTopDown(PredBBState); HasAtLeastOnePred = true; } } bool ARCSequenceDataflowEvaluator::processTopDown() { bool NestingDetected = false; LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Top Down! >>>>\n"); // For each BB in our reverse post order... for (auto *BB : POA->get(&F)->getReversePostOrder()) { // We should always have a value here. auto BBDataHandle = getTopDownBBState(BB).value(); // This will always succeed since we have an entry for each BB in our RPOT. // // TODO: When data handles are introduced, print that instead. This code // should not be touching BBIDs directly. LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID() << "\n"); LLVM_DEBUG(llvm::dbgs() << "Merging Predecessors!\n"); mergePredecessors(BBDataHandle); // Then perform the basic block optimization. NestingDetected |= processBBTopDown(BBDataHandle.getState()); } return NestingDetected; } //===----------------------------------------------------------------------===// // Bottom Up Dataflow //===----------------------------------------------------------------------===// /// Analyze a single BB for refcount inc/dec instructions. /// /// If anything was found it will be added to DecToIncStateMap. /// /// NestingDetected will be set to indicate that the block needs to be /// reanalyzed if code motion occurs. /// /// An epilogue release is a release that post dominates all other uses of a /// pointer in a function that implies that the pointer is alive up to that /// point. We "freeze" (i.e. do not attempt to remove or move) such releases if /// FreezeOwnedArgEpilogueReleases is set. This is useful since in certain cases /// due to dataflow issues, we cannot properly propagate the last use /// information. Instead we run an extra iteration of the ARC optimizer with /// this enabled in a side table so the information gets propagated everywhere in /// the CFG. bool ARCSequenceDataflowEvaluator::processBBBottomUp( ARCBBState &BBState, bool FreezeOwnedArgEpilogueReleases) { LLVM_DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n"); SILBasicBlock &BB = BBState.getBB(); bool NestingDetected = false; BottomUpDataflowRCStateVisitor DataflowVisitor( RCIA, EAFI, BBState, FreezeOwnedArgEpilogueReleases, IncToDecStateMap, SetFactory); std::function checkIfRefCountInstIsMatched = [&IncToDecStateMap = IncToDecStateMap](SILInstruction *Inst) { assert(isa(Inst) || isa(Inst)); return IncToDecStateMap.find(Inst) != IncToDecStateMap.end(); }; auto II = BB.rbegin(); if (!isARCSignificantTerminator(&cast(*II))) { II++; } // For each instruction I in BB visited in reverse... for (auto IE = BB.rend(); II != IE;) { SILInstruction &I = *II; ++II; LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I); auto Result = DataflowVisitor.visit(I.asSILNode()); // If this instruction can have no further effects on another instructions, // continue. This happens for instance if we have cleared all of the state // we are tracking. if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects) continue; // Make sure that we propagate out whether or not nesting was detected. NestingDetected |= Result.NestingDetected; // This SILValue may be null if we were unable to find a specific RCIdentity // that the instruction "visits". SILValue CurrentRC = Result.RCIdentity; // For all other (reference counted value, ref count state) we are // tracking... for (auto &OtherState : BBState.getBottomupStates()) { // If the other state's value is blotted, skip it. if (!OtherState.has_value()) continue; // If this is the state associated with the instruction that we are // currently visiting, bail. if (CurrentRC && OtherState->first == CurrentRC) continue; OtherState->second.updateForSameLoopInst(&I, AA); OtherState->second.checkAndResetKnownSafety( &I, OtherState->first, checkIfRefCountInstIsMatched, RCIA, AA); } } return NestingDetected; } void ARCSequenceDataflowEvaluator:: mergeSuccessors(ARCBBStateInfoHandle &DataHandle) { SILBasicBlock *BB = DataHandle.getBB(); ARCBBState &BBState = DataHandle.getState(); // For each successor of BB... ArrayRef Succs = BB->getSuccessors(); bool HasAtLeastOneSucc = false; for (unsigned i = 0, e = Succs.size(); i != e; ++i) { // If it does not have a basic block associated with it... auto *SuccBB = Succs[i].getBB(); // Skip it. if (!SuccBB) continue; // If the BB is the head of a backedge in our traversal, we have // hit a loop boundary. In that case, add any instructions we are // tracking or instructions that we have seen to the banned // instruction list. Clear the instructions we are tracking // currently, but leave that we saw a release on them. In a post // order, we know that all of a BB's successors will always be // visited before the BB, implying we will know if conservatively // we saw a release on the pointer going down all paths. if (DataHandle.isBackedge(SuccBB)) { BBState.clear(); break; } // Otherwise, lookup the BBState associated with the successor and merge // the successor in. We know this will always succeed. auto SuccDataHandle = *getBottomUpBBState(SuccBB); ARCBBState &SuccBBState = SuccDataHandle.getState(); if (SuccBBState.isTrapBB()) continue; if (HasAtLeastOneSucc) { BBState.mergeSuccBottomUp(SuccBBState); continue; } BBState.initSuccBottomUp(SuccBBState); HasAtLeastOneSucc = true; } } bool ARCSequenceDataflowEvaluator::processBottomUp( bool FreezeOwnedArgEpilogueReleases) { bool NestingDetected = false; LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Bottom Up! >>>>\n"); // For each BB in our post order... for (auto *BB : POA->get(&F)->getPostOrder()) { // Grab the BBState associated with it and set it to be the current BB. auto BBDataHandle = *getBottomUpBBState(BB); // This will always succeed since we have an entry for each BB in our post // order. LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID() << "\n"); LLVM_DEBUG(llvm::dbgs() << "Merging Successors!\n"); mergeSuccessors(BBDataHandle); // Then perform the basic block optimization. NestingDetected |= processBBBottomUp(BBDataHandle.getState(), FreezeOwnedArgEpilogueReleases); } return NestingDetected; } //===----------------------------------------------------------------------===// // Top Level ARC Sequence Dataflow Evaluator //===----------------------------------------------------------------------===// ARCSequenceDataflowEvaluator::ARCSequenceDataflowEvaluator( SILFunction &F, AliasAnalysis *AA, PostOrderAnalysis *POA, RCIdentityFunctionInfo *RCIA, EpilogueARCFunctionInfo *EAFI, ProgramTerminationFunctionInfo *PTFI, BlotMapVector &DecToIncStateMap, BlotMapVector &IncToDecStateMap) : F(F), AA(AA), POA(POA), RCIA(RCIA), EAFI(EAFI), DecToIncStateMap(DecToIncStateMap), IncToDecStateMap(IncToDecStateMap), Allocator(), SetFactory(Allocator), // We use a malloced pointer here so we don't need to expose // ARCBBStateInfo in the header. BBStateInfo(new ARCBBStateInfo(&F, POA, PTFI)) {} bool ARCSequenceDataflowEvaluator::run(bool FreezeOwnedReleases) { bool NestingDetected = processBottomUp(FreezeOwnedReleases); NestingDetected |= processTopDown(); LLVM_DEBUG( llvm::dbgs() << "*** Bottom-Up and Top-Down analysis results ***\n"); LLVM_DEBUG(dumpDataflowResults()); return NestingDetected; } void ARCSequenceDataflowEvaluator::dumpDataflowResults() { llvm::dbgs() << "IncToDecStateMap:\n"; for (auto it : IncToDecStateMap) { if (!it.has_value()) continue; auto instAndState = it.value(); llvm::dbgs() << "Increment: "; instAndState.first->dump(); instAndState.second.dump(); } llvm::dbgs() << "DecToIncStateMap:\n"; for (auto it : DecToIncStateMap) { if (!it.has_value()) continue; auto instAndState = it.value(); llvm::dbgs() << "Decrement: "; instAndState.first->dump(); instAndState.second.dump(); } } // We put the destructor here so we don't need to expose the type of // BBStateInfo to the outside world. ARCSequenceDataflowEvaluator::~ARCSequenceDataflowEvaluator() = default; void ARCSequenceDataflowEvaluator::clear() { BBStateInfo->clear(); } std::optional ARCSequenceDataflowEvaluator::getBottomUpBBState(SILBasicBlock *BB) { return BBStateInfo->getBottomUpBBHandle(BB); } std::optional ARCSequenceDataflowEvaluator::getTopDownBBState(SILBasicBlock *BB) { return BBStateInfo->getTopDownBBHandle(BB); }