//===--- CSE.cpp - Simple and fast CSE pass -------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This pass performs a simple dominator tree walk that eliminates trivially // redundant instructions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-cse" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SIL/Dominance.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILType.h" #include "swift/SIL/SILValue.h" #include "swift/SIL/SILVisitor.h" #include "swift/SIL/DebugUtils.h" #include "swift/SILOptimizer/Utils/Local.h" #include "swift/SILOptimizer/PassManager/Transforms.h" #include "swift/SILOptimizer/Analysis/ArraySemantic.h" #include "swift/SILOptimizer/Analysis/DominanceAnalysis.h" #include "swift/SILOptimizer/Analysis/SimplifyInstruction.h" #include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" STATISTIC(NumOpenExtRemoved, "Number of open_existential_addr instructions removed"); STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd"); using namespace swift; //===----------------------------------------------------------------------===// // Simple Value //===----------------------------------------------------------------------===// namespace { /// SimpleValue - Instances of this struct represent available values in the /// scoped hash table. struct SimpleValue { SILInstruction *Inst; SimpleValue(SILInstruction *I) : Inst(I) { } bool isSentinel() const { return Inst == llvm::DenseMapInfo::getEmptyKey() || Inst == llvm::DenseMapInfo::getTombstoneKey(); } }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline SimpleValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline SimpleValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(SimpleValue Val); static bool isEqual(SimpleValue LHS, SimpleValue RHS); }; } // end namespace llvm namespace { class HashVisitor : public SILInstructionVisitor { using hash_code = llvm::hash_code; public: hash_code visitValueBase(ValueBase *) { llvm_unreachable("No hash implemented for the given type"); } hash_code visitBridgeObjectToRefInst(BridgeObjectToRefInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitBridgeObjectToWordInst(BridgeObjectToWordInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitRefToBridgeObjectInst(RefToBridgeObjectInst *X) { OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine( X->getKind(), X->getType(), llvm::hash_combine_range(Operands.begin(), Operands.end())); } hash_code visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitUncheckedAddrCastInst(UncheckedAddrCastInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitFunctionRefInst(FunctionRefInst *X) { return llvm::hash_combine(X->getKind(), X->getReferencedFunction()); } hash_code visitGlobalAddrInst(GlobalAddrInst *X) { return llvm::hash_combine(X->getKind(), X->getReferencedGlobal()); } hash_code visitIntegerLiteralInst(IntegerLiteralInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getValue()); } hash_code visitFloatLiteralInst(FloatLiteralInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getBits()); } hash_code visitRefElementAddrInst(RefElementAddrInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getField()); } hash_code visitProjectBoxInst(ProjectBoxInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitRefToRawPointerInst(RefToRawPointerInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitRawPointerToRefInst(RawPointerToRefInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitUnownedToRefInst(UnownedToRefInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitRefToUnownedInst(RefToUnownedInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitUnmanagedToRefInst(UnmanagedToRefInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitRefToUnmanagedInst(RefToUnmanagedInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitUpcastInst(UpcastInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitStringLiteralInst(StringLiteralInst *X) { return llvm::hash_combine(X->getKind(), X->getEncoding(), X->getValue()); } hash_code visitStructInst(StructInst *X) { // This is safe since we are hashing the operands using the actual pointer // values of the values being used by the operand. OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine(X->getKind(), X->getStructDecl(), llvm::hash_combine_range(Operands.begin(), Operands.end())); } hash_code visitStructExtractInst(StructExtractInst *X) { return llvm::hash_combine(X->getKind(), X->getStructDecl(), X->getField(), X->getOperand()); } hash_code visitStructElementAddrInst(StructElementAddrInst *X) { return llvm::hash_combine(X->getKind(), X->getStructDecl(), X->getField(), X->getOperand()); } hash_code visitCondFailInst(CondFailInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand()); } hash_code visitClassMethodInst(ClassMethodInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitTupleInst(TupleInst *X) { OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine(X->getKind(), X->getTupleType(), llvm::hash_combine_range(Operands.begin(), Operands.end())); } hash_code visitTupleExtractInst(TupleExtractInst *X) { return llvm::hash_combine(X->getKind(), X->getTupleType(), X->getFieldNo(), X->getOperand()); } hash_code visitTupleElementAddrInst(TupleElementAddrInst *X) { return llvm::hash_combine(X->getKind(), X->getTupleType(), X->getFieldNo(), X->getOperand()); } hash_code visitMetatypeInst(MetatypeInst *X) { return llvm::hash_combine(X->getKind(), X->getType()); } hash_code visitValueMetatypeInst(ValueMetatypeInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitExistentialMetatypeInst(ExistentialMetatypeInst *X) { return llvm::hash_combine(X->getKind(), X->getType()); } hash_code visitObjCProtocolInst(ObjCProtocolInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getProtocol()); } hash_code visitIndexRawPointerInst(IndexRawPointerInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getBase(), X->getIndex()); } hash_code visitPointerToAddressInst(PointerToAddressInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitAddressToPointerInst(AddressToPointerInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getOperand()); } hash_code visitApplyInst(ApplyInst *X) { OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine(X->getKind(), X->getCallee(), llvm::hash_combine_range(Operands.begin(), Operands.end()), X->hasSubstitutions()); } hash_code visitBuiltinInst(BuiltinInst *X) { OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine(X->getKind(), X->getName().get(), llvm::hash_combine_range(Operands.begin(), Operands.end()), X->hasSubstitutions()); } hash_code visitEnumInst(EnumInst *X) { // We hash the enum by hashing its kind, element, and operand if it has one. if (!X->hasOperand()) return llvm::hash_combine(X->getKind(), X->getElement()); return llvm::hash_combine(X->getKind(), X->getElement(), X->getOperand()); } hash_code visitUncheckedEnumDataInst(UncheckedEnumDataInst *X) { // We hash the enum by hashing its kind, element, and operand. return llvm::hash_combine(X->getKind(), X->getElement(), X->getOperand()); } hash_code visitIndexAddrInst(IndexAddrInst *X) { return llvm::hash_combine(X->getKind(), X->getType(), X->getBase(), X->getIndex()); } hash_code visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitObjCExistentialMetatypeToObjectInst( ObjCExistentialMetatypeToObjectInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitUncheckedRefCastInst(UncheckedRefCastInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitSelectEnumInstBase(SelectEnumInstBase *X) { auto hash = llvm::hash_combine(X->getKind(), X->getEnumOperand(), X->getType(), X->hasDefault()); for (unsigned i = 0, e = X->getNumCases(); i < e; ++i) { hash = llvm::hash_combine(hash, X->getCase(i).first, X->getCase(i).second); } if (X->hasDefault()) hash = llvm::hash_combine(hash, X->getDefaultResult()); return hash; } hash_code visitSelectEnumInst(SelectEnumInst *X) { return visitSelectEnumInstBase(X); } hash_code visitSelectEnumAddrInst(SelectEnumAddrInst *X) { return visitSelectEnumInstBase(X); } hash_code visitSelectValueInst(SelectValueInst *X) { auto hash = llvm::hash_combine(X->getKind(), X->getOperand(), X->getType(), X->hasDefault()); for (unsigned i = 0, e = X->getNumCases(); i < e; ++i) { hash = llvm::hash_combine(hash, X->getCase(i).first, X->getCase(i).second); } if (X->hasDefault()) hash = llvm::hash_combine(hash, X->getDefaultResult()); return hash; } hash_code visitIsNonnullInst(IsNonnullInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitThinFunctionToPointerInst(ThinFunctionToPointerInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitPointerToThinFunctionInst(PointerToThinFunctionInst *X) { return llvm::hash_combine(X->getKind(), X->getOperand(), X->getType()); } hash_code visitWitnessMethodInst(WitnessMethodInst *X) { OperandValueArrayRef Operands(X->getAllOperands()); return llvm::hash_combine(X->getKind(), X->getLookupType().getPointer(), X->getMember().getHashCode(), X->getConformance(), X->getType(), X->hasOperand(), llvm::hash_combine_range( Operands.begin(), Operands.end())); } }; } // end anonymous namespace unsigned llvm::DenseMapInfo::getHashValue(SimpleValue Val) { return HashVisitor().visit(Val.Inst); } bool llvm::DenseMapInfo::isEqual(SimpleValue LHS, SimpleValue RHS) { SILInstruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; return LHSI->getKind() == RHSI->getKind() && LHSI->isIdenticalTo(RHSI); } //===----------------------------------------------------------------------===// // CSE Interface //===----------------------------------------------------------------------===// namespace { /// CSE - This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using simplifyInstruction /// to canonicalize things as it goes. It is intended to be fast and catch /// obvious cases so that SILCombine and other passes are more effective. class CSE { public: typedef llvm::ScopedHashTableVal SimpleValueHTType; typedef llvm::RecyclingAllocator AllocatorTy; typedef llvm::ScopedHashTable, AllocatorTy> ScopedHTType; /// AvailableValues - This scoped hash table contains the current values of /// all of our simple scalar expressions. As we walk down the domtree, we /// look to see if instructions are in this: if so, we replace them with what /// we find, otherwise we insert them so that dominated values can succeed in /// their lookup. ScopedHTType *AvailableValues; SideEffectAnalysis *SEA; CSE(bool RunsOnHighLevelSil, SideEffectAnalysis *SEA) : SEA(SEA), RunsOnHighLevelSil(RunsOnHighLevelSil) {} bool processFunction(SILFunction &F, DominanceInfo *DT); bool canHandle(SILInstruction *Inst); private: /// True if CSE is done on high-level SIL, i.e. semantic calls are not inlined /// yet. In this case some semantic calls can be CSEd. bool RunsOnHighLevelSil; // NodeScope - almost a POD, but needs to call the constructors for the // scoped hash tables so that a new scope gets pushed on. These are RAII so // that the scope gets popped when the NodeScope is destroyed. class NodeScope { public: NodeScope(ScopedHTType *availableValues) : Scope(*availableValues) {} private: NodeScope(const NodeScope &) = delete; void operator=(const NodeScope &) = delete; ScopedHTType::ScopeTy Scope; }; // StackNode - contains all the needed information to create a stack for doing // a depth first traversal of the tree. This includes scopes for values and // loads as well as the generation. There is a child iterator so that the // children do not need to be store separately. class StackNode { public: StackNode(ScopedHTType *availableValues, DominanceInfoNode *n, DominanceInfoNode::iterator child, DominanceInfoNode::iterator end) : Node(n), ChildIter(child), EndIter(end), Scopes(availableValues), Processed(false) {} // Accessors. DominanceInfoNode *node() { return Node; } DominanceInfoNode::iterator childIter() { return ChildIter; } DominanceInfoNode *nextChild() { DominanceInfoNode *child = *ChildIter; ++ChildIter; return child; } DominanceInfoNode::iterator end() { return EndIter; } bool isProcessed() { return Processed; } void process() { Processed = true; } private: StackNode(const StackNode &) = delete; void operator=(const StackNode &) = delete; // Members. DominanceInfoNode *Node; DominanceInfoNode::iterator ChildIter; DominanceInfoNode::iterator EndIter; NodeScope Scopes; bool Processed; }; bool processNode(DominanceInfoNode *Node); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // CSE Implementation //===----------------------------------------------------------------------===// bool CSE::processFunction(SILFunction &Fm, DominanceInfo *DT) { std::vector nodesToProcess; // Tables that the pass uses when walking the domtree. ScopedHTType AVTable; AvailableValues = &AVTable; bool Changed = false; // Process the root node. nodesToProcess.push_back(new StackNode(AvailableValues, DT->getRootNode(), DT->getRootNode()->begin(), DT->getRootNode()->end())); // Process the stack. while (!nodesToProcess.empty()) { // Grab the first item off the stack. Set the current generation, remove // the node from the stack, and process it. StackNode *NodeToProcess = nodesToProcess.back(); // Check if the node needs to be processed. if (!NodeToProcess->isProcessed()) { // Process the node. Changed |= processNode(NodeToProcess->node()); NodeToProcess->process(); } else if (NodeToProcess->childIter() != NodeToProcess->end()) { // Push the next child onto the stack. DominanceInfoNode *child = NodeToProcess->nextChild(); nodesToProcess.push_back( new StackNode(AvailableValues, child, child->begin(), child->end())); } else { // It has been processed, and there are no more children to process, // so delete it and pop it off the stack. delete NodeToProcess; nodesToProcess.pop_back(); } } // while (!nodes...) return Changed; } bool CSE::processNode(DominanceInfoNode *Node) { SILBasicBlock *BB = Node->getBlock(); bool Changed = false; // See if any instructions in the block can be eliminated. If so, do it. If // not, add them to AvailableValues. for (SILBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { SILInstruction *Inst = &*I; ++I; DEBUG(llvm::dbgs() << "SILCSE VISITING: " << *Inst << "\n"); // Dead instructions should just be removed. if (isInstructionTriviallyDead(Inst)) { DEBUG(llvm::dbgs() << "SILCSE DCE: " << *Inst << '\n'); eraseFromParentWithDebugInsts(Inst, I); Changed = true; ++NumSimplify; continue; } // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. if (SILValue V = simplifyInstruction(Inst)) { DEBUG(llvm::dbgs() << "SILCSE SIMPLIFY: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // If this is not a simple instruction that we can value number, skip it. if (!canHandle(Inst)) continue; // If an instruction can be handled here, then it must also be handled // in isIdenticalTo, otherwise looking up a key in the map with fail to // match itself. assert(Inst->isIdenticalTo(Inst) && "Inst must match itself for map to work"); // Now that we know we have an instruction we understand see if the // instruction has an available value. If so, use it. if (ValueBase *V = AvailableValues->lookup(Inst)) { DEBUG(llvm::dbgs() << "SILCSE CSE: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumCSE; continue; } // Otherwise, just remember that this value is available. AvailableValues->insert(Inst, Inst); DEBUG(llvm::dbgs() << "SILCSE Adding to value table: " << *Inst << " -> " << *Inst << "\n"); } return Changed; } bool CSE::canHandle(SILInstruction *Inst) { if (auto *AI = dyn_cast(Inst)) { if (!AI->mayReadOrWriteMemory()) return true; if (RunsOnHighLevelSil) { ArraySemanticsCall SemCall(AI); switch (SemCall.getKind()) { case ArrayCallKind::kGetCount: case ArrayCallKind::kGetCapacity: case ArrayCallKind::kCheckIndex: case ArrayCallKind::kCheckSubscript: if (SemCall.hasGuaranteedSelf()) { return true; } return false; default: return false; } } // We can CSE function calls which do not read or write memory and don't // have any other side effects. SideEffectAnalysis::FunctionEffects Effects; SEA->getEffects(Effects, AI); // Note that the function also may not contain any retains. And there are // functions which are read-none and have a retain, e.g. functions which // _convert_ a global_addr to a reference and retain it. auto MB = Effects.getMemBehavior(RetainObserveKind::ObserveRetains); if (MB == SILInstruction::MemoryBehavior::None) return true; return false; } if (auto *BI = dyn_cast(Inst)) { return !BI->mayReadOrWriteMemory(); } if (auto *CMI = dyn_cast(Inst)) { return !CMI->isVolatile(); } if (auto *WMI = dyn_cast(Inst)) { return !WMI->isVolatile(); } if (auto *EMI = dyn_cast(Inst)) { return !EMI->getOperand()->getType().isAddress(); } switch (Inst->getKind()) { case ValueKind::FunctionRefInst: case ValueKind::GlobalAddrInst: case ValueKind::IntegerLiteralInst: case ValueKind::FloatLiteralInst: case ValueKind::StringLiteralInst: case ValueKind::StructInst: case ValueKind::StructExtractInst: case ValueKind::StructElementAddrInst: case ValueKind::TupleInst: case ValueKind::TupleExtractInst: case ValueKind::TupleElementAddrInst: case ValueKind::MetatypeInst: case ValueKind::ValueMetatypeInst: case ValueKind::ObjCProtocolInst: case ValueKind::RefElementAddrInst: case ValueKind::ProjectBoxInst: case ValueKind::IndexRawPointerInst: case ValueKind::IndexAddrInst: case ValueKind::PointerToAddressInst: case ValueKind::AddressToPointerInst: case ValueKind::CondFailInst: case ValueKind::EnumInst: case ValueKind::UncheckedEnumDataInst: case ValueKind::IsNonnullInst: case ValueKind::UncheckedTrivialBitCastInst: case ValueKind::UncheckedBitwiseCastInst: case ValueKind::RefToRawPointerInst: case ValueKind::RawPointerToRefInst: case ValueKind::RefToUnownedInst: case ValueKind::UnownedToRefInst: case ValueKind::RefToUnmanagedInst: case ValueKind::UnmanagedToRefInst: case ValueKind::UpcastInst: case ValueKind::ThickToObjCMetatypeInst: case ValueKind::ObjCToThickMetatypeInst: case ValueKind::UncheckedRefCastInst: case ValueKind::UncheckedAddrCastInst: case ValueKind::ObjCMetatypeToObjectInst: case ValueKind::ObjCExistentialMetatypeToObjectInst: case ValueKind::SelectEnumInst: case ValueKind::SelectValueInst: case ValueKind::RefToBridgeObjectInst: case ValueKind::BridgeObjectToRefInst: case ValueKind::BridgeObjectToWordInst: case ValueKind::ThinFunctionToPointerInst: case ValueKind::PointerToThinFunctionInst: return true; default: return false; } } using ApplyWitnessPair = std::pair; /// Returns the Apply and WitnessMethod instructions that use the /// open_existential_addr instructions, or null if at least one of the /// instructions is missing. ApplyWitnessPair getOpenExistentialUsers(OpenExistentialAddrInst *OE) { ApplyInst *AI = nullptr; WitnessMethodInst *WMI = nullptr; ApplyWitnessPair Empty = std::make_pair(nullptr, nullptr); for (auto *UI : getNonDebugUses(OE)) { auto *User = UI->getUser(); // Check that we have a single Apply user. if (auto *AA = dyn_cast(User)) { if (AI) return Empty; AI = AA; continue; } // Check that we have a single WMI user. if (auto *W = dyn_cast(User)) { if (WMI) return Empty; WMI = W; continue; } // Unknown instruction. return Empty; } // Both instructions need to exist. if (!WMI || !AI) return Empty; // Make sure that the WMI and AI match. if (AI->getCallee() != WMI) return Empty; // We have exactly the pattern that we expected. return std::make_pair(AI, WMI); } /// Try to CSE the users of \p From to the users of \p To. /// The original users of \p To are passed in ToApplyWitnessUsers. /// Returns true on success. static bool tryToCSEOpenExtCall(OpenExistentialAddrInst *From, OpenExistentialAddrInst *To, ApplyWitnessPair ToApplyWitnessUsers, DominanceInfo *DA) { assert(From != To && "Can't replace instruction with itself"); ApplyInst *FromAI = nullptr; ApplyInst *ToAI = nullptr; WitnessMethodInst *FromWMI = nullptr; WitnessMethodInst *ToWMI = nullptr; std::tie(FromAI, FromWMI) = getOpenExistentialUsers(From); std::tie(ToAI, ToWMI) = ToApplyWitnessUsers; // Make sure that the OEA instruction has exactly two expected users. if (!FromAI || !ToAI || !FromWMI || !ToWMI) return false; // Make sure we are calling the same method. if (FromWMI->getMember() != ToWMI->getMember()) return false; // We are going to reuse the TO-WMI, so make sure it dominates the call site. if (!DA->properlyDominates(ToWMI, FromWMI)) return false; SILBuilder Builder(FromAI); assert(FromAI->getArguments().size() == ToAI->getArguments().size() && "Invalid number of arguments"); // Don't handle any apply instructions that involve substitutions. if (ToAI->getSubstitutions().size() != 1) return false; // Prepare the Apply args. SmallVector Args; for (auto Op : FromAI->getArguments()) { Args.push_back(Op == From ? To : Op); } auto FnTy = ToAI->getSubstCalleeSILType(); auto ResTy = FnTy.castTo()->getSILResult(); ApplyInst *NAI = Builder.createApply(ToAI->getLoc(), ToWMI, FnTy, ResTy, ToAI->getSubstitutions(), Args, ToAI->isNonThrowing()); FromAI->replaceAllUsesWith(NAI); FromAI->eraseFromParent(); NumOpenExtRemoved++; return true; } /// Try to CSE the users of the protocol that's passed in argument \p Arg. /// \returns True if some instructions were modified. static bool CSExistentialInstructions(SILArgument *Arg, DominanceInfo *DA) { ParameterConvention Conv = Arg->getKnownParameterInfo().getConvention(); // We can assume that the address of Proto does not alias because the // calling convention is In or In-guaranteed. bool MayAlias = Conv != ParameterConvention::Indirect_In_Guaranteed && Conv != ParameterConvention::Indirect_In; if (MayAlias) return false; // Now check that the only uses of the protocol are witness_method, // open_existential_addr and destroy_addr. Also, collect all of the 'opens'. llvm::SmallVector Opens; for (auto *UI : getNonDebugUses(Arg)) { auto *User = UI->getUser(); if (auto *Open = dyn_cast(User)) { Opens.push_back(Open); continue; } if (isa(User) || isa(User)) continue; // Bail out if we found an instruction that we can't handle. return false; } // Find the best dominating 'open' for each open existential. llvm::SmallVector TopDominator(Opens); bool Changed = false; // Try to CSE the users of the current open_existential_addr instruction with // one of the other open_existential_addr that dominate it. int NumOpenInstr = Opens.size(); for (int i = 0; i < NumOpenInstr; i++) { // Try to find a better dominating 'open' for the i-th instruction. OpenExistentialAddrInst *SomeOpen = TopDominator[i]; for (int j = 0; j < NumOpenInstr; j++) { if (i == j || TopDominator[i] == TopDominator[j]) continue; OpenExistentialAddrInst *DominatingOpen = TopDominator[j]; if (DominatingOpen->getOperand() != SomeOpen->getOperand()) continue; if (DA->properlyDominates(DominatingOpen, SomeOpen)) { // We found an open instruction that DominatingOpen dominates: TopDominator[i] = TopDominator[j]; } } } // Inspect all of the open_existential_addr instructions and record the // apply-witness users. We need to save the original Apply-Witness users // because we'll be adding new users and we need to make sure that we can // find the original users. llvm::SmallVector OriginalAW; for (int i=0; i < NumOpenInstr; i++) { OriginalAW.push_back(getOpenExistentialUsers(TopDominator[i])); } // Perform the CSE for the open_existential_addr instruction and their // dominating instruction. for (int i=0; i < NumOpenInstr; i++) { if (Opens[i] != TopDominator[i]) Changed |= tryToCSEOpenExtCall(Opens[i], TopDominator[i], OriginalAW[i], DA); } return Changed; } /// Detect multiple calls to existential members and try to CSE the instructions /// that perform the method lookup (the open_existential_addr and /// witness_method): /// /// open_existential_addr %0 : $*Pingable to $*@opened("1E467EB8-...") /// witness_method $@opened("1E467EB8-...") Pingable, #Pingable.ping!1, %2 /// apply %3<@opened("1E467EB8-...") Pingable>(%2) /// /// \returns True if some instructions were modified. static bool CSEExistentialCalls(SILFunction *Func, DominanceInfo *DA) { bool Changed = false; for (auto *Arg : Func->getArgumentsWithoutIndirectResults()) { if (Arg->getType().isExistentialType()) Changed |= CSExistentialInstructions(Arg, DA); } return Changed; } namespace { class SILCSE : public SILFunctionTransform { /// True if CSE is done on high-level SIL, i.e. semantic calls are not inlined /// yet. In this case some semantic calls can be CSEd. /// We only CSE semantic calls on high-level SIL because we can be sure that /// e.g. an Array as SILValue is really immutable (including its content). bool RunsOnHighLevelSil; void run() override { DEBUG(llvm::dbgs() << "***** CSE on function: " << getFunction()->getName() << " *****\n"); DominanceAnalysis* DA = getAnalysis(); auto *SEA = PM->getAnalysis(); CSE C(RunsOnHighLevelSil, SEA); bool Changed = false; // Perform the traditional CSE. Changed |= C.processFunction(*getFunction(), DA->get(getFunction())); // Perform CSE of existential and witness_method instructions. Changed |= CSEExistentialCalls(getFunction(), DA->get(getFunction())); if (Changed) { invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions); } } StringRef getName() override { return RunsOnHighLevelSil ? "High-level CSE" : "CSE"; } public: SILCSE(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {} }; } // end anonymous namespace SILTransform *swift::createCSE() { return new SILCSE(false); } SILTransform *swift::createHighLevelCSE() { return new SILCSE(true); }