//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// @_exported import Foundation // Clang module extension Decimal { public typealias RoundingMode = NSDecimalNumber.RoundingMode public typealias CalculationError = NSDecimalNumber.CalculationError public static let leastFiniteMagnitude = Decimal(_exponent: 127, _length: 8, _isNegative: 1, _isCompact: 1, _reserved: 0, _mantissa: (0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff)) public static let greatestFiniteMagnitude = Decimal(_exponent: 127, _length: 8, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff)) public static let leastNormalMagnitude = Decimal(_exponent: -127, _length: 1, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) public static let leastNonzeroMagnitude = Decimal(_exponent: -127, _length: 1, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) public static let pi = Decimal(_exponent: -38, _length: 8, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x6623, 0x7d57, 0x16e7, 0xad0d, 0xaf52, 0x4641, 0xdfa7, 0xec58)) public var exponent: Int { get { return Int(_exponent) } } public var significand: Decimal { get { return Decimal(_exponent: 0, _length: _length, _isNegative: _isNegative, _isCompact: _isCompact, _reserved: 0, _mantissa: _mantissa) } } public init(sign: FloatingPointSign, exponent: Int, significand: Decimal) { self.init(_exponent: Int32(exponent) + significand._exponent, _length: significand._length, _isNegative: sign == .plus ? 0 : 1, _isCompact: significand._isCompact, _reserved: 0, _mantissa: significand._mantissa) } public init(signOf: Decimal, magnitudeOf magnitude: Decimal) { self.init(_exponent: magnitude._exponent, _length: magnitude._length, _isNegative: signOf._isNegative, _isCompact: magnitude._isCompact, _reserved: 0, _mantissa: magnitude._mantissa) } public var sign: FloatingPointSign { return _isNegative == 0 ? FloatingPointSign.plus : FloatingPointSign.minus } public static var radix: Int { return 10 } public var ulp: Decimal { if !self.isFinite { return Decimal.nan } return Decimal(_exponent: _exponent, _length: 8, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) } @available(*, unavailable, message: "Decimal does not yet fully adopt FloatingPoint.") public mutating func formTruncatingRemainder(dividingBy other: Decimal) { fatalError("Decimal does not yet fully adopt FloatingPoint") } public mutating func add(_ other: Decimal) { var rhs = other NSDecimalAdd(&self, &self, &rhs, .plain) } public mutating func subtract(_ other: Decimal) { var rhs = other NSDecimalSubtract(&self, &self, &rhs, .plain) } public mutating func multiply(by other: Decimal) { var rhs = other NSDecimalMultiply(&self, &self, &rhs, .plain) } public mutating func divide(by other: Decimal) { var rhs = other NSDecimalDivide(&self, &self, &rhs, .plain) } public mutating func negate() { _isNegative = _isNegative == 0 ? 1 : 0 } public func isEqual(to other: Decimal) -> Bool { var lhs = self var rhs = other return NSDecimalCompare(&lhs, &rhs) == .orderedSame } public func isLess(than other: Decimal) -> Bool { var lhs = self var rhs = other return NSDecimalCompare(&lhs, &rhs) == .orderedAscending } public func isLessThanOrEqualTo(_ other: Decimal) -> Bool { var lhs = self var rhs = other let order = NSDecimalCompare(&lhs, &rhs) return order == .orderedAscending || order == .orderedSame } public func isTotallyOrdered(belowOrEqualTo other: Decimal) -> Bool { // Notes: Decimal does not have -0 or infinities to worry about if self.isNaN { return false } else if self < other { return true } else if other < self { return false } // fall through to == behavior return true } public var isCanonical: Bool { return true } public var nextUp: Decimal { return self + Decimal(_exponent: _exponent, _length: 1, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) } public var nextDown: Decimal { return self - Decimal(_exponent: _exponent, _length: 1, _isNegative: 0, _isCompact: 1, _reserved: 0, _mantissa: (0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) } public static func +(lhs: Decimal, rhs: Decimal) -> Decimal { var res = Decimal() var leftOp = lhs var rightOp = rhs NSDecimalAdd(&res, &leftOp, &rightOp, .plain) return res } public static func -(lhs: Decimal, rhs: Decimal) -> Decimal { var res = Decimal() var leftOp = lhs var rightOp = rhs NSDecimalSubtract(&res, &leftOp, &rightOp, .plain) return res } public static func /(lhs: Decimal, rhs: Decimal) -> Decimal { var res = Decimal() var leftOp = lhs var rightOp = rhs NSDecimalDivide(&res, &leftOp, &rightOp, .plain) return res } public static func *(lhs: Decimal, rhs: Decimal) -> Decimal { var res = Decimal() var leftOp = lhs var rightOp = rhs NSDecimalMultiply(&res, &leftOp, &rightOp, .plain) return res } } public func pow(_ x: Decimal, _ y: Int) -> Decimal { var res = Decimal() var num = x NSDecimalPower(&res, &num, y, .plain) return res } extension Decimal : Hashable, Comparable { internal var doubleValue : Double { var d = 0.0 if _length == 0 && _isNegative == 0 { return Double.nan } for i in 0..<8 { let index = 8 - i - 1 switch index { case 0: d = d * 65536 + Double(_mantissa.0) break case 1: d = d * 65536 + Double(_mantissa.1) break case 2: d = d * 65536 + Double(_mantissa.2) break case 3: d = d * 65536 + Double(_mantissa.3) break case 4: d = d * 65536 + Double(_mantissa.4) break case 5: d = d * 65536 + Double(_mantissa.5) break case 6: d = d * 65536 + Double(_mantissa.6) break case 7: d = d * 65536 + Double(_mantissa.7) break default: fatalError("conversion overflow") } } if _exponent < 0 { for _ in _exponent..<0 { d /= 10.0 } } else { for _ in 0..<_exponent { d *= 10.0 } } return _isNegative != 0 ? -d : d } public var hashValue: Int { return Int(bitPattern: __CFHashDouble(doubleValue)) } public static func ==(lhs: Decimal, rhs: Decimal) -> Bool { var lhsVal = lhs var rhsVal = rhs return NSDecimalCompare(&lhsVal, &rhsVal) == .orderedSame } public static func <(lhs: Decimal, rhs: Decimal) -> Bool { var lhsVal = lhs var rhsVal = rhs return NSDecimalCompare(&lhsVal, &rhsVal) == .orderedAscending } } extension Decimal : ExpressibleByFloatLiteral { public init(floatLiteral value: Double) { self.init(value) } } extension Decimal : ExpressibleByIntegerLiteral { public init(integerLiteral value: Int) { self.init(value) } } extension Decimal : SignedArithmetic { public var magnitude: Decimal { return Decimal( _exponent: self._exponent, _length: self._length, _isNegative: 0, _isCompact: self._isCompact, _reserved: 0, _mantissa: self._mantissa) } // FIXME(integers): implement properly public init?(exactly source: T) { fatalError() } } extension Decimal : Strideable { public func distance(to other: Decimal) -> Decimal { return self - other } public func advanced(by n: Decimal) -> Decimal { return self + n } } extension Decimal { public init(_ value: UInt8) { self.init(UInt64(value)) } public init(_ value: Int8) { self.init(Int64(value)) } public init(_ value: UInt16) { self.init(UInt64(value)) } public init(_ value: Int16) { self.init(Int64(value)) } public init(_ value: UInt32) { self.init(UInt64(value)) } public init(_ value: Int32) { self.init(Int64(value)) } public init(_ value: Double) { if value.isNaN { self = Decimal.nan } else if value == 0.0 { self = Decimal(_exponent: 0, _length: 0, _isNegative: 0, _isCompact: 0, _reserved: 0, _mantissa: (0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000)) } else { let negative = value < 0 var val = negative ? -1 * value : value var exponent = 0 while val < Double(UInt64.max - 1) { val *= 10.0 exponent -= 1 } while Double(UInt64.max - 1) < val { val /= 10.0 exponent += 1 } var mantissa = UInt64(val) var i = UInt32(0) // this is a bit ugly but it is the closest approximation of the C initializer that can be expressed here. _mantissa = (0, 0, 0, 0, 0, 0, 0, 0) while mantissa != 0 && i < 8 /* NSDecimalMaxSize */ { switch i { case 0: _mantissa.0 = UInt16(mantissa & 0xffff) break case 1: _mantissa.1 = UInt16(mantissa & 0xffff) break case 2: _mantissa.2 = UInt16(mantissa & 0xffff) break case 3: _mantissa.3 = UInt16(mantissa & 0xffff) break case 4: _mantissa.4 = UInt16(mantissa & 0xffff) break case 5: _mantissa.5 = UInt16(mantissa & 0xffff) break case 6: _mantissa.6 = UInt16(mantissa & 0xffff) break case 7: _mantissa.7 = UInt16(mantissa & 0xffff) break default: fatalError("initialization overflow") } mantissa = mantissa >> 16 i += 1 } _length = i _isNegative = negative ? 1 : 0 _isCompact = 0 _exponent = Int32(exponent) NSDecimalCompact(&self) } } public init(_ value: UInt64) { self.init(Double(value)) } public init(_ value: Int64) { self.init(Double(value)) } public init(_ value: UInt) { self.init(UInt64(value)) } public init(_ value: Int) { self.init(Int64(value)) } @available(*, unavailable, message: "Decimal does not yet fully adopt FloatingPoint.") public static var infinity: Decimal { fatalError("Decimal does not yet fully adopt FloatingPoint") } @available(*, unavailable, message: "Decimal does not yet fully adopt FloatingPoint.") public static var signalingNaN: Decimal { fatalError("Decimal does not yet fully adopt FloatingPoint") } public var isSignalingNaN: Bool { return false } public static var nan: Decimal { return quietNaN } public static var quietNaN: Decimal { return Decimal(_exponent: 0, _length: 0, _isNegative: 1, _isCompact: 0, _reserved: 0, _mantissa: (0, 0, 0, 0, 0, 0, 0, 0)) } /// The IEEE 754 "class" of this type. public var floatingPointClass: FloatingPointClassification { if _length == 0 && _isNegative == 1 { return .quietNaN } else if _length == 0 { return .positiveZero } // NSDecimal does not really represent normal and subnormal in the same manner as the IEEE standard, for now we can probably claim normal for any nonzero, nonnan values if _isNegative == 1 { return .negativeNormal } else { return .positiveNormal } } /// `true` iff `self` is negative. public var isSignMinus: Bool { return _isNegative != 0 } /// `true` iff `self` is normal (not zero, subnormal, infinity, or /// NaN). public var isNormal: Bool { return !isZero && !isInfinite && !isNaN } /// `true` iff `self` is zero, subnormal, or normal (not infinity /// or NaN). public var isFinite: Bool { return !isNaN } /// `true` iff `self` is +0.0 or -0.0. public var isZero: Bool { return _length == 0 && _isNegative == 0 } /// `true` iff `self` is subnormal. public var isSubnormal: Bool { return false } /// `true` iff `self` is infinity. public var isInfinite: Bool { return false } /// `true` iff `self` is NaN. public var isNaN: Bool { return _length == 0 && _isNegative == 1 } /// `true` iff `self` is a signaling NaN. public var isSignaling: Bool { return false } } extension Decimal : CustomStringConvertible { public init?(string: String, locale: Locale? = nil) { let scan = Scanner(string: string) var theDecimal = Decimal() scan.locale = locale if !scan.scanDecimal(&theDecimal) { return nil } self = theDecimal } public var description: String { var val = self return NSDecimalString(&val, nil) } } extension Decimal : _ObjectiveCBridgeable { @_semantics("convertToObjectiveC") public func _bridgeToObjectiveC() -> NSDecimalNumber { return NSDecimalNumber(decimal: self) } public static func _forceBridgeFromObjectiveC(_ x: NSDecimalNumber, result: inout Decimal?) { if !_conditionallyBridgeFromObjectiveC(x, result: &result) { fatalError("Unable to bridge \(_ObjectiveCType.self) to \(self)") } } public static func _conditionallyBridgeFromObjectiveC(_ input: NSDecimalNumber, result: inout Decimal?) -> Bool { result = input.decimalValue return true } public static func _unconditionallyBridgeFromObjectiveC(_ source: NSDecimalNumber?) -> Decimal { var result: Decimal? _forceBridgeFromObjectiveC(source!, result: &result) return result! } }