//===--- ARCAnalysis.cpp - SIL ARC Analysis -------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-arc-analysis" #include "swift/SILOptimizer/Analysis/ARCAnalysis.h" #include "swift/Basic/Assertions.h" #include "swift/SIL/DebugUtils.h" #include "swift/SIL/InstructionUtils.h" #include "swift/SIL/Projection.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILInstruction.h" #include "swift/SILOptimizer/Analysis/AliasAnalysis.h" #include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h" #include "swift/SILOptimizer/Analysis/ValueTracking.h" #include "swift/SILOptimizer/Utils/InstOptUtils.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Debug.h" using namespace swift; using BasicBlockRetainValue = std::pair; //===----------------------------------------------------------------------===// // Utility Analysis //===----------------------------------------------------------------------===// bool swift::isRetainInstruction(SILInstruction *I) { switch (I->getKind()) { #define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \ case SILInstructionKind::Name##RetainInst: #include "swift/AST/ReferenceStorage.def" case SILInstructionKind::StrongRetainInst: case SILInstructionKind::RetainValueInst: return true; default: return false; } } bool swift::isReleaseInstruction(SILInstruction *I) { switch (I->getKind()) { #define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \ case SILInstructionKind::Name##ReleaseInst: #include "swift/AST/ReferenceStorage.def" case SILInstructionKind::StrongReleaseInst: case SILInstructionKind::ReleaseValueInst: return true; default: return false; } } //===----------------------------------------------------------------------===// // Decrement Analysis //===----------------------------------------------------------------------===// bool swift::mayDecrementRefCount(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) { // First do a basic check, mainly based on the type of instruction. // Reading the RC is as "bad" as releasing. if (!User->mayReleaseOrReadRefCount()) return false; // Ok, this instruction may have ref counts. If it is an apply, attempt to // prove that the callee is unable to affect Ptr. if (auto *AI = dyn_cast(User)) return AA->canApplyDecrementRefCount(AI, Ptr); if (auto *TAI = dyn_cast(User)) return AA->canApplyDecrementRefCount(TAI, Ptr); if (auto *BI = dyn_cast(User)) return AA->canBuiltinDecrementRefCount(BI, Ptr); // We cannot conservatively prove that this instruction cannot decrement the // ref count of Ptr. So assume that it does. return true; } //===----------------------------------------------------------------------===// // Use Analysis //===----------------------------------------------------------------------===// /// Returns true if a builtin apply can use reference counted values. /// /// The main case that this handles here are builtins that via read none imply /// that they cannot read globals and at the same time do not take any /// non-trivial types via the arguments. The reason why we care about taking /// non-trivial types as arguments is that we want to be careful in the face of /// intrinsics that may be equivalent to bitcast and inttoptr operations. static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) { auto *F = BInst->getFunction(); auto &II = BInst->getIntrinsicInfo(); if (II.ID != llvm::Intrinsic::not_intrinsic) { auto attrs = II.getOrCreateAttributes(F->getASTContext()); if (attrs.getMemoryEffects().doesNotAccessMemory()) { for (auto &Op : BInst->getAllOperands()) { if (!Op.get()->getType().isTrivial(*F)) { return true; } } return false; } return true; } auto &BI = BInst->getBuiltinInfo(); if (!BI.isReadNone()) return true; for (auto &Op : BInst->getAllOperands()) { if (!Op.get()->getType().isTrivial(*F)) { return true; } } return false; } /// Returns true if \p Inst may access any indirect object either via an address /// or reference. /// /// If these instructions do have an address or reference type operand, then /// they only operate on the value of the address itself, not the /// memory. i.e. they don't dereference the address. bool swift::canUseObject(SILInstruction *Inst) { switch (Inst->getKind()) { // These instructions do not use other values. case SILInstructionKind::FunctionRefInst: case SILInstructionKind::DynamicFunctionRefInst: case SILInstructionKind::PreviousDynamicFunctionRefInst: case SILInstructionKind::IntegerLiteralInst: case SILInstructionKind::FloatLiteralInst: case SILInstructionKind::StringLiteralInst: case SILInstructionKind::AllocStackInst: case SILInstructionKind::AllocRefInst: case SILInstructionKind::AllocRefDynamicInst: case SILInstructionKind::AllocBoxInst: case SILInstructionKind::MetatypeInst: case SILInstructionKind::WitnessMethodInst: return false; // DeallocStackInst do not use reference counted values. case SILInstructionKind::DeallocStackInst: return false; // Debug values do not use referenced counted values in a manner we care // about. case SILInstructionKind::DebugValueInst: return false; // Casts do not use pointers in a manner that we care about since we strip // them during our analysis. The reason for this is if the cast is not dead // then there must be some other use after the cast that we will protect if a // release is not in between the cast and the use. // // Note: UncheckedRefCastAddrInst moves a reference into a new object. While // the net reference count should be zero, there's no guarantee it won't // access the object. case SILInstructionKind::UpcastInst: case SILInstructionKind::AddressToPointerInst: case SILInstructionKind::PointerToAddressInst: case SILInstructionKind::UncheckedRefCastInst: case SILInstructionKind::UncheckedAddrCastInst: case SILInstructionKind::RefToRawPointerInst: case SILInstructionKind::RawPointerToRefInst: case SILInstructionKind::UncheckedBitwiseCastInst: case SILInstructionKind::EndInitLetRefInst: case SILInstructionKind::BeginDeallocRefInst: return false; // If we have a trivial bit cast between trivial types, it is not something // that can use ref count ops in a way we care about. We do need to be careful // with uses with ref count inputs. In such a case, we assume conservatively // that the bit cast could use it. // // The reason why this is different from the ref bitcast is b/c the use of a // ref bit cast is still a ref typed value implying that our ARC dataflow will // properly handle its users. A conversion of a reference count value to a // trivial value though could be used as a trivial value in ways that ARC // dataflow will not understand implying we need to treat it as a use to be // safe. case SILInstructionKind::UncheckedTrivialBitCastInst: { SILValue Op = cast(Inst)->getOperand(); return !Op->getType().isTrivial(*Inst->getFunction()); } // Typed GEPs do not use pointers. The user of the typed GEP may but we will // catch that via the dataflow. case SILInstructionKind::StructExtractInst: case SILInstructionKind::TupleExtractInst: case SILInstructionKind::StructElementAddrInst: case SILInstructionKind::TupleElementAddrInst: case SILInstructionKind::UncheckedTakeEnumDataAddrInst: case SILInstructionKind::RefElementAddrInst: case SILInstructionKind::RefTailAddrInst: case SILInstructionKind::UncheckedEnumDataInst: case SILInstructionKind::IndexAddrInst: case SILInstructionKind::IndexRawPointerInst: return false; // Aggregate formation by themselves do not create new uses since it is their // users that would create the appropriate uses. case SILInstructionKind::EnumInst: case SILInstructionKind::StructInst: case SILInstructionKind::TupleInst: return false; // Only uses non reference counted values. case SILInstructionKind::CondFailInst: return false; case SILInstructionKind::BuiltinInst: { auto *BI = cast(Inst); // Certain builtin function refs we know can never use non-trivial values. return canApplyOfBuiltinUseNonTrivialValues(BI); } // We do not care about branch inst, since if the branch inst's argument is // dead, LLVM will clean it up. case SILInstructionKind::BranchInst: case SILInstructionKind::CondBranchInst: return false; default: return true; } } static bool doOperandsAlias(ArrayRef Ops, SILValue Ptr, AliasAnalysis *AA) { // If any are not no alias, we have a use. return std::any_of(Ops.begin(), Ops.end(), [&AA, &Ptr](const Operand &Op) -> bool { return AA->mayAlias(Ptr, Op.get()); }); } static bool canTerminatorUseValue(TermInst *TI, SILValue Ptr, AliasAnalysis *AA) { if (auto *BI = dyn_cast(TI)) { return doOperandsAlias(BI->getAllOperands(), Ptr, AA); } if (auto *CBI = dyn_cast(TI)) { bool First = doOperandsAlias(CBI->getTrueOperands(), Ptr, AA); bool Second = doOperandsAlias(CBI->getFalseOperands(), Ptr, AA); return First || Second; } if (auto *SWEI = dyn_cast(TI)) { return doOperandsAlias(SWEI->getAllOperands(), Ptr, AA); } if (auto *SWVI = dyn_cast(TI)) { return doOperandsAlias(SWVI->getAllOperands(), Ptr, AA); } auto *CCBI = dyn_cast(TI); // If we don't have this last case, be conservative and assume that we can use // the value. if (!CCBI) return true; // Otherwise, look at the operands. return doOperandsAlias(CCBI->getAllOperands(), Ptr, AA); } bool swift::mayHaveSymmetricInterference(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) { // If Inst is an instruction that we know can never use values with reference // semantics, return true. Check this before AliasAnalysis because some memory // operations, like dealloc_stack, don't use ref counted values. if (!canUseObject(User)) return false; if (auto *LI = dyn_cast(User)) { return AA->isAddrVisibleFromObject(LI->getOperand(), Ptr); } if (auto *SI = dyn_cast(User)) { return AA->isAddrVisibleFromObject(SI->getDest(), Ptr); } if (User->mayReadOrWriteMemory()) return true; // If we have a terminator instruction, see if it can use ptr. This currently // means that we first show that TI cannot indirectly use Ptr and then use // alias analysis on the arguments. if (auto *TI = dyn_cast(User)) return canTerminatorUseValue(TI, Ptr, AA); // TODO: If we add in alias analysis support here for apply inst, we will need // to check that the pointer does not escape. // Otherwise, assume that Inst can use Target. return true; } //===----------------------------------------------------------------------===// // Must Use Analysis //===----------------------------------------------------------------------===// /// Returns true if User must use Ptr. /// /// In terms of ARC this means that if we do not remove User, all releases post /// dominated by User are known safe. bool swift::mustUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) { // Right now just pattern match applies. auto *AI = dyn_cast(User); if (!AI) return false; // If any of AI's arguments must alias Ptr, return true. for (SILValue Arg : AI->getArguments()) if (Arg == Ptr) return true; return false; } /// Returns true if User must use Ptr in a guaranteed way. /// /// This means that assuming that everything is conservative, we can ignore the /// ref count effects of User on Ptr since we will only remove things over /// guaranteed parameters if we are known safe in both directions. bool swift::mustGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) { // Right now just pattern match applies. auto *AI = dyn_cast(User); if (!AI) return false; // For now just look for guaranteed self. // // TODO: Expand this to handle *any* guaranteed parameter. if (!AI->hasGuaranteedSelfArgument()) return false; // Return true if Ptr alias's self. return AI->getSelfArgument() == Ptr; } //===----------------------------------------------------------------------===// // Utility Methods for determining use, decrement of values in a contiguous // instruction range in one BB. //===----------------------------------------------------------------------===// /// If \p Op has arc uses in the instruction range [Start, End), return the /// first such instruction. Otherwise return None. We assume that /// Start and End are both in the same basic block. std::optional swift::valueHasARCUsesInInstructionRange( SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End, AliasAnalysis *AA) { assert(Start->getParent() == End->getParent() && "Start and End should be in the same basic block"); // If Start == End, then we have an empty range, return false. if (Start == End) return std::nullopt; // Otherwise, until Start != End. while (Start != End) { // Check if Start can use Op in an ARC relevant way. If so, return true. if (mayHaveSymmetricInterference(&*Start, Op, AA)) return Start; // Otherwise, increment our iterator. ++Start; } // If all such instructions cannot use Op, return false. return std::nullopt; } /// If \p Op has arc uses in the instruction range (Start, End], return the /// first such instruction. Otherwise return None. We assume that Start and End /// are both in the same basic block. std::optional swift::valueHasARCUsesInReverseInstructionRange(SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End, AliasAnalysis *AA) { assert(Start->getParent() == End->getParent() && "Start and End should be in the same basic block"); assert(End != End->getParent()->end() && "End should be mapped to an actual instruction"); // If Start == End, then we have an empty range, return false. if (Start == End) return std::nullopt; // Otherwise, until End == Start. while (Start != End) { // Check if Start can use Op in an ARC relevant way. If so, return true. if (mayHaveSymmetricInterference(&*End, Op, AA)) return End; // Otherwise, decrement our iterator. --End; } // If all such instructions cannot use Op, return false. return std::nullopt; } /// If \p Op has instructions in the instruction range (Start, End] which may /// decrement it, return the first such instruction. Returns None /// if no such instruction exists. We assume that Start and End are both in the /// same basic block. std::optional swift::valueHasARCDecrementOrCheckInInstructionRange( SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End, AliasAnalysis *AA) { assert(Start->getParent() == End->getParent() && "Start and End should be in the same basic block"); // If Start == End, then we have an empty range, return nothing. if (Start == End) return std::nullopt; // Otherwise, until Start != End. while (Start != End) { // Check if Start can decrement or check Op's ref count. If so, return // Start. Ref count checks do not have side effects, but are barriers for // retains. if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start)) return Start; // Otherwise, increment our iterator. ++Start; } // If all such instructions cannot decrement Op, return nothing. return std::nullopt; } bool swift:: mayGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) { // Instructions that check the ref count are modeled as both a potential // decrement and a use. if (mayCheckRefCount(User)) { switch (User->getKind()) { case SILInstructionKind::IsUniqueInst: // This instruction takes the address of its referent, so there's no way // for the optimizer to reuse the reference across it (it appears to // mutate the reference itself). In fact it's operand's RC root would be // the parent object. This means we can ignore it as a direct RC user. return false; case SILInstructionKind::DestroyNotEscapedClosureInst: // FIXME: this is overly conservative. It should return true only of the // RC identity of the single operand matches Ptr. return true; case SILInstructionKind::BeginCOWMutationInst: // begin_cow_mutation takes the argument as owned and produces a new // owned result. return false; default: llvm_unreachable("Unexpected check-ref-count instruction."); } } // Only full apply sites can require a guaranteed lifetime. If we don't have // one, bail. if (!isa(User)) return false; FullApplySite FAS(User); // Ok, we have a full apply site. Check if the callee is callee_guaranteed. In // such a case, if we can not prove no alias, we need to be conservative and // return true. CanSILFunctionType FType = FAS.getSubstCalleeType(); if (FType->isCalleeGuaranteed() && AA->mayAlias(FAS.getCallee(), Ptr)) { return true; } // Ok, we have a full apply site and our callee is a normal use. Thus if the // apply does not have any normal arguments, we don't need to worry about any // guaranteed parameters and return early. if (!FAS.getNumArguments()) return false; // Ok, we have an apply site with arguments. Look at the function type and // iterate through the function parameters. If any of the parameters are // guaranteed, attempt to prove that the passed in parameter cannot alias // Ptr. If we fail, return true. auto Params = FType->getParameters(); for (unsigned i : indices(Params)) { if (!Params[i].isGuaranteedInCaller()) continue; SILValue Op = FAS.getArgumentsWithoutIndirectResults()[i]; if (AA->mayAlias(Op, Ptr)) return true; } // Ok, we were able to prove that all arguments to the apply that were // guaranteed do not alias Ptr. Return false. return false; } //===----------------------------------------------------------------------===// // Owned Result Utilities //===----------------------------------------------------------------------===// ConsumedResultToEpilogueRetainMatcher:: ConsumedResultToEpilogueRetainMatcher(RCIdentityFunctionInfo *RCFI, AliasAnalysis *AA, SILFunction *F) : F(F), RCFI(RCFI), AA(AA) { recompute(); } void ConsumedResultToEpilogueRetainMatcher::recompute() { EpilogueRetainInsts.clear(); // Find the return BB of F. If we fail, then bail. SILFunction::iterator BB = F->findReturnBB(); if (BB == F->end()) return; findMatchingRetains(&*BB); } bool ConsumedResultToEpilogueRetainMatcher::isTransitiveSuccessorsRetainFree( const llvm::DenseSet &BBs) { // For every block with retain, we need to check the transitive // closure of its successors are retain-free. for (auto &I : EpilogueRetainInsts) { for (auto &Succ : I->getParent()->getSuccessors()) { if (BBs.count(Succ)) continue; return false; } } // FIXME: We are iterating over a DenseSet. That can lead to non-determinism // and is in general pretty inefficient since we are iterating over a hash // table. for (auto CBB : BBs) { for (auto &Succ : CBB->getSuccessors()) { if (BBs.count(Succ)) continue; return false; } } return true; } ConsumedResultToEpilogueRetainMatcher::RetainKindValue ConsumedResultToEpilogueRetainMatcher:: findMatchingRetainsInBasicBlock(SILBasicBlock *BB, SILValue V) { for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { // Handle self-recursion. if (auto *AI = dyn_cast(&*II)) if (AI->getCalleeFunction() == BB->getParent()) return std::make_pair(FindRetainKind::Recursion, AI); // If we do not have a retain_value or strong_retain... if (!isa(*II) && !isa(*II)) { // we can ignore it if it can not decrement the reference count of the // return value. if (!mayDecrementRefCount(&*II, V, AA)) continue; // Otherwise, we need to stop computing since we do not want to create // lifetime gap. return std::make_pair(FindRetainKind::Blocked, nullptr); } // Ok, we have a retain_value or strong_retain. Grab Target and find the // RC identity root of its operand. SILInstruction *Target = &*II; SILValue RetainValue = RCFI->getRCIdentityRoot(Target->getOperand(0)); SILValue ReturnValue = RCFI->getRCIdentityRoot(V); // Is this the epilogue retain we are looking for ?. // We break here as we do not know whether this is a part of the epilogue // retain for the @own return value. if (RetainValue != ReturnValue) break; return std::make_pair(FindRetainKind::Found, &*II); } // Did not find retain in this block. return std::make_pair(FindRetainKind::None, nullptr); } void ConsumedResultToEpilogueRetainMatcher:: findMatchingRetains(SILBasicBlock *BB) { // Iterate over the instructions post-order and find retains associated with // return value. SILValue RV = SILValue(); for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { if (auto *RI = dyn_cast(&*II)) { RV = RI->getOperand(); break; } } // Somehow, we managed not to find a return value. if (!RV) return; // OK. we've found the return value, now iterate on the CFG to find all the // post-dominating retains. // // The ConsumedResultToEpilogueRetainMatcher finds the final releases // in the following way. // // 1. If an instruction, which is not releaseinst nor releasevalue, that // could decrement reference count is found. bail out. // // 2. If a release is found and the release that can not be mapped to any // @owned argument. bail as this release may well be the final release of // an @owned argument, but somehow rc-identity fails to prove that. // // 3. A release that is mapped to an argument which already has a release // that overlaps with this release. This release for sure is not the final // release. constexpr unsigned WorkListMaxSize = 4; llvm::DenseSet RetainFrees; llvm::SmallVector WorkList; llvm::DenseSet HandledBBs; WorkList.push_back(std::make_pair(BB, RV)); HandledBBs.insert(BB); while (!WorkList.empty()) { // Too many blocks ?. if (WorkList.size() > WorkListMaxSize) { EpilogueRetainInsts.clear(); return; } // Try to find a retain %value in this basic block. auto R = WorkList.pop_back_val(); RetainKindValue Kind = findMatchingRetainsInBasicBlock(R.first, R.second); // We've found a retain on this path. if (Kind.first == FindRetainKind::Found) { EpilogueRetainInsts.push_back(Kind.second); continue; } // There is a MayDecrement instruction. if (Kind.first == FindRetainKind::Blocked) { EpilogueRetainInsts.clear(); return; } // There is a self-recursion. Use the apply instruction as the retain. if (Kind.first == FindRetainKind::Recursion) { EpilogueRetainInsts.push_back(Kind.second); continue; } // Did not find a retain in this block, try to go to its predecessors. if (Kind.first == FindRetainKind::None) { // We can not find a retain in a block with no predecessors. if (R.first->getPredecessorBlocks().begin() == R.first->getPredecessorBlocks().end()) { EpilogueRetainInsts.clear(); return; } // This block does not have a retain. RetainFrees.insert(R.first); // If this is a SILArgument of current basic block, we can split it up to // values in the predecessors. auto *SA = dyn_cast(R.second); if (SA && SA->getParent() != R.first) SA = nullptr; for (auto X : R.first->getPredecessorBlocks()) { if (HandledBBs.contains(X)) continue; // Try to use the predecessor edge-value. if (SA && SA->getIncomingPhiValue(X)) { WorkList.push_back(std::make_pair(X, SA->getIncomingPhiValue(X))); } else WorkList.push_back(std::make_pair(X, R.second)); HandledBBs.insert(X); } } } // Lastly, check whether all the successor blocks are retain-free. if (!isTransitiveSuccessorsRetainFree(RetainFrees)) EpilogueRetainInsts.clear(); // At this point, we've either failed to find any epilogue retains or // all the post-dominating epilogue retains. } //===----------------------------------------------------------------------===// // Owned Argument Utilities //===----------------------------------------------------------------------===// ConsumedArgToEpilogueReleaseMatcher::ConsumedArgToEpilogueReleaseMatcher( RCIdentityFunctionInfo *RCFI, SILFunction *F, ArrayRef ArgumentConventions, ExitKind Kind) : F(F), RCFI(RCFI), Kind(Kind), ArgumentConventions(ArgumentConventions), ProcessedBlock(nullptr) { recompute(); } void ConsumedArgToEpilogueReleaseMatcher::recompute() { ArgInstMap.clear(); // Find the return BB of F. If we fail, then bail. SILFunction::iterator BB; switch (Kind) { case ExitKind::Return: BB = F->findReturnBB(); break; case ExitKind::Throw: BB = F->findThrowBB(); break; } if (BB == F->end()) { ProcessedBlock = nullptr; return; } ProcessedBlock = &*BB; findMatchingReleases(&*BB); } bool ConsumedArgToEpilogueReleaseMatcher::isRedundantRelease( ArrayRef Insts, SILValue Base, SILValue Derived) { // We use projection path to analyze the relation. auto POp = ProjectionPath::getProjectionPath(Base, Derived); // We can not build a projection path from the base to the derived, bail out. // and return true so that we can stop the epilogue walking sequence. if (!POp.has_value()) return true; for (auto &R : Insts) { SILValue ROp = R->getOperand(0); auto PROp = ProjectionPath::getProjectionPath(Base, ROp); if (!PROp.has_value()) return true; // If Op is a part of ROp or Rop is a part of Op. then we have seen // a redundant release. if (!PROp.value().hasNonEmptySymmetricDifference(POp.value())) return true; } return false; } bool ConsumedArgToEpilogueReleaseMatcher::releaseArgument( ArrayRef Insts, SILValue Arg) { // Reason about whether all parts are released. auto *F = (*Insts.begin())->getFunction(); // These are the list of SILValues that are actually released. ProjectionPathSet Paths; for (auto &I : Insts) { auto PP = ProjectionPath::getProjectionPath(Arg, I->getOperand(0)); if (!PP) return false; Paths.insert(PP.value()); } // Is there an uncovered non-trivial type. return !ProjectionPath::hasUncoveredNonTrivials(Arg->getType(), *F, Paths); } void ConsumedArgToEpilogueReleaseMatcher:: processMatchingReleases() { // If we can not find a release for all parts with reference semantics // that means we did not find all releases for the base. for (auto &pair : ArgInstMap) { // We do not know if we have a fully post dominating release set // so all release sets should be considered partially post // dominated. auto releaseSet = pair.second.getPartiallyPostDomReleases(); if (!releaseSet) continue; // If an argument has a single release and it is rc-identical to the // SILArgument. Then we do not need to use projection to check for whether // all non-trivial fields are covered. if (releaseSet->size() == 1) { SILInstruction *inst = *releaseSet->begin(); SILValue rv = inst->getOperand(0); if (pair.first == RCFI->getRCIdentityRoot(rv)) { pair.second.setHasJointPostDominatingReleaseSet(); continue; } } // OK. we have multiple epilogue releases for this argument, check whether // it has covered all fields with reference semantic in the argument. if (!releaseArgument(*releaseSet, pair.first)) continue; // OK. At this point we know that we found a joint post dominating // set of releases. Mark our argument as such. pair.second.setHasJointPostDominatingReleaseSet(); } } /// Check if a given argument convention is in the list /// of possible argument conventions. static bool isOneOfConventions(SILArgumentConvention Convention, ArrayRef ArgumentConventions) { for (auto ArgumentConvention : ArgumentConventions) { if (Convention == ArgumentConvention) return true; } return false; } void ConsumedArgToEpilogueReleaseMatcher::collectMatchingDestroyAddresses( SILBasicBlock *block) { // Check if we can find destroy_addr for each @in argument. SILFunction::iterator anotherEpilogueBB = (Kind == ExitKind::Return) ? F->findThrowBB() : F->findReturnBB(); for (auto *arg : F->begin()->getSILFunctionArguments()) { if (arg->isIndirectResult()) continue; if (arg->getArgumentConvention() != SILArgumentConvention::Indirect_In) continue; bool hasDestroyAddrOutsideEpilogueBB = false; // This is an @in argument. Check if there are any destroy_addr // instructions for it. for (Operand *op : getNonDebugUses(arg)) { auto *user = op->getUser(); if (!isa(user)) continue; // Do not take into account any uses in the other // epilogue BB. if (anotherEpilogueBB != F->end() && user->getParent() == &*anotherEpilogueBB) continue; if (user->getParent() != block) hasDestroyAddrOutsideEpilogueBB = true; // Since ArgumentState uses a TinyPtrVector, creating // temporaries containing one element is cheap. auto iter = ArgInstMap.insert({arg, ArgumentState(user)}); // We inserted the value. if (iter.second) continue; // Otherwise, add this release to the set. iter.first->second.addRelease(user); } // Don't know how to handle destroy_addr outside of the epilogue. if (hasDestroyAddrOutsideEpilogueBB) ArgInstMap.erase(arg); } } void ConsumedArgToEpilogueReleaseMatcher::collectMatchingReleases( SILBasicBlock *block) { // Iterate over the instructions post-order and find final releases // associated with each arguments. // // The ConsumedArgToEpilogueReleaseMatcher finds the final releases // in the following way. // // 1. If an instruction, which is not releaseinst nor releasevalue, that // could decrement reference count is found. bail out. // // 2. If a release is found and the release that can not be mapped to any // @owned argument. bail as this release may well be the final release of // an @owned argument, but somehow rc-identity fails to prove that. // // 3. A release that is mapped to an argument which already has a release // that overlaps with this release. This release for sure is not the final // release. bool isTrackingInArgs = isOneOfConventions(SILArgumentConvention::Indirect_In, ArgumentConventions); for (auto &inst : llvm::reverse(*block)) { if (isTrackingInArgs && isa(inst)) { // It is probably a destroy addr for an @in argument. continue; } // If we do not have a release_value or strong_release. We can continue if (!isa(inst) && !isa(inst)) { // We cannot match a final release if it is followed by a dealloc_ref. if (isa(inst) || isa(inst)) break; // We do not know what this instruction is, do a simple check to make sure // that it does not decrement the reference count of any of its operand. // // TODO: we could make the logic here more complicated to handle each type // of instructions in a more precise manner. if (!inst.mayRelease()) continue; // This instruction may release something, bail out conservatively. break; } // Ok, we have a release_value or strong_release. Grab Target and find the // RC identity root of its operand. SILValue origOp = inst.getOperand(0); SILValue op = RCFI->getRCIdentityRoot(origOp); // Check whether this is a SILArgument or a part of a SILArgument. This is // possible after we expand release instructions in SILLowerAgg pass. auto *arg = dyn_cast(stripValueProjections(op)); if (!arg) break; // If Op is not a consumed argument, we must break since this is not an Op // that is a part of a return sequence. We are being conservative here since // we could make this more general by allowing for intervening non-arg // releases in the sense that we do not allow for race conditions in between // destructors. if (!isOneOfConventions(arg->getArgumentConvention(), ArgumentConventions)) break; // Ok, we have a release on a SILArgument that has a consuming convention. // Attempt to put it into our arc opts map. If we already have it, we have // exited the return value sequence so break. Otherwise, continue looking // for more arc operations. auto iter = ArgInstMap.find(arg); if (iter == ArgInstMap.end()) { ArgInstMap.insert({arg, {&inst}}); continue; } // We've already seen at least part of this base. Check to see whether we // are seeing a redundant release. // // If we are seeing a redundant release we have exited the return value // sequence, so break. if (!isa(inst)) { // We do not know if we have a fully post dominating release // set, so we use the partial post dom entry point. if (auto partialReleases = iter->second.getPartiallyPostDomReleases()) { if (isRedundantRelease(*partialReleases, arg, origOp)) { break; } } } // We've seen part of this base, but this is a part we've have not seen. // Record it. iter->second.addRelease(&inst); } if (isTrackingInArgs) { // Find destroy_addr for each @in argument. collectMatchingDestroyAddresses(block); } } void ConsumedArgToEpilogueReleaseMatcher:: findMatchingReleases(SILBasicBlock *BB) { // Walk the given basic block to find all the epilogue releases. collectMatchingReleases(BB); // We've exited the epilogue sequence, try to find out which parameter we // have all the epilogue releases for and which one we did not. processMatchingReleases(); } //===----------------------------------------------------------------------===// // Leaking BB Analysis //===----------------------------------------------------------------------===// static bool ignorableApplyInstInUnreachableBlock(const ApplyInst *AI) { auto applySite = FullApplySite(const_cast(AI)); return applySite.isCalleeKnownProgramTerminationPoint(); } static bool ignorableBuiltinInstInUnreachableBlock(const BuiltinInst *BI) { const BuiltinInfo &BInfo = BI->getBuiltinInfo(); if (BInfo.ID == BuiltinValueKind::CondUnreachable) return true; const IntrinsicInfo &IInfo = BI->getIntrinsicInfo(); if (IInfo.ID == llvm::Intrinsic::trap) return true; return false; } /// Match a call to a trap BB with no ARC relevant side effects. bool swift::isARCInertTrapBB(const SILBasicBlock *BB) { // Do a quick check at the beginning to make sure that our terminator is // actually an unreachable. This ensures that in many cases this function will // exit early and quickly. auto II = BB->rbegin(); if (!isa(*II)) return false; auto IE = BB->rend(); while (II != IE) { // Ignore any instructions without side effects. if (!II->mayHaveSideEffects()) { ++II; continue; } // Ignore cond fail. if (isa(*II)) { ++II; continue; } // Check for apply insts that we can ignore. if (auto *AI = dyn_cast(&*II)) { if (ignorableApplyInstInUnreachableBlock(AI)) { ++II; continue; } } // Check for builtins that we can ignore. if (auto *BI = dyn_cast(&*II)) { if (ignorableBuiltinInstInUnreachableBlock(BI)) { ++II; continue; } } // If we can't ignore the instruction, return false. return false; } // Otherwise, we have an unreachable and every instruction is inert from an // ARC perspective in an unreachable BB. return true; }