//===--- Devirtualize.cpp - Helper for devirtualizing apply ---------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-devirtualize-utility" #include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h" #include "swift/SILOptimizer/Utils/Devirtualize.h" #include "swift/AST/Decl.h" #include "swift/AST/Types.h" #include "swift/SIL/SILDeclRef.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILInstruction.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILType.h" #include "swift/SIL/SILValue.h" #include "swift/SIL/InstructionUtils.h" #include "swift/SILOptimizer/Utils/Local.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Casting.h" using namespace swift; STATISTIC(NumClassDevirt, "Number of class_method applies devirtualized"); STATISTIC(NumWitnessDevirt, "Number of witness_method applies devirtualized"); //===----------------------------------------------------------------------===// // Class Method Optimization //===----------------------------------------------------------------------===// /// Compute all subclasses of a given class. /// /// \p CHA class hierarchy analysis /// \p CD class declaration /// \p ClassType type of the instance /// \p M SILModule /// \p Subs a container to be used for storing the set of subclasses static void getAllSubclasses(ClassHierarchyAnalysis *CHA, ClassDecl *CD, SILType ClassType, SILModule &M, ClassHierarchyAnalysis::ClassList &Subs) { // Collect the direct and indirect subclasses for the class. // Sort these subclasses in the order they should be tested by the // speculative devirtualization. Different strategies could be used, // E.g. breadth-first, depth-first, etc. // Currently, let's use the breadth-first strategy. // The exact static type of the instance should be tested first. auto &DirectSubs = CHA->getDirectSubClasses(CD); auto &IndirectSubs = CHA->getIndirectSubClasses(CD); Subs.append(DirectSubs.begin(), DirectSubs.end()); //SmallVector Subs(DirectSubs); Subs.append(IndirectSubs.begin(), IndirectSubs.end()); if (isa(ClassType.getSwiftRValueType())) { // Filter out any subclasses that do not inherit from this // specific bound class. auto RemovedIt = std::remove_if(Subs.begin(), Subs.end(), [&ClassType, &M](ClassDecl *Sub){ auto SubCanTy = Sub->getDeclaredType()->getCanonicalType(); // Unbound generic type can override a method from // a bound generic class, but this unbound generic // class is not considered to be a subclass of a // bound generic class in a general case. if (isa(SubCanTy)) return false; // Handle the usual case here: the class in question // should be a real subclass of a bound generic class. return !ClassType.isBindableToSuperclassOf( SILType::getPrimitiveObjectType(SubCanTy)); }); Subs.erase(RemovedIt, Subs.end()); } } /// \brief Returns true, if a method implementation corresponding to /// the class_method applied to an instance of the class CD is /// effectively final, i.e. it is statically known to be not overridden /// by any subclasses of the class CD. /// /// \p AI invocation instruction /// \p ClassType type of the instance /// \p CD static class of the instance whose method is being invoked /// \p CHA class hierarchy analysis bool isEffectivelyFinalMethod(FullApplySite AI, SILType ClassType, ClassDecl *CD, ClassHierarchyAnalysis *CHA) { if (CD && CD->isFinal()) return true; const DeclContext *DC = AI.getModule().getAssociatedContext(); // Without an associated context we cannot perform any // access-based optimizations. if (!DC) return false; auto *CMI = cast(AI.getCallee()); if (!calleesAreStaticallyKnowable(AI.getModule(), CMI->getMember())) return false; auto *Method = CMI->getMember().getAbstractFunctionDecl(); assert(Method && "Expected abstract function decl!"); assert(!Method->isFinal() && "Unexpected indirect call to final method!"); // If this method is not overridden in the module, // there is no other implementation. if (!Method->isOverridden()) return true; // Class declaration may be nullptr, e.g. for cases like: // func foo(c: C) {}, where C is a class, but // it does not have a class decl. if (!CD) return false; if (!CHA) return false; // This is a private or a module internal class. // // We can analyze the class hierarchy rooted at it and // eventually devirtualize a method call more efficiently. ClassHierarchyAnalysis::ClassList Subs; getAllSubclasses(CHA, CD, ClassType, AI.getModule(), Subs); // This is the implementation of the method to be used // if the exact class of the instance would be CD. auto *ImplMethod = CD->findImplementingMethod(Method); // First, analyze all direct subclasses. for (auto S : Subs) { // Check if the subclass overrides a method and provides // a different implementation. auto *ImplFD = S->findImplementingMethod(Method); if (ImplFD != ImplMethod) return false; } return true; } /// Check if a given class is final in terms of a current /// compilation, i.e.: /// - it is really final /// - or it is private and has not sub-classes /// - or it is an internal class without sub-classes and /// it is a whole-module compilation. static bool isKnownFinalClass(ClassDecl *CD, SILModule &M, ClassHierarchyAnalysis *CHA) { const DeclContext *DC = M.getAssociatedContext(); if (CD->isFinal()) return true; // Without an associated context we cannot perform any // access-based optimizations. if (!DC) return false; // Only handle classes defined within the SILModule's associated context. if (!CD->isChildContextOf(DC)) return false; if (!CD->hasAccessibility()) return false; // Only consider 'private' members, unless we are in whole-module compilation. switch (CD->getEffectiveAccess()) { case Accessibility::Public: return false; case Accessibility::Internal: if (!M.isWholeModule()) return false; break; case Accessibility::Private: break; } // Take the ClassHierarchyAnalysis into account. // If a given class has no subclasses and // - private // - or internal and it is a WMO compilation // then this class can be considered final for the purpose // of devirtualization. if (CHA) { if (!CHA->hasKnownDirectSubclasses(CD)) { switch (CD->getEffectiveAccess()) { case Accessibility::Public: return false; case Accessibility::Internal: if (!M.isWholeModule()) return false; break; case Accessibility::Private: break; } return true; } } return false; } // Attempt to get the instance for S, whose static type is the same as // its exact dynamic type, returning a null SILValue() if we cannot find it. // The information that a static type is the same as the exact dynamic, // can be derived e.g.: // - from a constructor or // - from a successful outcome of a checked_cast_br [exact] instruction. static SILValue getInstanceWithExactDynamicType(SILValue S, SILModule &M, ClassHierarchyAnalysis *CHA) { while (S) { S = stripCasts(S); if (isa(S) || isa(S)) return S; auto *Arg = dyn_cast(S); if (!Arg) break; auto *SinglePred = Arg->getParent()->getSinglePredecessor(); if (!SinglePred) { if (!Arg->isFunctionArg()) break; auto *CD = Arg->getType().getClassOrBoundGenericClass(); // Check if this class is effectively final. if (!CD || !isKnownFinalClass(CD, M, CHA)) break; return Arg; } // Traverse the chain of predecessors. if (isa(SinglePred->getTerminator()) || isa(SinglePred->getTerminator())) { S = Arg->getIncomingValue(SinglePred); continue; } // If it is a BB argument received on a success branch // of a checked_cast_br, then we know its exact type. auto *CCBI = dyn_cast(SinglePred->getTerminator()); if (!CCBI) break; if (!CCBI->isExact() || CCBI->getSuccessBB() != Arg->getParent()) break; return S; } return SILValue(); } /// Return bound generic type for the unbound type Superclass, /// which is a superclass of a bound generic type BoundDerived /// (Base may be also the same as BoundDerived or may be /// non-generic at all). static CanType bindSuperclass(CanType Superclass, SILType BoundDerived) { assert(BoundDerived && "Expected non-null type!"); SILType BoundSuperclass = BoundDerived; do { // Get declaration of the superclass. auto *Decl = BoundSuperclass.getNominalOrBoundGenericNominal(); // Obtain the unbound variant of the current superclass CanType UnboundSuperclass = Decl->getDeclaredType()->getCanonicalType(); // Check if we found a superclass we are looking for. if (UnboundSuperclass == Superclass) return BoundSuperclass.getSwiftRValueType(); // Get the superclass of current one BoundSuperclass = BoundSuperclass.getSuperclass(nullptr); } while (BoundSuperclass); llvm_unreachable("Expected to find a bound generic superclass!"); } // Returns true if any generic types parameters of the class are // unbound. bool swift::isNominalTypeWithUnboundGenericParameters(SILType Ty, SILModule &M) { auto *ND = Ty.getNominalOrBoundGenericNominal(); if (ND && ND->getGenericSignature()) { auto InstanceTypeSubsts = Ty.gatherAllSubstitutions(M); if (!InstanceTypeSubsts.empty()) { if (hasUnboundGenericTypes(InstanceTypeSubsts)) return true; } } if (Ty.hasArchetype()) return true; return false; } // Start with the substitutions from the apply. // Try to propagate them to find out the real substitutions required // to invoke the method. static ArrayRef getSubstitutionsForCallee(SILModule &M, CanSILFunctionType GenCalleeType, SILType ClassInstanceType, FullApplySite AI) { // *NOTE*: // Apply instruction substitutions are for the Member from a protocol or // class B, where this member was first defined, before it got overridden by // derived classes. // // The implementation F (the implementing method) which was found may have // a different set of generic parameters, e.g. because it is implemented by a // class D1 derived from B. // // ClassInstanceType may have a type different from both the type B // the Member belongs to and from the ClassInstanceType, e.g. if // ClassInstance is of a class D2, which is derived from D1, but does not // override the Member. // // As a result, substitutions provided by AI are for Member, whereas // substitutions in ClassInstanceType are for D2. And substitutions for D1 // are not available directly in a general case. Therefore, they have to // be computed. // // What we know for sure: // B is a superclass of D1 // D1 is a superclass of D2. // D1 can be the same as D2. D1 can be the same as B. // // So, substitutions from AI are for class B. // Substitutions for class D1 by means of bindSuperclass(), which starts // with a bound type ClassInstanceType and checks its superclasses until it // finds a bound superclass matching D1 and returns its substitutions. // Class F belongs to. CanType FSelfClass = GenCalleeType->getSelfParameter().getType(); auto *Module = M.getSwiftModule(); ArrayRef ClassSubs; if (GenCalleeType->isPolymorphic()) { // Declaration of the class F belongs to. if (auto *FSelfTypeDecl = FSelfClass.getNominalOrBoundGenericNominal()) { // Get the unbound generic type F belongs to. CanType FSelfGenericType = FSelfTypeDecl->getDeclaredType()->getCanonicalType(); assert((isa(ClassInstanceType.getSwiftRValueType()) || isa(ClassInstanceType.getSwiftRValueType())) && "Self type should be either a bound generic type" "or a non-generic type"); assert((isa(FSelfGenericType) || isa(FSelfGenericType)) && "Method implementation self type should be generic"); if (isa(ClassInstanceType.getSwiftRValueType())) { auto BoundBaseType = bindSuperclass(FSelfGenericType, ClassInstanceType); if (auto BoundTy = BoundBaseType->getAs()) { ClassSubs = BoundTy->getSubstitutions(Module, nullptr); } } } } else { // If the callee is not polymorphic, no substitutions are required. return {}; } if (ClassSubs.empty()) return AI.getSubstitutions(); auto AISubs = AI.getSubstitutions(); CanSILFunctionType AIGenCalleeType = AI.getCallee()->getType().castTo(); CanType AISelfClass = AIGenCalleeType->getSelfParameter().getType(); unsigned NextMethodParamIdx = 0; unsigned NumMethodParams = 0; if (AIGenCalleeType->isPolymorphic()) { NextMethodParamIdx = 0; // Generic parameters of the method start after generic parameters // of the instance class. if (auto AISelfClassSig = AISelfClass.getClassBound()->getGenericSignature()) { NextMethodParamIdx = AISelfClassSig->getGenericParams().size(); } NumMethodParams = AISubs.size() - NextMethodParamIdx; } unsigned NumSubs = ClassSubs.size() + NumMethodParams; if (ClassSubs.size() == NumSubs) return ClassSubs; // Mix class subs with method specific subs from the AI substitutions. // Assumptions: AI substitutions contain first the substitutions for // a class of the method being invoked and then the substitutions // for a method being invoked. auto Subs = M.getASTContext().Allocate(NumSubs); unsigned i = 0; for (auto &S : ClassSubs) { Subs[i++] = S; } for (; i < NumSubs; ++i, ++NextMethodParamIdx) { Subs[i] = AISubs[NextMethodParamIdx]; } return Subs; } static SILFunction *getTargetClassMethod(SILModule &M, SILType ClassOrMetatypeType, SILDeclRef Member) { if (ClassOrMetatypeType.is()) ClassOrMetatypeType = ClassOrMetatypeType.getMetatypeInstanceType(M); auto *CD = ClassOrMetatypeType.getClassOrBoundGenericClass(); return M.lookUpFunctionInVTable(CD, Member); } /// \brief Check if it is possible to devirtualize an Apply instruction /// and a class member obtained using the class_method instruction into /// a direct call to a specific member of a specific class. /// /// \p AI is the apply to devirtualize. /// \p ClassOrMetatypeType is the class type or metatype type we are /// devirtualizing for. /// return true if it is possible to devirtualize, false - otherwise. bool swift::canDevirtualizeClassMethod(FullApplySite AI, SILType ClassOrMetatypeType) { DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction()); SILModule &Mod = AI.getModule(); // First attempt to lookup the origin for our class method. The origin should // either be a metatype or an alloc_ref. DEBUG(llvm::dbgs() << " Origin Type: " << ClassOrMetatypeType); auto *MI = cast(AI.getCallee()); // Find the implementation of the member which should be invoked. auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI->getMember()); // If we do not find any such function, we have no function to devirtualize // to... so bail. if (!F) { DEBUG(llvm::dbgs() << " FAIL: Could not find matching VTable or " "vtable method for this class.\n"); return false; } if (AI.getFunction()->isFragile()) { // function_ref inside fragile function cannot reference a private or // hidden symbol. if (!(F->isFragile() || isValidLinkageForFragileRef(F->getLinkage()) || F->isExternalDeclaration())) return false; } CanSILFunctionType GenCalleeType = F->getLoweredFunctionType(); auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType, ClassOrMetatypeType, AI); // For polymorphic functions, bail if the number of substitutions is // not the same as the number of expected generic parameters. if (GenCalleeType->isPolymorphic()) { auto GenericSig = GenCalleeType->getGenericSignature(); // Get the number of expected generic parameters, which // is a sum of the number of explicit generic parameters // and the number of their recursive member types exposed // through protocol requirements. auto DepTypes = GenericSig->getAllDependentTypes(); unsigned ExpectedGenParamsNum = 0; for (auto DT: DepTypes) { (void)DT; ExpectedGenParamsNum++; } if (ExpectedGenParamsNum != Subs.size()) return false; } // Check if the optimizer knows how to cast the return type. CanSILFunctionType SubstCalleeType = GenCalleeType; if (GenCalleeType->isPolymorphic()) SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs); SILType ReturnType = SubstCalleeType->getSILResult(); if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType())) return false; return true; } /// \brief Devirtualize an apply of a class method. /// /// \p AI is the apply to devirtualize. /// \p ClassOrMetatype is a class value or metatype value that is the /// self argument of the apply we will devirtualize. /// return the result value of the new ApplyInst if created one or null. DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI, SILValue ClassOrMetatype) { DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction()); SILModule &Mod = AI.getModule(); auto *MI = cast(AI.getCallee()); auto ClassOrMetatypeType = ClassOrMetatype->getType(); auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI->getMember()); CanSILFunctionType GenCalleeType = F->getLoweredFunctionType(); auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType, ClassOrMetatypeType, AI); CanSILFunctionType SubstCalleeType = GenCalleeType; if (GenCalleeType->isPolymorphic()) SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs); SILBuilderWithScope B(AI.getInstruction()); FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F); // Create the argument list for the new apply, casting when needed // in order to handle covariant indirect return types and // contravariant argument types. llvm::SmallVector NewArgs; auto IndirectResultArgs = AI.getIndirectResults(); auto IndirectResultInfos = SubstCalleeType->getIndirectResults(); for (unsigned i : indices(IndirectResultArgs)) NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), IndirectResultArgs[i], IndirectResultArgs[i]->getType(), IndirectResultInfos[i].getSILType()).getValue()); auto Args = AI.getArgumentsWithoutIndirectResults(); auto ParamTypes = SubstCalleeType->getParameterSILTypes(); for (unsigned i = 0, e = Args.size() - 1; i != e; ++i) NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), Args[i], Args[i]->getType(), ParamTypes[i]).getValue()); // Add the self argument, upcasting if required because we're // calling a base class's method. auto SelfParamTy = SubstCalleeType->getSelfParameter().getSILType(); NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), ClassOrMetatype, ClassOrMetatypeType, SelfParamTy).getValue()); SILType ResultTy = SubstCalleeType->getSILResult(); SILType SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeType); FullApplySite NewAI; SILBasicBlock *ResultBB = nullptr; SILBasicBlock *NormalBB = nullptr; SILValue ResultValue; bool ResultCastRequired = false; SmallVector OriginalResultUses; if (!isa(AI)) { NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy, Subs, NewArgs, cast(AI)->isNonThrowing()); ResultValue = NewAI.getInstruction(); } else { auto *TAI = cast(AI); // Create new normal and error BBs only if: // - re-using a BB would create a critical edge // - or, the result of the new apply would be of different // type than the argument of the original normal BB. if (TAI->getNormalBB()->getSinglePredecessor()) ResultBB = TAI->getNormalBB(); else { ResultBB = B.getFunction().createBasicBlock(); ResultBB->createBBArg(ResultTy); } NormalBB = TAI->getNormalBB(); SILBasicBlock *ErrorBB = nullptr; if (TAI->getErrorBB()->getSinglePredecessor()) ErrorBB = TAI->getErrorBB(); else { ErrorBB = B.getFunction().createBasicBlock(); ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType()); } NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType, Subs, NewArgs, ResultBB, ErrorBB); if (ErrorBB != TAI->getErrorBB()) { B.setInsertionPoint(ErrorBB); B.createBranch(TAI->getLoc(), TAI->getErrorBB(), {ErrorBB->getBBArg(0)}); } // Does the result value need to be casted? ResultCastRequired = ResultTy != NormalBB->getBBArg(0)->getType(); if (ResultBB != NormalBB) B.setInsertionPoint(ResultBB); else if (ResultCastRequired) { B.setInsertionPoint(NormalBB->begin()); // Collect all uses, before casting. for (auto *Use : NormalBB->getBBArg(0)->getUses()) { OriginalResultUses.push_back(Use); } NormalBB->getBBArg(0)->replaceAllUsesWith(SILUndef::get(AI.getType(), Mod)); NormalBB->replaceBBArg(0, ResultTy, nullptr); } // The result value is passed as a parameter to the normal block. ResultValue = ResultBB->getBBArg(0); } // Check if any casting is required for the return value. ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue, ResultTy, AI.getType()).getValue(); DEBUG(llvm::dbgs() << " SUCCESS: " << F->getName() << "\n"); NumClassDevirt++; if (NormalBB) { if (NormalBB != ResultBB) { // If artificial normal BB was introduced, branch // to the original normal BB. B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue }); } else if (ResultCastRequired) { // Update all original uses by the new value. for(auto *Use: OriginalResultUses) { Use->set(ResultValue); } } return std::make_pair(NewAI.getInstruction(), NewAI); } // We need to return a pair of values here: // - the first one is the actual result of the devirtualized call, possibly // casted into an appropriate type. This SILValue may be a BB arg, if it // was a cast between optional types. // - the second one is the new apply site. return std::make_pair(ResultValue, NewAI); } DevirtualizationResult swift::tryDevirtualizeClassMethod(FullApplySite AI, SILValue ClassInstance) { if (!canDevirtualizeClassMethod(AI, ClassInstance->getType())) return std::make_pair(nullptr, FullApplySite()); return devirtualizeClassMethod(AI, ClassInstance); } //===----------------------------------------------------------------------===// // Witness Method Optimization //===----------------------------------------------------------------------===// static void getWitnessMethodSubstitutions(ApplySite AI, SILFunction *F, ArrayRef Subs, SmallVectorImpl &NewSubs) { auto &Module = AI.getModule(); auto CalleeCanType = F->getLoweredFunctionType(); ProtocolDecl *proto = nullptr; if (CalleeCanType->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) { proto = CalleeCanType->getDefaultWitnessMethodProtocol( *Module.getSwiftModule()); } ArrayRef origSubs = AI.getSubstitutions(); if (proto != nullptr) { // If the callee is a default witness method thunk, preserve substitutions // from the call site. NewSubs.append(origSubs.begin(), origSubs.end()); return; } // If the callee is a concrete witness method thunk, apply substitutions // from the conformance, and drop any substitutions derived from the Self // type. NewSubs.append(Subs.begin(), Subs.end()); if (auto generics = AI.getOrigCalleeType()->getGenericSignature()) { for (auto genericParam : generics->getAllDependentTypes()) { auto origSub = origSubs.front(); origSubs = origSubs.slice(1); // If the callee is a concrete witness method thunk, we ignore // generic parameters derived from 'self', the generic parameter at // depth 0, index 0. auto type = genericParam->getCanonicalType(); while (auto memberType = dyn_cast(type)) { type = memberType.getBase(); } auto paramType = cast(type); if (paramType->getDepth() == 0) { // There shouldn't be any other parameters at this depth. assert(paramType->getIndex() == 0); continue; } // Okay, remember this substitution. NewSubs.push_back(origSub); } } assert(origSubs.empty() && "subs not parallel to dependent types"); } /// Generate a new apply of a function_ref to replace an apply of a /// witness_method when we've determined the actual function we'll end /// up calling. static ApplySite devirtualizeWitnessMethod(ApplySite AI, SILFunction *F, ArrayRef Subs) { // We know the witness thunk and the corresponding set of substitutions // required to invoke the protocol method at this point. auto &Module = AI.getModule(); // Collect all the required substitutions. // // The complete set of substitutions may be different, e.g. because the found // witness thunk F may have been created by a specialization pass and have // additional generic parameters. SmallVector NewSubs; getWitnessMethodSubstitutions(AI, F, Subs, NewSubs); // Figure out the exact bound type of the function to be called by // applying all substitutions. auto CalleeCanType = F->getLoweredFunctionType(); auto SubstCalleeCanType = CalleeCanType->substGenericArgs( Module, Module.getSwiftModule(), NewSubs); // Collect arguments from the apply instruction. auto Arguments = SmallVector(); // Iterate over the non self arguments and add them to the // new argument list, upcasting when required. SILBuilderWithScope B(AI.getInstruction()); for (unsigned ArgN = 0, ArgE = AI.getNumArguments(); ArgN != ArgE; ++ArgN) { SILValue A = AI.getArgument(ArgN); auto ParamType = SubstCalleeCanType->getSILArgumentType( SubstCalleeCanType->getNumSILArguments() - AI.getNumArguments() + ArgN); if (A->getType() != ParamType) A = B.createUpcast(AI.getLoc(), A, ParamType); Arguments.push_back(A); } // Replace old apply instruction by a new apply instruction that invokes // the witness thunk. SILBuilderWithScope Builder(AI.getInstruction()); SILLocation Loc = AI.getLoc(); FunctionRefInst *FRI = Builder.createFunctionRef(Loc, F); auto SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeCanType); auto ResultSILType = SubstCalleeCanType->getSILResult(); ApplySite SAI; if (auto *A = dyn_cast(AI)) SAI = Builder.createApply(Loc, FRI, SubstCalleeSILType, ResultSILType, NewSubs, Arguments, A->isNonThrowing()); if (auto *TAI = dyn_cast(AI)) SAI = Builder.createTryApply(Loc, FRI, SubstCalleeSILType, NewSubs, Arguments, TAI->getNormalBB(), TAI->getErrorBB()); if (auto *PAI = dyn_cast(AI)) SAI = Builder.createPartialApply(Loc, FRI, SubstCalleeSILType, NewSubs, Arguments, PAI->getType()); NumWitnessDevirt++; return SAI; } /// In the cases where we can statically determine the function that /// we'll call to, replace an apply of a witness_method with an apply /// of a function_ref, returning the new apply. DevirtualizationResult swift::tryDevirtualizeWitnessMethod(ApplySite AI) { SILFunction *F; ArrayRef Subs; SILWitnessTable *WT; auto *WMI = cast(AI.getCallee()); std::tie(F, WT, Subs) = AI.getModule().lookUpFunctionInWitnessTable(WMI->getConformance(), WMI->getMember()); if (!F) return std::make_pair(nullptr, FullApplySite()); auto Result = devirtualizeWitnessMethod(AI, F, Subs); return std::make_pair(Result.getInstruction(), Result); } //===----------------------------------------------------------------------===// // Top Level Driver //===----------------------------------------------------------------------===// /// Attempt to devirtualize the given apply if possible, and return a /// new instruction in that case, or nullptr otherwise. DevirtualizationResult swift::tryDevirtualizeApply(FullApplySite AI, ClassHierarchyAnalysis *CHA) { DEBUG(llvm::dbgs() << " Trying to devirtualize: " << *AI.getInstruction()); // Devirtualize apply instructions that call witness_method instructions: // // %8 = witness_method $Optional, #LogicValue.boolValue!getter.1 // %9 = apply %8(%6#1) : ... // if (isa(AI.getCallee())) return tryDevirtualizeWitnessMethod(AI); /// Optimize a class_method and alloc_ref pair into a direct function /// reference: /// /// \code /// %XX = alloc_ref $Foo /// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)... /// \endcode /// /// or /// /// %XX = metatype $... /// %YY = class_method %XX : ... /// /// into /// /// %YY = function_ref @... if (auto *CMI = dyn_cast(AI.getCallee())) { auto &M = AI.getModule(); auto Instance = stripUpCasts(CMI->getOperand()); auto ClassType = Instance->getType(); if (ClassType.is()) ClassType = ClassType.getMetatypeInstanceType(M); auto *CD = ClassType.getClassOrBoundGenericClass(); if (isEffectivelyFinalMethod(AI, ClassType, CD, CHA)) return tryDevirtualizeClassMethod(AI, Instance); // Try to check if the exact dynamic type of the instance is statically // known. if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(), CMI->getModule(), CHA)) return tryDevirtualizeClassMethod(AI, Instance); } if (isa(AI.getCallee())) { if (AI.hasSelfArgument()) { return tryDevirtualizeClassMethod(AI, AI.getSelfArgument()); } // It is an invocation of a class method. // Last operand is the metatype that should be used for dispatching. return tryDevirtualizeClassMethod(AI, AI.getArguments().back()); } return std::make_pair(nullptr, FullApplySite()); }