//===--- DeadObjectElimination.cpp - Remove unused objects ---------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This pass eliminates store only alloc_ref objects that have destructors // without side effects. // // The high level overview of the algorithm is that first it visits the // destructor and attempts to prove that the destructor is well behaved, i.e. it // does not have any side effects outside of the destructor itself. If the // destructor can be proven to be well behaved, it then goes through the use // list of the alloc_ref and attempts to prove that the alloc_ref does not // escape or is used in a way that could cause side effects. If both of those // conditions apply, the alloc_ref and its entire use graph is eliminated. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dead-object-elim" #include "swift/Basic/Assertions.h" #include "swift/Basic/IndexTrie.h" #include "swift/AST/ResilienceExpansion.h" #include "swift/SIL/BasicBlockUtils.h" #include "swift/SIL/DebugUtils.h" #include "swift/SIL/InstructionUtils.h" #include "swift/SIL/OwnershipUtils.h" #include "swift/SIL/Projection.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILDeclRef.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILInstruction.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILUndef.h" #include "swift/SIL/MemAccessUtils.h" #include "swift/SILOptimizer/Analysis/ArraySemantic.h" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SILOptimizer/PassManager/Transforms.h" #include "swift/SILOptimizer/Utils/InstOptUtils.h" #include "swift/SILOptimizer/Utils/SILSSAUpdater.h" #include "swift/SILOptimizer/Utils/ValueLifetime.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" using namespace swift; STATISTIC(DeadAllocRefEliminated, "number of AllocRef instructions removed"); STATISTIC(DeadAllocStackEliminated, "number of AllocStack instructions removed"); STATISTIC(DeadKeyPathEliminated, "number of keypath instructions removed"); STATISTIC(DeadAllocApplyEliminated, "number of allocating Apply instructions removed"); using UserList = llvm::SmallSetVector; namespace { /// Side effects of a destructor. enum class DestructorEffects { None, /// The destructor contains a "destroyArray" builtin which destroys the tail /// elements of the object - like in Array. DestroysTailElems, Unknown }; // Analyzing the body of this class destructor is valid because the object is // dead. This means that the object is never passed to objc_setAssociatedObject, // so its destructor cannot be extended at runtime. static SILFunction *getDestructor(AllocRefInstBase *ARI) { // We can't know the destructor for an alloc_ref_dynamic instruction in // general. auto *dynamicAllocRef = dyn_cast(ARI); if (dynamicAllocRef && !dynamicAllocRef->isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType()) return nullptr; // We only support classes. ClassDecl *ClsDecl = ARI->getType().getClassOrBoundGenericClass(); if (!ClsDecl) return nullptr; // Look up the destructor of ClsDecl. DestructorDecl *Destructor = ClsDecl->getDestructor(); assert(Destructor && "getDestructor() should never return a nullptr."); // Find the destructor name via SILDeclRef. // FIXME: When destructors get moved into vtables, update this to use the // vtable for the class. SILDeclRef Ref(Destructor); SILFunction *Fn = ARI->getModule().lookUpFunction(Ref); if (!Fn || Fn->empty()) { LLVM_DEBUG(llvm::dbgs() << " Could not find destructor.\n"); return nullptr; } LLVM_DEBUG(llvm::dbgs() << " Found destructor!\n"); // If the destructor has an objc_method calling convention, we cannot // analyze it since it could be swapped out from under us at runtime. if (Fn->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) { LLVM_DEBUG(llvm::dbgs() << " Found Objective-C destructor. Can't " "analyze!\n"); return nullptr; } return Fn; } static bool isDestroyArray(SILInstruction *inst) { BuiltinInst *bi = dyn_cast(inst); return bi && bi->getBuiltinInfo().ID == BuiltinValueKind::DestroyArray; } /// Analyze the destructor for the class of ARI to see if any instructions in it /// could have side effects on the program outside the destructor. If it does /// not, then we can eliminate the destructor. /// TODO: Most default destructors with non-trivial elements will have a /// destroy_addr of the non-trivial element in the destructor, this analysis /// will return as having side-effects in such cases, leading to conservative /// results. Check if we can do better here. static DestructorEffects doesDestructorHaveSideEffects(AllocRefInstBase *ARI) { SILFunction *Fn = getDestructor(ARI); // If we can't find a constructor then assume it has side effects. if (!Fn) return DestructorEffects::Unknown; DestructorEffects effects = DestructorEffects::None; // A destructor only has one argument, self. assert(Fn->begin()->getNumArguments() == 1 && "Destructor should have only one argument, self."); SILArgument *Self = Fn->begin()->getArgument(0); LLVM_DEBUG(llvm::dbgs() << " Analyzing destructor.\n"); // For each BB in the destructor... for (auto &BB : *Fn) { // For each instruction I in BB... for (auto &I : BB) { LLVM_DEBUG(llvm::dbgs() << " Visiting: " << I); // If I has no side effects, we can ignore it. if (!I.mayHaveSideEffects()) { LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction has no side " "effects.\n"); continue; } if (auto *fl = dyn_cast(&I)) { // A fix_lifetime of self does cannot have a side effect, because in the // destructor, Self is deleted. if (stripCasts(fl->getOperand()) == Self) continue; return DestructorEffects::Unknown; } // RefCounting operations on Self are ok since we are already in the // destructor. RefCountingOperations on other instructions could have side // effects though. if (auto *RefInst = dyn_cast(&I)) { if (stripCasts(RefInst->getOperand(0)) == Self) { // For now all ref counting insts have 1 operand. Put in an assert // just in case. assert(RefInst->getNumOperands() == 1 && "Make sure RefInst only has one argument."); LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on " "Self.\n"); continue; } LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation " "not on self.\n"); return DestructorEffects::Unknown; } if (auto *destroy = dyn_cast(&I)) { if (stripCasts(destroy->getOperand()) == Self) { LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on " "Self.\n"); continue; } LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation " "not on self.\n"); return DestructorEffects::Unknown; } // dealloc_stack can be ignored. if (isa(I)) { LLVM_DEBUG(llvm::dbgs() << " SAFE! dealloc_stack can be " "ignored.\n"); continue; } if (isa(I) || isa(I) || isa(I)) { continue; } // dealloc_ref on self can be ignored, but dealloc_ref on anything else // cannot be eliminated. if (auto *DeallocRef = dyn_cast(&I)) { if (stripCasts(DeallocRef->getOperand()) == Self) { LLVM_DEBUG(llvm::dbgs() <<" SAFE! dealloc_ref on self.\n"); continue; } else { LLVM_DEBUG(llvm::dbgs() << " UNSAFE! dealloc_ref on value " "besides self.\n"); return DestructorEffects::Unknown; } } // Storing into the object can be ignored. if (auto *SI = dyn_cast(&I)) if (stripAddressProjections(SI->getDest()) == Self) { LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction is a store " "into self.\n"); continue; } if (isDestroyArray(&I)) { // Check if the "destroyArray" destroys the tail elements of the object, // like in Array. SILValue addr = I.getOperand(1); auto *atp = dyn_cast(addr); if (!atp) return DestructorEffects::Unknown; auto *rta = dyn_cast(atp->getOperand()); if (!rta) return DestructorEffects::Unknown; effects = DestructorEffects::DestroysTailElems; if (rta->getOperand() == Self) continue; } LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Unknown instruction.\n"); // Otherwise, we can't remove the deallocation completely. return DestructorEffects::Unknown; } } // We didn't find any side effects. return effects; } //===----------------------------------------------------------------------===// // Use Graph Analysis //===----------------------------------------------------------------------===// /// Returns false if Inst is an instruction that would require us to keep the /// alloc_ref alive. static bool canZapInstruction(SILInstruction *Inst, bool acceptRefCountInsts, bool onlyAcceptTrivialStores) { if (isa(Inst)) { return acceptRefCountInsts; } if (isa(Inst) || isa(Inst) || isa(Inst)) { return true; } if (isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst)) return true; // It is ok to eliminate various retains/releases. We are either removing // everything or nothing. if (isa(Inst) || // dealloc_partial_ref invokes releases implicitly isa(Inst)) return acceptRefCountInsts; if (isa(Inst)) return true; if (isa(Inst)) return true; // We know that the destructor has no side effects so we can remove the // deallocation instruction too. if (isa(Inst) || isa(Inst)) return true; // Much like deallocation, destroy addr is safe. if (isa(Inst)) return true; // We have already checked that we are storing into the pointer before we // added it to the worklist. Here, in the case we are allowing non-trivial // stores, check if the store's source is lexical, if so return false. // Deleting a dead object with non-trivial stores, will need compensating // destroys at the store for it's source, which will shorten the lifetime of // the store's source. if (auto *store = dyn_cast(Inst)) { auto storeSrc = store->getSrc(); return storeSrc->getType().isTrivial(*store->getFunction()) || (!onlyAcceptTrivialStores && (!store->getFunction()->hasOwnership() || !storeSrc->isLexical())); } // Conceptually this instruction has no side-effects. if (isa(Inst)) return true; if (isa(Inst) || isa(Inst)) return true; // The value form of zero init is not a user of any operand. The address // form however is easily zappable because it's always a trivial store. if (auto bi = dyn_cast(Inst)) { if (bi->getBuiltinKind() == BuiltinValueKind::ZeroInitializer) { return true; } } // If Inst does not read or write to memory, have side effects, and is not a // terminator, we can zap it. if (!Inst->mayHaveSideEffects() && !Inst->mayReadFromMemory() && !isa(Inst)) return true; // Otherwise we do not know how to handle this instruction. Be conservative // and don't zap it. return false; } /// Returns true if all stores in \p users store to the tail elements of /// \p allocRef, which are destroyed by the \p destroyArray builtin. static bool onlyStoresToTailObjects(BuiltinInst *destroyArray, const UserList &users, AllocRefInstBase *allocRef) { // Get the number of destroyed elements. auto *literal = dyn_cast(destroyArray->getArguments()[2]); if (!literal || literal->getValue().getSignificantBits() > 32) return false; int numDestroyed = literal->getValue().getSExtValue(); SILFunction *func = destroyArray->getFunction(); SILBasicBlock *storesBlock = nullptr; // Check if the destroyArray destroys the tail elements of allocRef. auto destroyPath = AccessPath::compute(destroyArray->getArguments()[1]); AccessStorage storage = destroyPath.getStorage(); if (auto *beginDealloc = dyn_cast(storage.getRoot())) { destroyPath = AccessPath( storage.transformReference(beginDealloc->getAllocation()), destroyPath.getPathNode(), destroyPath.getOffset()); } if (destroyPath != AccessPath::forTailStorage(allocRef)) return false; SmallVector pathsToCheck; // Check all stores to the tail elements. for (SILInstruction *user : users) { auto *store = dyn_cast(user); if (!store) continue; assert(users.count(store->getSrc()->getDefiningInstruction()) == 0 && "Storing a use of an array (that would mean the array escapes)?"); // All stores must be in the same block. This ensure that the stores // dominate the destroyArray (which may be in a different block). if (storesBlock && store->getParent() != storesBlock) return false; storesBlock = store->getParent(); AccessPath storePath = AccessPath::compute(store->getDest()); if (!storePath.isValid()) return false; // We don't care about trivial stores. if (store->getSrc()->getType().isTrivial(*func)) continue; // Check if it's a store to the tail elements. if (!destroyPath.contains(storePath.withOffset(0))) return false; // Check if the store is within the range of the destroyed array. In OSSA // we would not need this check. Otherwise it would be a memory lifetime // failure. if (storePath.getOffset() < 0 || storePath.getOffset() >= numDestroyed) return false; pathsToCheck.push_back(storePath); } // In non-OSSA we have to check if two paths overlap, because we could end up // over-releasing the stored objects. // Group the paths by tail-element index, so that we only have to check within // a tail-element group. std::sort(pathsToCheck.begin(), pathsToCheck.end(), [](AccessPath p1, AccessPath p2) { return p1.getOffset() < p2.getOffset(); }); for (unsigned i = 0, n = pathsToCheck.size(); i < n; ++i) { for (unsigned j = i + 1; j < n && pathsToCheck[i].getOffset() == pathsToCheck[j].getOffset(); ++j) { if (pathsToCheck[i].mayOverlap(pathsToCheck[j])) return false; // Limit the number of checks to avoid quadratic complexity. if (j > i + 8) return false; } } return true; } /// Analyze the use graph of AllocRef for any uses that would prevent us from /// zapping it completely. static bool hasUnremovableUsers(SILInstruction *allocation, UserList *Users, bool acceptRefCountInsts, bool onlyAcceptTrivialStores) { SmallVector Worklist; Worklist.push_back(allocation); LLVM_DEBUG(llvm::dbgs() << " Analyzing Use Graph."); SmallVector refElementAddrs; BuiltinInst *destroyArray = nullptr; auto *allocRef = dyn_cast(allocation); while (!Worklist.empty()) { SILInstruction *I = Worklist.pop_back_val(); LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *I); // Insert the instruction into our InvolvedInstructions set. If we have // already seen it, then don't reprocess all of the uses. if (Users && !Users->insert(I)) { LLVM_DEBUG(llvm::dbgs() << " Already seen skipping...\n"); continue; } else if (auto *rea = dyn_cast(I)) { if (rea != allocation && !rea->getType().isTrivial(*rea->getFunction())) refElementAddrs.push_back(rea); } else if (allocRef && isDestroyArray(I)) { if (destroyArray) return true; destroyArray = cast(I); } else if (!canZapInstruction(I, acceptRefCountInsts, onlyAcceptTrivialStores)) { LLVM_DEBUG(llvm::dbgs() << " Found instruction we can't zap...\n"); return true; } // At this point, we can remove the instruction as long as all of its users // can be removed as well. Scan its users and add them to the worklist for // recursive processing. for (auto result : I->getResults()) { for (auto *Op : result->getUses()) { auto *User = Op->getUser(); // Make sure that we are only storing into our users, not storing our // users which would be an escape. if (auto *SI = dyn_cast(User)) if (Op->get() == SI->getSrc()) { LLVM_DEBUG(llvm::dbgs() << " Found store of pointer. " "Failure: " << *SI); return true; } // Otherwise, add normal instructions to the worklist for processing. Worklist.push_back(User); } } } if (!allocation->getFunction()->hasOwnership()) { // In non-ossa, if we found a destroy array builtin that destroys the tail // elements, ensure all stores are to the taile elems. if (destroyArray) { return !onlyStoresToTailObjects(destroyArray, *Users, allocRef); } // In non-OSSA we cannot reliably track the lifetime of non-trivial stored // properties. Removing the dead alloc_ref might leak a property value. for (RefElementAddrInst *rea : refElementAddrs) { // Re-run the check with not accepting non-trivial stores. if (hasUnremovableUsers(rea, nullptr, acceptRefCountInsts, /*onlyAcceptTrivialStores*/ true)) return true; } } return false; } //===----------------------------------------------------------------------===// // NonTrivial DeadObject Elimination //===----------------------------------------------------------------------===// /// Determine if an object is dead. Compute its original lifetime. Find the /// lifetime endpoints reached by each store of a refcounted object into the /// object. /// /// TODO: Use this to remove nontrivial dead alloc_ref/alloc_stack, not just /// dead arrays. We just need a slightly better destructor analysis to prove /// that it only releases elements. class DeadObjectAnalysis { // Map each address projection of this object to a list of stores. // Do not iterate over this map's entries. using AddressToStoreMap = llvm::DenseMap >; // The value of the object's address at the point of allocation. SILValue NewAddrValue; // Track all users that extend the lifetime of the object. UserList AllUsers; // Trie of stored locations. std::unique_ptr AddressProjectionTrie; // Track all stores of refcounted elements per address projection. AddressToStoreMap StoredLocations; // Are any uses behind a PointerToAddressInst? bool SeenPtrToAddr; public: explicit DeadObjectAnalysis(SILValue V): NewAddrValue(V), AddressProjectionTrie(nullptr), SeenPtrToAddr(false) {} bool analyze(); ArrayRef getAllUsers() const { return ArrayRef(AllUsers.begin(), AllUsers.end()); } template void visitStoreLocations(Visitor visitor) { visitStoreLocations(visitor, AddressProjectionTrie.get()); } private: void addStore(StoreInst *Store, IndexTrieNode *AddressNode); bool recursivelyCollectInteriorUses(ValueBase *DefInst, IndexTrieNode *AddressNode, bool IsInteriorAddress); template void visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode); }; } // end anonymous namespace // Record a store into this object. void DeadObjectAnalysis:: addStore(StoreInst *Store, IndexTrieNode *AddressNode) { if (Store->getSrc()->getType().isTrivial(*Store->getFunction())) return; // SSAUpdater cannot handle multiple defs in the same blocks. Therefore, we // ensure that only one store per block is present in the StoredLocations. auto &StoredLocs = StoredLocations[AddressNode]; for (auto &OtherSt : StoredLocs) { // In case the object's address is stored in itself. if (OtherSt == Store) return; if (OtherSt->getParent() == Store->getParent()) { for (auto II = std::next(Store->getIterator()), IE = Store->getParent()->end(); II != IE; ++II) { if (&*II == OtherSt) return; // Keep the other store. } // Replace OtherSt with this store. OtherSt = Store; return; } } StoredLocations[AddressNode].push_back(Store); } // Collect instructions that either initialize or release any values at the // object defined by defInst. // // Populates AllUsers, AddressProjectionTrie, and StoredLocations. // // If a use is visited that potentially causes defInst's address to // escape, then return false without fully populating the data structures. // // `InteriorAddress` is true if the current address projection already includes // a struct/ref/tuple element address. index_addr is only expected at the top // level. The first non-index element address encountered pushes an "zero index" // address node to represent the implicit index_addr #0. We do not support // nested indexed data types in native SIL. bool DeadObjectAnalysis:: recursivelyCollectInteriorUses(ValueBase *DefInst, IndexTrieNode* AddressNode, bool IsInteriorAddress) { for (auto Op : DefInst->getUses()) { auto User = Op->getUser(); // Lifetime endpoints that don't allow the address to escape. if (isa(User) || isa(User) || isa(User) || isa(User) || isa(User)) { AllUsers.insert(User); continue; } // Initialization points. if (auto *Store = dyn_cast(User)) { // Bail if this address is stored to another object. if (Store->getDest() != DefInst) { LLVM_DEBUG(llvm::dbgs() <<" Found an escaping store: " << *User); return false; } IndexTrieNode *StoreAddrNode = AddressNode; // Push an extra zero index node for a store to noninterior address. if (!IsInteriorAddress) StoreAddrNode = AddressNode->getChild(0); addStore(Store, StoreAddrNode); AllUsers.insert(User); continue; } if (auto *MDI = dyn_cast(User)) { if (!recursivelyCollectInteriorUses(MDI, AddressNode, IsInteriorAddress)) { return false; } continue; } if (auto *bb = dyn_cast(User)) { if (!recursivelyCollectInteriorUses(bb, AddressNode, IsInteriorAddress)) { return false; } continue; } if (auto PTAI = dyn_cast(User)) { // Only one pointer-to-address is allowed for safety. if (SeenPtrToAddr) return false; SeenPtrToAddr = true; if (!recursivelyCollectInteriorUses(PTAI, AddressNode, IsInteriorAddress)) return false; continue; } // Recursively follow projections. if (auto *svi = dyn_cast(User)) { ProjectionIndex PI(svi); if (PI.isValid()) { IndexTrieNode *ProjAddrNode = AddressNode; bool ProjInteriorAddr = IsInteriorAddress; if (Projection::isAddressProjection(svi)) { if (isa(svi)) { // Don't support indexing within an interior address. if (IsInteriorAddress) return false; } else if (!IsInteriorAddress) { // Push an extra zero index node for the first interior address. ProjAddrNode = AddressNode->getChild(0); ProjInteriorAddr = true; } } else if (IsInteriorAddress) { // Don't expect to extract values once we've taken an address. return false; } if (!recursivelyCollectInteriorUses(svi, ProjAddrNode->getChild(PI.Index), ProjInteriorAddr)) { return false; } continue; } ArraySemanticsCall AS(svi); if (AS.getKind() == swift::ArrayCallKind::kArrayFinalizeIntrinsic) { if (!recursivelyCollectInteriorUses(svi, AddressNode, IsInteriorAddress)) return false; continue; } } // Otherwise bail. LLVM_DEBUG(llvm::dbgs() << " Found an escaping use: " << *User); return false; } return true; } // Track the lifetime, release points, and released values referenced by a // newly allocated object. bool DeadObjectAnalysis::analyze() { LLVM_DEBUG(llvm::dbgs() << " Analyzing nontrivial dead object: " << NewAddrValue); // Populate AllValues, AddressProjectionTrie, and StoredLocations. AddressProjectionTrie.reset(new IndexTrieNode()); if (!recursivelyCollectInteriorUses(NewAddrValue, AddressProjectionTrie.get(), false)) { return false; } // If all stores are leaves in the AddressProjectionTrie, then we can analyze // the stores that reach the end of the object lifetime. Otherwise bail. // This iteration order is nondeterministic but has no impact. for (auto &AddressToStoresPair : StoredLocations) { IndexTrieNode *Location = AddressToStoresPair.first; if (!Location->isLeaf()) return false; } return true; } template void DeadObjectAnalysis:: visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode) { if (AddressNode->isLeaf()) { auto LocI = StoredLocations.find(AddressNode); if (LocI != StoredLocations.end()) visitor(LocI->second); return; } for (auto *SubAddressNode : AddressNode->getChildren()) visitStoreLocations(visitor, SubAddressNode); } // At each release point, release the reaching values that have been stored to // this address. // // The caller has already determined that all Stores are to the same element // within an otherwise dead object. static void insertReleases(ArrayRef Stores, ArrayRef ReleasePoints, SILSSAUpdater &SSAUp) { assert(!Stores.empty()); SILValue StVal = Stores.front()->getSrc(); SSAUp.initialize(StVal->getFunction(), StVal->getType(), StVal->getOwnershipKind()); for (auto *Store : Stores) SSAUp.addAvailableValue(Store->getParent(), Store->getSrc()); SILLocation Loc = Stores[0]->getLoc(); for (auto *RelPoint : ReleasePoints) { SILBuilder B(RelPoint); // This does not use the SSAUpdater::RewriteUse API because it does not do // the right thing for local uses. We have already ensured a single store // per block, and all release points occur after all stores. Therefore we // can simply ask SSAUpdater for the reaching store. SILValue RelVal = SSAUp.getValueAtEndOfBlock(RelPoint->getParent()); B.emitDestroyValueOperation(Loc, RelVal); } } //===----------------------------------------------------------------------===// // Function Processing //===----------------------------------------------------------------------===// /// Does this instruction perform object allocation with no other observable /// side effect? static bool isAllocatingApply(SILInstruction *Inst) { ArraySemanticsCall ArrayAlloc(Inst); return ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitialized || ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitializedIntrinsic; } namespace { class DeadObjectElimination : public SILFunctionTransform { llvm::DenseMap DestructorAnalysisCache; InstructionDeleter deleter; DominanceInfo *domInfo = nullptr; void removeInstructions(ArrayRef toRemove); /// Try to salvage the debug info for a dead instruction removed by /// DeadObjectElimination. /// /// Dead stores will be replaced by a debug value for the object variable, /// using a fragment expression. By walking from the store to the allocation, /// we can know which member of the object is being assigned, and create /// fragments for each member. Other instructions are not salvaged. /// Currently only supports dead stack-allocated objects. void salvageDebugInfo(SILInstruction *toBeRemoved); std::optional buildDIExpression(SILInstruction *current); bool processAllocRef(AllocRefInstBase *ARI); bool processAllocStack(AllocStackInst *ASI); bool processKeyPath(KeyPathInst *KPI); bool processAllocBox(AllocBoxInst *ABI){ return false;} bool processAllocApply(ApplyInst *AI, DeadEndBlocks &DEBlocks); bool insertCompensatingReleases(SILInstruction *before, const UserList &users); bool getDeadInstsAfterInitializerRemoved( ApplyInst *AI, llvm::SmallVectorImpl &ToDestroy); bool removeAndReleaseArray( SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks); bool processFunction(SILFunction &Fn) { DeadEndBlocks DEBlocks(&Fn); DestructorAnalysisCache.clear(); LLVM_DEBUG(llvm::dbgs() << "Processing " << Fn.getName() << "\n"); bool Changed = false; for (auto &BB : Fn) { for (SILInstruction &inst : BB.deletableInstructions()) { if (auto *A = dyn_cast(&inst)) Changed |= processAllocRef(A); else if (auto *A = dyn_cast(&inst)) Changed |= processAllocStack(A); else if (auto *KPI = dyn_cast(&inst)) Changed |= processKeyPath(KPI); else if (auto *A = dyn_cast(&inst)) Changed |= processAllocBox(A); else if (auto *A = dyn_cast(&inst)) Changed |= processAllocApply(A, DEBlocks); } deleter.cleanupDeadInstructions(); } return Changed; } void run() override { assert(!domInfo); if (processFunction(*getFunction())) { invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions); } domInfo = nullptr; } }; } // end anonymous namespace void DeadObjectElimination::removeInstructions(ArrayRef toRemove) { for (auto *I : toRemove) { I->replaceAllUsesOfAllResultsWithUndef(); // Now we know that I should not have any uses... erase it from its parent. deleter.forceDelete(I); } } void DeadObjectElimination::salvageDebugInfo(SILInstruction *toBeRemoved) { auto *SI = dyn_cast(toBeRemoved); if (!SI) return; auto *parent = SI->getDest()->getDefiningInstruction(); auto varInfo = buildDIExpression(parent); if (!varInfo) return; // Note: The instruction should logically be in SI's scope. // However, LLVM does not support variables and stores in different scopes, // so we use the variable's scope. SILBuilder Builder(SI, varInfo->Scope); Builder.createDebugValue(SI->getLoc(), SI->getSrc(), *varInfo); } std::optional DeadObjectElimination::buildDIExpression(SILInstruction *current) { if (!current) return {}; if (auto dvci = dyn_cast(current)) { auto var = dvci->getVarInfo(); if (!var) return {}; if (!var->Type) var->Type = dvci->getElementType(); return var; } if (auto *tupleAddr = dyn_cast(current)) { auto *definer = tupleAddr->getOperand().getDefiningInstruction(); auto path = buildDIExpression(definer); if (!path) return {}; path->DIExpr.append(SILDebugInfoExpression::createTupleFragment( tupleAddr->getTupleType(), tupleAddr->getFieldIndex())); return path; } if (auto *structAddr = dyn_cast(current)) { auto *definer = structAddr->getOperand().getDefiningInstruction(); auto path = buildDIExpression(definer); if (!path) return {}; path->DIExpr.append(SILDebugInfoExpression::createFragment( structAddr->getField())); return path; } return {}; } bool DeadObjectElimination::processAllocRef(AllocRefInstBase *ARI) { // Ok, we have an alloc_ref. Check the cache to see if we have already // computed the destructor behavior for its SILType. DestructorEffects destructorEffects; SILType Type = ARI->getType(); auto CacheSearchResult = DestructorAnalysisCache.find(Type); if (CacheSearchResult != DestructorAnalysisCache.end()) { // Ok we found a value in the cache. destructorEffects = CacheSearchResult->second; } else { // We did not find a value in the cache for our destructor. Analyze the // destructor to make sure it has no side effects. For now this only // supports alloc_ref of classes so any alloc_ref with a reference type // that is not a class this will return false for. Once we have analyzed // it, set Behavior to that value and insert the value into the Cache. // // TODO: We should be able to handle destructors that do nothing but release // members of the object. destructorEffects = doesDestructorHaveSideEffects(ARI); DestructorAnalysisCache[Type] = destructorEffects; } // Our destructor has no side effects, so if we can prove that no loads // escape, then we can completely remove the use graph of this alloc_ref. UserList UsersToRemove; if (hasUnremovableUsers(ARI, &UsersToRemove, /*acceptRefCountInsts=*/ destructorEffects != DestructorEffects::Unknown, /*onlyAcceptTrivialStores*/false)) { LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n"); return false; } if (!ARI->getFunction()->hasOwnership()) { // Find the instruction which releases the object's tail elements. SILInstruction *releaseOfTailElems = nullptr; for (SILInstruction *user : UsersToRemove) { if (isDestroyArray(user) || (destructorEffects == DestructorEffects::DestroysTailElems && isa(user) && user->mayRelease())) { // Bail if we find multiple such instructions. if (releaseOfTailElems) return false; releaseOfTailElems = user; } } if (releaseOfTailElems) { if (!insertCompensatingReleases(releaseOfTailElems, UsersToRemove)) { return false; } } } if (ARI->getFunction()->hasOwnership()) { // In ossa, we are going to delete the dead element store and insert a // destroy_value of the store's source. This is shortening the store's // source lifetime. Check if there was a pointer escape of the store's // source, if so bail out. for (auto *user : UsersToRemove) { auto *store = dyn_cast(user); if (!store || store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) continue; if (findPointerEscape(store->getSrc())) { return false; } } for (auto *user : UsersToRemove) { auto *store = dyn_cast(user); if (!store || store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) { continue; } SILBuilderWithScope(store).createDestroyValue(store->getLoc(), store->getSrc()); } } // Remove the AllocRef and all of its users. removeInstructions( ArrayRef(UsersToRemove.begin(), UsersToRemove.end())); LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_ref.\n"); ++DeadAllocRefEliminated; return true; } bool DeadObjectElimination::processAllocStack(AllocStackInst *ASI) { // Trivial types don't have destructors. bool isTrivialType = ASI->getElementType().isTrivial(*ASI->getFunction()); // In non-ossa, only accept trivial stores if we have a non-trivial // alloc_stack bool onlyAcceptTrivialStores = ASI->getFunction()->hasOwnership() ? false : !isTrivialType; UserList UsersToRemove; if (hasUnremovableUsers(ASI, &UsersToRemove, /*acceptRefCountInsts=*/true, onlyAcceptTrivialStores)) { LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n"); return false; } for (auto *I : UsersToRemove) salvageDebugInfo(I); if (ASI->getFunction()->hasOwnership()) { for (auto *user : UsersToRemove) { auto *store = dyn_cast(user); if (!store || store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) continue; // In ossa, we are going to delete the dead store and insert a // destroy_value of the store's source. This is shortening the store's // source lifetime. Check if there was a pointer escape of the store's // source, if so bail out. if (findPointerEscape(store->getSrc())) { return false; } } for (auto *user : UsersToRemove) { auto *store = dyn_cast(user); if (!store || store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) continue; SILBuilderWithScope(store).createDestroyValue(store->getLoc(), store->getSrc()); } } // Remove the AllocRef and all of its users. removeInstructions( ArrayRef(UsersToRemove.begin(), UsersToRemove.end())); LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_stack.\n"); ++DeadAllocStackEliminated; return true; } bool DeadObjectElimination::processKeyPath(KeyPathInst *KPI) { UserList UsersToRemove; if (hasUnremovableUsers(KPI, &UsersToRemove, /*acceptRefCountInsts=*/ true, /*onlyAcceptTrivialStores*/ false)) { LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n"); return false; } bool hasOwnership = KPI->getFunction()->hasOwnership(); for (const Operand &Op : KPI->getPatternOperands()) { // In non-ossa, bail out if we have non-trivial pattern operands. if (!hasOwnership) { if (Op.get()->getType().isTrivial(*KPI->getFunction())) return false; continue; } // In ossa, bail out if we have non-trivial pattern operand values that are // lexical. if (Op.get()->isLexical()) { return false; } } if (KPI->getFunction()->hasOwnership()) { for (const Operand &Op : KPI->getPatternOperands()) { if (Op.get()->getType().isTrivial(*KPI->getFunction())) continue; // In ossa, we are going to delete the dead keypath which was consuming // the pattern operand and insert a destroy_value of the pattern operand // value. This is shortening the pattern operand value's lifetime. Check // if there was a pointer escape, if so bail out. if (findPointerEscape(Op.get())) { return false; } } for (const Operand &Op : KPI->getPatternOperands()) { if (Op.get()->getType().isTrivial(*KPI->getFunction())) continue; SILBuilderWithScope(KPI).createDestroyValue(KPI->getLoc(), Op.get()); } } // Remove the keypath and all of its users. removeInstructions( ArrayRef(UsersToRemove.begin(), UsersToRemove.end())); LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating keypath.\n"); ++DeadKeyPathEliminated; return true; } /// If AI is the version of an initializer where we pass in either an apply or /// an alloc_ref to initialize in place, validate that we are able to continue /// optimizing and return To bool DeadObjectElimination::getDeadInstsAfterInitializerRemoved( ApplyInst *AI, llvm::SmallVectorImpl &ToDestroy) { assert(ToDestroy.empty() && "We assume that ToDestroy is empty, so on " "failure we can clear without worrying about the " "caller accumulating and thus our eliminating " "passed in state."); SILValue Arg0 = AI->getArgument(0); if (Arg0->getType().isExistentialType()) { // This is a version of the initializer which receives a pre-allocated // buffer as first argument. To completely eliminate the allocation, we must // destroy the extra allocations as well as the initializer, if (auto *Result = dyn_cast(Arg0)) { ToDestroy.emplace_back(Result); return true; } return false; } if (auto *ARI = dyn_cast(Arg0)) { if (all_of(ARI->getUses(), [&](Operand *Op) -> bool { auto *user = Op->getUser(); if (user == AI) return true; if (isa(user) || isa(user)) { ToDestroy.emplace_back(user); return true; } return false; })) { return true; } } // We may have added elements to the array before we failed. To avoid such a // problem, we clear the out array here. We assert at the beginning that the // out array is empty, so this is safe. ToDestroy.clear(); return true; } // Attempt to remove the array allocated at NewAddrValue and release its // refcounted elements. // // This is tightly coupled with the implementation of array.uninitialized. // The call to allocate an uninitialized array returns two values: // (Array ArrayBase, UnsafeMutable ArrayElementStorage) // // TODO: This relies on the lowest level array.uninitialized not being // inlined. To do better we could either run this pass before semantic inlining, // or we could also handle calls to array.init. bool DeadObjectElimination::removeAndReleaseArray( SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks) { SILValue ArrayDef = nullptr; SILValue StorageAddress = nullptr; if (NewArrayValue->getFunction()->hasOwnership()) { auto *destructureTuple = NewArrayValue->getSingleConsumingUserOfType(); if (!destructureTuple) { return false; } if (destructureTuple->getNumResults() != 2) { return false; } ArrayDef = destructureTuple->getResult(0); StorageAddress = destructureTuple->getResult(1); } else { for (auto *Op : NewArrayValue->getUses()) { auto *TupleElt = dyn_cast(Op->getUser()); if (!TupleElt) return false; if (TupleElt->getFieldIndex() == 0 && !ArrayDef) { ArrayDef = TupleElt; } else if (TupleElt->getFieldIndex() == 1 && !StorageAddress) { StorageAddress = TupleElt; } else { return false; } } } if (!ArrayDef) return false; // No Array object to delete. assert(!ArrayDef->getType().isTrivial(*ArrayDef->getFunction()) && "Array initialization should produce the proper tuple type."); // Analyze the array object uses. DeadObjectAnalysis DeadArray(ArrayDef); if (!DeadArray.analyze()) return false; // Require all stores to be into the array storage not the array object, // otherwise bail. bool HasStores = false; DeadArray.visitStoreLocations([&](ArrayRef){ HasStores = true; }); if (HasStores) return false; // Remove references to empty arrays. if (!StorageAddress) { removeInstructions(DeadArray.getAllUsers()); return true; } assert(StorageAddress->getType().isTrivial(*ArrayDef->getFunction()) && "Array initialization should produce the proper tuple type."); // Analyze the array storage uses. DeadObjectAnalysis DeadStorage(StorageAddress); if (!DeadStorage.analyze()) return false; // Find array object lifetime. ValueLifetimeAnalysis VLA(NewArrayValue, DeadArray.getAllUsers()); // Check that all storage users are in the Array's live blocks. for (auto *User : DeadStorage.getAllUsers()) { if (!VLA.isWithinLifetime(User)) return false; } // For each store location, insert releases. SILSSAUpdater SSAUp; ValueLifetimeAnalysis::Frontier ArrayFrontier; if (!VLA.computeFrontier(ArrayFrontier, ValueLifetimeAnalysis::UsersMustPostDomDef, &DEBlocks)) { // In theory the allocated object must be released on all paths in which // some object initialization occurs. If not (for some reason) we bail. return false; } DeadStorage.visitStoreLocations([&] (ArrayRef Stores) { insertReleases(Stores, ArrayFrontier, SSAUp); }); // Delete all uses of the dead array and its storage address. removeInstructions(DeadArray.getAllUsers()); removeInstructions(DeadStorage.getAllUsers()); return true; } bool DeadObjectElimination::processAllocApply(ApplyInst *AI, DeadEndBlocks &DEBlocks) { // Currently only handle array.uninitialized if (!isAllocatingApply(AI)) return false; llvm::SmallVector instsDeadAfterInitializerRemoved; if (!getDeadInstsAfterInitializerRemoved(AI, instsDeadAfterInitializerRemoved)) return false; if (!removeAndReleaseArray(AI, DEBlocks)) return false; LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating apply allocate(...).\n"); auto *ARI = dyn_cast(AI->getArgument(0)); deleter.forceDeleteWithUsers(AI); for (auto *toDelete : instsDeadAfterInitializerRemoved) { deleter.trackIfDead(toDelete); } if (ARI) { deleter.forceDeleteWithUsers(ARI); } ++DeadAllocApplyEliminated; return true; } /// Inserts releases of all stores in \p users. /// Returns false, if this is not possible. bool DeadObjectElimination::insertCompensatingReleases(SILInstruction *before, const UserList &users) { // First check if all stored values dominate the release-point. for (SILInstruction *user : users) { if (auto *store = dyn_cast(user)) { if (!domInfo) { domInfo = getAnalysis()->get(before->getFunction()); } SILBasicBlock *srcBlock = store->getSrc()->getParentBlock(); if (!domInfo->dominates(srcBlock, before->getParent())) return false; } } // Second, create the releases. for (SILInstruction *user : users) { if (auto *store = dyn_cast(user)) { createDecrementBefore(store->getSrc(), before); } } return true; } //===----------------------------------------------------------------------===// // Top Level Driver //===----------------------------------------------------------------------===// SILTransform *swift::createDeadObjectElimination() { return new DeadObjectElimination(); }