#!/usr/bin/env python3 # This is a simple script that takes in an scurve file produced by # csvcolumn_to_scurve and produces a png graph of the scurve. import argparse import csv import matplotlib.pyplot as plt import numpy as np FIELDS = ['N/total', 'New/Old'] def get_data(input_file): global FIELDS for row in csv.DictReader(input_file): yield (float(row[FIELDS[0]]), float(row[FIELDS[1]])) def main(): p = argparse.ArgumentParser() p.add_argument('input_csv_file', type=argparse.FileType('r')) p.add_argument('output_file', type=str) p.add_argument('-y-axis-num-tick-marks', type=int, help='The number of y tick marks to use above/below zero.') p.add_argument('-y-axis-min', type=float, help='Override the min y axis that we use') p.add_argument('-y-axis-max', type=float, help='Override the min y axis that we use') p.add_argument('-title', type=str, help='Title of the graph') p.add_argument('-x-axis-title', type=str, help='The title to use on the x-axis of the graph') p.add_argument('-y-axis-title', type=str, help='The title to use on the x-axis of the graph') args = p.parse_args() data = np.array(list(get_data(args.input_csv_file))) assert np.all(data >= 0) x = data[:, 0] y = data[:, 1] x_axis_title = args.x_axis_title or FIELDS[0] y_axis_title = args.y_axis_title or FIELDS[1] title = args.title or "{} vs {}".format(x_axis_title, y_axis_title) fig, ax = plt.subplots() fig.set_size_inches(18.5, 18.5) fig.suptitle(title, fontsize=20) ax.set_xlabel(x_axis_title, fontsize=20) ax.set_ylabel(y_axis_title, fontsize=20) ax.plot(x, y) ax.scatter(x, y) # To get good bounds, we: # # 1. Re-center our data at 0 by subtracting 1. This will give us the % # difference in between new and old (i.e. (new - old)/old) # # 2. Then we take the maximum absolute delta from zero and round to a # multiple of 5 away from zero. Lets call this value limit. # # 3. We set [min_y, max_y] = [1.0 - limit, 1.0 + limit] recentered_data = y - 1.0 max_magnitude = int(np.max(np.abs(recentered_data)) * 100.0) y_limit = float(((max_magnitude // 5) + 1) * 5) * 0.01 ax.set_xlim(0.0, 1.0) y_min = args.y_axis_min or 1.0 - y_limit y_max = args.y_axis_max or 1.0 + y_limit assert y_min <= y_max ax.set_ylim(y_min, y_max) ax.grid(True) ax.xaxis.set_ticks(np.arange(0.0, 1.0, 0.05)) if args.y_axis_num_tick_marks: y_delta = y_max - y_min y_tickmark_frequency = y_delta / float(args.y_axis_num_tick_marks) ax.yaxis.set_ticks(np.arange(y_min, y_max, y_tickmark_frequency)) plt.savefig(args.output_file) if __name__ == "__main__": main()