//===--- ReflectionContext.h - Swift Type Reflection Context ----*- C++ -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Implements the context for reflection of values in the address space of a // remote process. // //===----------------------------------------------------------------------===// #ifndef SWIFT_REFLECTION_REFLECTIONCONTEXT_H #define SWIFT_REFLECTION_REFLECTIONCONTEXT_H #include "llvm/BinaryFormat/COFF.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Memory.h" #include "swift/ABI/Enum.h" #include "swift/ABI/ObjectFile.h" #include "swift/Remote/MemoryReader.h" #include "swift/Remote/MetadataReader.h" #include "swift/Reflection/Records.h" #include "swift/Reflection/RuntimeInternals.h" #include "swift/Reflection/TypeLowering.h" #include "swift/Reflection/TypeRef.h" #include "swift/Reflection/TypeRefBuilder.h" #include "swift/Basic/Unreachable.h" #include #include #include #include #include namespace { template struct MachOTraits; template <> struct MachOTraits<4> { using Header = const struct llvm::MachO::mach_header; using SegmentCmd = const struct llvm::MachO::segment_command; using Section = const struct llvm::MachO::section; static constexpr size_t MagicNumber = llvm::MachO::MH_MAGIC; }; template <> struct MachOTraits<8> { using Header = const struct llvm::MachO::mach_header_64; using SegmentCmd = const struct llvm::MachO::segment_command_64; using Section = const struct llvm::MachO::section_64; static constexpr size_t MagicNumber = llvm::MachO::MH_MAGIC_64; }; template struct ELFTraits; template <> struct ELFTraits { using Header = const struct llvm::ELF::Elf32_Ehdr; using Section = const struct llvm::ELF::Elf32_Shdr; using Offset = llvm::ELF::Elf32_Off; using Size = llvm::ELF::Elf32_Word; static constexpr unsigned char ELFClass = llvm::ELF::ELFCLASS32; }; template <> struct ELFTraits { using Header = const struct llvm::ELF::Elf64_Ehdr; using Section = const struct llvm::ELF::Elf64_Shdr; using Offset = llvm::ELF::Elf64_Off; using Size = llvm::ELF::Elf64_Xword; static constexpr unsigned char ELFClass = llvm::ELF::ELFCLASS64; }; } // namespace namespace swift { namespace reflection { using swift::remote::MemoryReader; using swift::remote::RemoteAddress; template class ReflectionContext : public remote::MetadataReader { using super = remote::MetadataReader; using super::readMetadata; using super::readObjCClassName; std::unordered_map Cache; /// All buffers we need to keep around long term. This will automatically free them /// when this object is destroyed. std::vector savedBuffers; std::vector> imageRanges; public: using super::getBuilder; using super::readDemanglingForContextDescriptor; using super::readGenericArgFromMetadata; using super::readIsaMask; using super::readMetadataAndValueErrorExistential; using super::readMetadataAndValueOpaqueExistential; using super::readMetadataFromInstance; using super::readTypeFromMetadata; using super::stripSignedPointer; using typename super::StoredPointer; using typename super::StoredSignedPointer; using typename super::StoredSize; explicit ReflectionContext(std::shared_ptr reader) : super(std::move(reader), *this) {} ReflectionContext(const ReflectionContext &other) = delete; ReflectionContext &operator=(const ReflectionContext &other) = delete; MemoryReader &getReader() { return *this->Reader; } unsigned getSizeOfHeapObject() { // This must match sizeof(HeapObject) for the target. return sizeof(StoredPointer) * 2; } template bool readMachOSections(RemoteAddress ImageStart) { auto Buf = this->getReader().readBytes(ImageStart, sizeof(typename T::Header)); if (!Buf) return false; auto Header = reinterpret_cast(Buf.get()); assert(Header->magic == T::MagicNumber && "invalid MachO file"); auto NumCommands = Header->sizeofcmds; // The layout of the executable is such that the commands immediately follow // the header. auto CmdStartAddress = RemoteAddress(ImageStart.getAddressData() + sizeof(typename T::Header)); uint32_t SegmentCmdHdrSize = sizeof(typename T::SegmentCmd); uint64_t Offset = 0; // Find the __TEXT segment. typename T::SegmentCmd *Command = nullptr; for (unsigned I = 0; I < NumCommands; ++I) { auto CmdBuf = this->getReader().readBytes( RemoteAddress(CmdStartAddress.getAddressData() + Offset), SegmentCmdHdrSize); auto CmdHdr = reinterpret_cast(CmdBuf.get()); if (strncmp(CmdHdr->segname, "__TEXT", sizeof(CmdHdr->segname)) == 0) { Command = CmdHdr; savedBuffers.push_back(std::move(CmdBuf)); break; } Offset += CmdHdr->cmdsize; } // No __TEXT segment, bail out. if (!Command) return false; // Find the load command offset. auto loadCmdOffset = ImageStart.getAddressData() + Offset + sizeof(typename T::Header); // Read the load command. auto LoadCmdAddress = reinterpret_cast(loadCmdOffset); auto LoadCmdBuf = this->getReader().readBytes( RemoteAddress(LoadCmdAddress), sizeof(typename T::SegmentCmd)); auto LoadCmd = reinterpret_cast(LoadCmdBuf.get()); // The sections start immediately after the load command. unsigned NumSect = LoadCmd->nsects; auto SectAddress = reinterpret_cast(loadCmdOffset) + sizeof(typename T::SegmentCmd); auto Sections = this->getReader().readBytes( RemoteAddress(SectAddress), NumSect * sizeof(typename T::Section)); auto Slide = ImageStart.getAddressData() - Command->vmaddr; std::string Prefix = "__swift5"; uint64_t RangeStart = UINT64_MAX; uint64_t RangeEnd = UINT64_MAX; auto SectionsBuf = reinterpret_cast(Sections.get()); for (unsigned I = 0; I < NumSect; ++I) { auto S = reinterpret_cast( SectionsBuf + (I * sizeof(typename T::Section))); if (strncmp(S->sectname, Prefix.c_str(), strlen(Prefix.c_str())) != 0) continue; if (RangeStart == UINT64_MAX && RangeEnd == UINT64_MAX) { RangeStart = S->addr + Slide; RangeEnd = S->addr + S->size + Slide; continue; } RangeStart = std::min(RangeStart, (uint64_t)S->addr + Slide); RangeEnd = std::max(RangeEnd, (uint64_t)(S->addr + S->size + Slide)); // Keep the range rounded to 8 byte alignment on both ends so we don't // introduce misaligned pointers mapping between local and remote // address space. RangeStart = RangeStart & ~7; RangeEnd = RangeEnd + 7 & ~7; } if (RangeStart == UINT64_MAX && RangeEnd == UINT64_MAX) return false; auto SectBuf = this->getReader().readBytes(RemoteAddress(RangeStart), RangeEnd - RangeStart); auto findMachOSectionByName = [&](llvm::StringRef Name) -> std::pair, uint64_t> { for (unsigned I = 0; I < NumSect; ++I) { auto S = reinterpret_cast( SectionsBuf + (I * sizeof(typename T::Section))); if (strncmp(S->sectname, Name.data(), strlen(Name.data())) != 0) continue; auto RemoteSecStart = S->addr + Slide; auto SectBufData = reinterpret_cast(SectBuf.get()); auto LocalSectStart = reinterpret_cast(SectBufData + RemoteSecStart - RangeStart); auto StartRef = RemoteRef(RemoteSecStart, LocalSectStart); return {StartRef, S->size}; } return {nullptr, 0}; }; SwiftObjectFileFormatMachO ObjectFileFormat; auto FieldMdSec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd)); auto AssocTySec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty)); auto BuiltinTySec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin)); auto CaptureSec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::capture)); auto TypeRefMdSec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref)); auto ReflStrMdSec = findMachOSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr)); if (FieldMdSec.first == nullptr && AssocTySec.first == nullptr && BuiltinTySec.first == nullptr && CaptureSec.first == nullptr && TypeRefMdSec.first == nullptr && ReflStrMdSec.first == nullptr) return false; ReflectionInfo info = { {FieldMdSec.first, FieldMdSec.second}, {AssocTySec.first, AssocTySec.second}, {BuiltinTySec.first, BuiltinTySec.second}, {CaptureSec.first, CaptureSec.second}, {TypeRefMdSec.first, TypeRefMdSec.second}, {ReflStrMdSec.first, ReflStrMdSec.second}}; this->addReflectionInfo(info); // Find the __DATA segment. for (unsigned I = 0; I < NumCommands; ++I) { auto CmdBuf = this->getReader().readBytes( RemoteAddress(CmdStartAddress.getAddressData() + Offset), SegmentCmdHdrSize); auto CmdHdr = reinterpret_cast(CmdBuf.get()); if (strncmp(CmdHdr->segname, "__DATA", sizeof(CmdHdr->segname)) == 0) { auto DataSegmentEnd = ImageStart.getAddressData() + CmdHdr->vmaddr + CmdHdr->vmsize; assert(DataSegmentEnd > ImageStart.getAddressData() && "invalid range for __DATA"); imageRanges.push_back( std::make_tuple(ImageStart, RemoteAddress(DataSegmentEnd))); break; } Offset += CmdHdr->cmdsize; } savedBuffers.push_back(std::move(Buf)); savedBuffers.push_back(std::move(SectBuf)); savedBuffers.push_back(std::move(Sections)); return true; } bool readPECOFFSections(RemoteAddress ImageStart) { auto DOSHdrBuf = this->getReader().readBytes( ImageStart, sizeof(llvm::object::dos_header)); auto DOSHdr = reinterpret_cast(DOSHdrBuf.get()); auto COFFFileHdrAddr = ImageStart.getAddressData() + DOSHdr->AddressOfNewExeHeader + sizeof(llvm::COFF::PEMagic); auto COFFFileHdrBuf = this->getReader().readBytes( RemoteAddress(COFFFileHdrAddr), sizeof(llvm::object::coff_file_header)); auto COFFFileHdr = reinterpret_cast( COFFFileHdrBuf.get()); auto SectionTableAddr = COFFFileHdrAddr + sizeof(llvm::object::coff_file_header) + COFFFileHdr->SizeOfOptionalHeader; auto SectionTableBuf = this->getReader().readBytes( RemoteAddress(SectionTableAddr), sizeof(llvm::object::coff_section) * COFFFileHdr->NumberOfSections); auto findCOFFSectionByName = [&](llvm::StringRef Name) -> std::pair, uint64_t> { for (size_t i = 0; i < COFFFileHdr->NumberOfSections; ++i) { const llvm::object::coff_section *COFFSec = reinterpret_cast( SectionTableBuf.get()) + i; llvm::StringRef SectionName = (COFFSec->Name[llvm::COFF::NameSize - 1] == 0) ? COFFSec->Name : llvm::StringRef(COFFSec->Name, llvm::COFF::NameSize); if (SectionName != Name) continue; auto Addr = ImageStart.getAddressData() + COFFSec->VirtualAddress; auto Buf = this->getReader().readBytes(RemoteAddress(Addr), COFFSec->VirtualSize); auto BufStart = Buf.get(); savedBuffers.push_back(std::move(Buf)); auto Begin = RemoteRef(Addr, BufStart); auto Size = COFFSec->VirtualSize; // FIXME: This code needs to be cleaned up and updated // to make it work for 32 bit platforms. Begin = Begin.atByteOffset(8); Size -= 16; return {Begin, Size}; } return {nullptr, 0}; }; SwiftObjectFileFormatCOFF ObjectFileFormat; auto FieldMdSec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd)); auto AssocTySec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty)); auto BuiltinTySec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin)); auto CaptureSec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::capture)); auto TypeRefMdSec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref)); auto ReflStrMdSec = findCOFFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr)); if (FieldMdSec.first == nullptr && AssocTySec.first == nullptr && BuiltinTySec.first == nullptr && CaptureSec.first == nullptr && TypeRefMdSec.first == nullptr && ReflStrMdSec.first == nullptr) return false; ReflectionInfo Info = { {FieldMdSec.first, FieldMdSec.second}, {AssocTySec.first, AssocTySec.second}, {BuiltinTySec.first, BuiltinTySec.second}, {CaptureSec.first, CaptureSec.second}, {TypeRefMdSec.first, TypeRefMdSec.second}, {ReflStrMdSec.first, ReflStrMdSec.second}}; this->addReflectionInfo(Info); return true; } bool readPECOFF(RemoteAddress ImageStart) { auto Buf = this->getReader().readBytes(ImageStart, sizeof(llvm::object::dos_header)); if (!Buf) return false; auto DOSHdr = reinterpret_cast(Buf.get()); auto PEHeaderAddress = ImageStart.getAddressData() + DOSHdr->AddressOfNewExeHeader; Buf = this->getReader().readBytes(RemoteAddress(PEHeaderAddress), sizeof(llvm::COFF::PEMagic)); if (!Buf) return false; if (memcmp(Buf.get(), llvm::COFF::PEMagic, sizeof(llvm::COFF::PEMagic))) return false; return readPECOFFSections(ImageStart); } template bool readELFSections(RemoteAddress ImageStart, llvm::Optional FileBuffer) { // When reading from the FileBuffer we can simply return a pointer to // the underlying data. // When reading from the process, we need to keep the memory around // until the end of the function, so we store it inside ReadDataBuffer. // We do this so in both cases we can return a simple pointer. std::vector ReadDataBuffer; auto readData = [&](uint64_t Offset, uint64_t Size) -> const void * { if (FileBuffer.hasValue()) { auto Buffer = FileBuffer.getValue(); if (Offset + Size > Buffer.allocatedSize()) return nullptr; return (const void *)((uint64_t)Buffer.base() + Offset); } else { MemoryReader::ReadBytesResult Buf = this->getReader().readBytes(ImageStart + Offset, Size); if (!Buf) return nullptr; ReadDataBuffer.push_back(std::move(Buf)); return ReadDataBuffer.back().get(); } }; const void *Buf = readData(0, sizeof(typename T::Header)); if (!Buf) return false; auto Hdr = reinterpret_cast(Buf); assert(Hdr->getFileClass() == T::ELFClass && "invalid ELF file class"); // From the header, grab information about the section header table. uint64_t SectionHdrAddress = Hdr->e_shoff; uint16_t SectionHdrNumEntries = Hdr->e_shnum; uint16_t SectionEntrySize = Hdr->e_shentsize; if (sizeof(typename T::Section) > SectionEntrySize) return false; if (SectionHdrNumEntries == 0) return false; // Collect all the section headers, we need them to look up the // reflection sections (by name) and the string table. // We read the section headers from the FileBuffer, since they are // not mapped in the child process. std::vector SecHdrVec; for (unsigned I = 0; I < SectionHdrNumEntries; ++I) { uint64_t Offset = SectionHdrAddress + (I * SectionEntrySize); auto SecBuf = readData(Offset, sizeof(typename T::Section)); if (!SecBuf) return false; const typename T::Section *SecHdr = reinterpret_cast(SecBuf); SecHdrVec.push_back(SecHdr); } // This provides quick access to the section header string table index. // We also here handle the unlikely even where the section index overflows // and it's just a pointer to secondary storage (SHN_XINDEX). uint32_t SecIdx = Hdr->e_shstrndx; if (SecIdx == llvm::ELF::SHN_XINDEX) { assert(!SecHdrVec.empty() && "malformed ELF object"); SecIdx = SecHdrVec[0]->sh_link; } assert(SecIdx < SecHdrVec.size() && "malformed ELF object"); const typename T::Section *SecHdrStrTab = SecHdrVec[SecIdx]; typename T::Offset StrTabOffset = SecHdrStrTab->sh_offset; typename T::Size StrTabSize = SecHdrStrTab->sh_size; auto StrTabBuf = readData(StrTabOffset, StrTabSize); if (!StrTabBuf) return false; auto StrTab = reinterpret_cast(StrTabBuf); bool Error = false; auto findELFSectionByName = [&](llvm::StringRef Name) -> std::pair, uint64_t> { if (Error) return {nullptr, 0}; // Now for all the sections, find their name. for (const typename T::Section *Hdr : SecHdrVec) { uint32_t Offset = Hdr->sh_name; const char *Start = (const char *)StrTab + Offset; uint64_t StringSize = strnlen(Start, StrTabSize - Offset); if (StringSize > StrTabSize - Offset) { Error = true; break; } std::string SecName(Start, StringSize); if (SecName != Name) continue; RemoteAddress SecStart = RemoteAddress(ImageStart.getAddressData() + Hdr->sh_addr); auto SecSize = Hdr->sh_size; MemoryReader::ReadBytesResult SecBuf; if (FileBuffer.hasValue()) { // sh_offset gives us the offset to the section in the file, // while sh_addr gives us the offset in the process. auto Offset = Hdr->sh_offset; if (FileBuffer->allocatedSize() < Offset + SecSize) { Error = true; break; } auto *Buf = malloc(SecSize); SecBuf = MemoryReader::ReadBytesResult( Buf, [](const void *ptr) { free(const_cast(ptr)); }); memcpy((void *)Buf, (const void *)((uint64_t)FileBuffer->base() + Offset), SecSize); } else { SecBuf = this->getReader().readBytes(SecStart, SecSize); } auto SecContents = RemoteRef(SecStart.getAddressData(), SecBuf.get()); savedBuffers.push_back(std::move(SecBuf)); return {SecContents, SecSize}; } return {nullptr, 0}; }; SwiftObjectFileFormatELF ObjectFileFormat; auto FieldMdSec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd)); auto AssocTySec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty)); auto BuiltinTySec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin)); auto CaptureSec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::capture)); auto TypeRefMdSec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref)); auto ReflStrMdSec = findELFSectionByName( ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr)); if (Error) return false; // We succeed if at least one of the sections is present in the // ELF executable. if (FieldMdSec.first == nullptr && AssocTySec.first == nullptr && BuiltinTySec.first == nullptr && CaptureSec.first == nullptr && TypeRefMdSec.first == nullptr && ReflStrMdSec.first == nullptr) return false; ReflectionInfo info = { {FieldMdSec.first, FieldMdSec.second}, {AssocTySec.first, AssocTySec.second}, {BuiltinTySec.first, BuiltinTySec.second}, {CaptureSec.first, CaptureSec.second}, {TypeRefMdSec.first, TypeRefMdSec.second}, {ReflStrMdSec.first, ReflStrMdSec.second}}; this->addReflectionInfo(info); return true; } /// Parses metadata information from an ELF image. Because the Section /// Header Table maybe be missing (for example, when reading from a /// process) this method optionally receives a buffer with the contents /// of the image's file, from where it will the necessary information. /// /// /// \param[in] ImageStart /// A remote address pointing to the start of the image in the running /// process. /// /// \param[in] FileBuffer /// A buffer which contains the contents of the image's file /// in disk. If missing, all the information will be read using the /// instance's memory reader. /// /// \return /// /b True if the metadata information was parsed successfully, /// /b false otherwise. bool readELF(RemoteAddress ImageStart, llvm::Optional FileBuffer) { auto Buf = this->getReader().readBytes(ImageStart, sizeof(llvm::ELF::Elf64_Ehdr)); // Read the header. auto Hdr = reinterpret_cast(Buf.get()); if (!Hdr->checkMagic()) return false; // Check if we have a ELFCLASS32 or ELFCLASS64 unsigned char FileClass = Hdr->getFileClass(); if (FileClass == llvm::ELF::ELFCLASS64) { return readELFSections>( ImageStart, FileBuffer); } else if (FileClass == llvm::ELF::ELFCLASS32) { return readELFSections>( ImageStart, FileBuffer); } else { return false; } } bool addImage(RemoteAddress ImageStart) { // Read the first few bytes to look for a magic header. auto Magic = this->getReader().readBytes(ImageStart, sizeof(uint32_t)); if (!Magic) return false; uint32_t MagicWord; memcpy(&MagicWord, Magic.get(), sizeof(MagicWord)); // 32- and 64-bit Mach-O. if (MagicWord == llvm::MachO::MH_MAGIC) { return readMachOSections>(ImageStart); } if (MagicWord == llvm::MachO::MH_MAGIC_64) { return readMachOSections>(ImageStart); } // PE. (This just checks for the DOS header; `readPECOFF` will further // validate the existence of the PE header.) auto MagicBytes = (const char*)Magic.get(); if (MagicBytes[0] == 'M' && MagicBytes[1] == 'Z') { return readPECOFF(ImageStart); } // ELF. if (MagicBytes[0] == llvm::ELF::ElfMagic[0] && MagicBytes[1] == llvm::ELF::ElfMagic[1] && MagicBytes[2] == llvm::ELF::ElfMagic[2] && MagicBytes[3] == llvm::ELF::ElfMagic[3]) { return readELF(ImageStart, llvm::Optional()); } // We don't recognize the format. return false; } void addReflectionInfo(ReflectionInfo I) { getBuilder().addReflectionInfo(I); } bool ownsObject(RemoteAddress ObjectAddress) { auto MetadataAddress = readMetadataFromInstance(ObjectAddress.getAddressData()); if (!MetadataAddress) return true; return ownsAddress(RemoteAddress(*MetadataAddress)); } /// Returns true if the address falls within a registered image. bool ownsAddressRaw(RemoteAddress Address) { for (auto Range : imageRanges) { auto Start = std::get<0>(Range); auto End = std::get<1>(Range); if (Start.getAddressData() <= Address.getAddressData() && Address.getAddressData() < End.getAddressData()) return true; } return false; } /// Returns true if the address is known to the reflection context. /// Currently, that means that either the address falls within a registered /// image, or the address points to a Metadata whose type context descriptor /// is within a registered image. bool ownsAddress(RemoteAddress Address) { if (ownsAddressRaw(Address)) return true; // This is usually called on a Metadata address which might have been // on the heap. Try reading it and looking up its type context descriptor // instead. if (auto Metadata = readMetadata(Address.getAddressData())) if (auto DescriptorAddress = super::readAddressOfNominalTypeDescriptor(Metadata, true)) if (ownsAddressRaw(RemoteAddress(DescriptorAddress))) return true; return false; } /// Return a description of the layout of a class instance with the given /// metadata as its isa pointer. const TypeInfo * getMetadataTypeInfo(StoredPointer MetadataAddress, remote::TypeInfoProvider *ExternalTypeInfo) { // See if we cached the layout already auto found = Cache.find(MetadataAddress); if (found != Cache.end()) return found->second; auto &TC = getBuilder().getTypeConverter(); const TypeInfo *TI = nullptr; auto TR = readTypeFromMetadata(MetadataAddress); auto kind = this->readKindFromMetadata(MetadataAddress); if (TR != nullptr && kind) { switch (*kind) { case MetadataKind::Class: { // Figure out where the stored properties of this class begin // by looking at the size of the superclass auto start = this->readInstanceStartAndAlignmentFromClassMetadata(MetadataAddress); // Perform layout if (start) TI = TC.getClassInstanceTypeInfo(TR, *start, ExternalTypeInfo); break; } default: break; } } // Cache the result for future lookups Cache[MetadataAddress] = TI; return TI; } /// Return a description of the layout of a class instance with the given /// metadata as its isa pointer. const TypeInfo * getInstanceTypeInfo(StoredPointer ObjectAddress, remote::TypeInfoProvider *ExternalTypeInfo) { auto MetadataAddress = readMetadataFromInstance(ObjectAddress); if (!MetadataAddress) return nullptr; auto kind = this->readKindFromMetadata(*MetadataAddress); if (!kind) return nullptr; switch (*kind) { case MetadataKind::Class: return getMetadataTypeInfo(*MetadataAddress, ExternalTypeInfo); case MetadataKind::HeapLocalVariable: { auto CDAddr = this->readCaptureDescriptorFromMetadata(*MetadataAddress); if (!CDAddr) return nullptr; if (!CDAddr->isResolved()) return nullptr; // FIXME: Non-generic SIL boxes also use the HeapLocalVariable metadata // kind, but with a null capture descriptor right now (see // FixedBoxTypeInfoBase::allocate). // // Non-generic SIL boxes share metadata among types with compatible // layout, but we need some way to get an outgoing pointer map for them. auto CD = getBuilder().getCaptureDescriptor( CDAddr->getResolvedAddress().getAddressData()); if (CD == nullptr) return nullptr; auto Info = getBuilder().getClosureContextInfo(CD); return getClosureContextInfo(ObjectAddress, Info, ExternalTypeInfo); } case MetadataKind::HeapGenericLocalVariable: { // Generic SIL @box type - there is always an instantiated metadata // pointer for the boxed type. if (auto Meta = readMetadata(*MetadataAddress)) { auto GenericHeapMeta = cast>(Meta.getLocalBuffer()); return getMetadataTypeInfo(GenericHeapMeta->BoxedType, ExternalTypeInfo); } return nullptr; } case MetadataKind::ErrorObject: // Error boxed existential on non-Objective-C runtime target return nullptr; default: return nullptr; } } bool projectExistential(RemoteAddress ExistentialAddress, const TypeRef *ExistentialTR, const TypeRef **OutInstanceTR, RemoteAddress *OutInstanceAddress, remote::TypeInfoProvider *ExternalTypeInfo) { if (ExistentialTR == nullptr) return false; auto ExistentialTI = getTypeInfo(ExistentialTR, ExternalTypeInfo); if (ExistentialTI == nullptr) return false; auto ExistentialRecordTI = dyn_cast(ExistentialTI); if (ExistentialRecordTI == nullptr) return false; switch (ExistentialRecordTI->getRecordKind()) { // Class existentials have trivial layout. // It is itself the pointer to the instance followed by the witness tables. case RecordKind::ClassExistential: // This is just AnyObject. *OutInstanceTR = ExistentialRecordTI->getFields()[0].TR; *OutInstanceAddress = ExistentialAddress; return true; case RecordKind::OpaqueExistential: { auto OptMetaAndValue = readMetadataAndValueOpaqueExistential(ExistentialAddress); if (!OptMetaAndValue) return false; auto InstanceTR = readTypeFromMetadata( OptMetaAndValue->MetadataAddress.getAddressData()); if (!InstanceTR) return false; *OutInstanceTR = InstanceTR; *OutInstanceAddress = OptMetaAndValue->PayloadAddress; return true; } case RecordKind::ErrorExistential: { auto OptMetaAndValue = readMetadataAndValueErrorExistential(ExistentialAddress); if (!OptMetaAndValue) return false; // FIXME: Check third value, 'IsBridgedError' auto InstanceTR = readTypeFromMetadata( OptMetaAndValue->MetadataAddress.getAddressData()); if (!InstanceTR) return false; *OutInstanceTR = InstanceTR; *OutInstanceAddress = OptMetaAndValue->PayloadAddress; return true; } default: return false; } } /// Projects the value of an enum. /// /// Takes the address and typeref for an enum and determines the /// index of the currently-selected case within the enum. /// You can use this index with `swift_reflection_childOfTypeRef` /// to get detailed information about the specific case. /// /// Returns true if the enum case could be successfully determined. In /// particular, note that this code may return false for valid in-memory data /// if the compiler used a strategy we do not yet understand. bool projectEnumValue(RemoteAddress EnumAddress, const TypeRef *EnumTR, int *CaseIndex, remote::TypeInfoProvider *ExternalTypeInfo) { // Get the TypeInfo and sanity-check it if (EnumTR == nullptr) { return false; } auto TI = getTypeInfo(EnumTR, ExternalTypeInfo); if (TI == nullptr) { return false; } auto EnumTI = dyn_cast(TI); if (EnumTI == nullptr){ return false; } return EnumTI->projectEnumValue(getReader(), EnumAddress, CaseIndex); } /// Return a description of the layout of a value with the given type. const TypeInfo *getTypeInfo(const TypeRef *TR, remote::TypeInfoProvider *ExternalTypeInfo) { if (TR == nullptr) { return nullptr; } else { return getBuilder().getTypeConverter().getTypeInfo(TR, ExternalTypeInfo); } } /// Iterate the protocol conformance cache tree rooted at NodePtr, calling /// Call with the type and protocol in each node. void iterateConformanceTree(StoredPointer NodePtr, std::function Call) { if (!NodePtr) return; auto NodeBytes = getReader().readBytes(RemoteAddress(NodePtr), sizeof(ConformanceNode)); auto NodeData = reinterpret_cast *>(NodeBytes.get()); if (!NodeData) return; Call(NodeData->Type, NodeData->Proto); iterateConformanceTree(NodeData->Left, Call); iterateConformanceTree(NodeData->Right, Call); } void IterateConformanceTable( RemoteAddress ConformancesPtr, std::function Call) { auto MapBytes = getReader().readBytes(RemoteAddress(ConformancesPtr), sizeof(ConcurrentHashMap)); auto MapData = reinterpret_cast *>(MapBytes.get()); if (!MapData) return; auto Count = MapData->ElementCount; auto Size = Count * sizeof(ConformanceCacheEntry); auto ElementsBytes = getReader().readBytes(RemoteAddress(MapData->Elements), Size); auto ElementsData = reinterpret_cast *>( ElementsBytes.get()); if (!ElementsData) return; for (StoredSize i = 0; i < Count; i++) { auto &Element = ElementsData[i]; Call(Element.Type, Element.Proto); } } /// Iterate the protocol conformance cache in the target process, calling Call /// with the type and protocol of each conformance. Returns None on success, /// and a string describing the error on failure. llvm::Optional iterateConformances( std::function Call) { std::string ConformancesPointerName = "_swift_debug_protocolConformanceStatePointer"; auto ConformancesAddrAddr = getReader().getSymbolAddress(ConformancesPointerName); if (!ConformancesAddrAddr) return "unable to look up debug variable " + ConformancesPointerName; auto ConformancesAddr = getReader().readPointer(ConformancesAddrAddr, sizeof(StoredPointer)); if (!ConformancesAddr) return "unable to read value of " + ConformancesPointerName; auto Root = getReader().readPointer(ConformancesAddr->getResolvedAddress(), sizeof(StoredPointer)); auto ReaderCount = Root->getResolvedAddress().getAddressData(); // ReaderCount will be the root pointer if the conformance cache is a // ConcurrentMap. It's very unlikely that there would ever be more readers // than the least valid pointer value, so compare with that to distinguish. // TODO: once the old conformance cache is gone for good, remove that code. uint64_t LeastValidPointerValue; if (!getReader().queryDataLayout( DataLayoutQueryType::DLQ_GetLeastValidPointerValue, nullptr, &LeastValidPointerValue)) { return std::string("unable to query least valid pointer value"); } if (ReaderCount < LeastValidPointerValue) IterateConformanceTable(ConformancesAddr->getResolvedAddress(), Call); else { // The old code has the root address at this location. auto RootAddr = ReaderCount; iterateConformanceTree(RootAddr, Call); } return llvm::None; } /// Fetch the metadata pointer from a metadata allocation, or 0 if this /// allocation's tag is not handled or an error occurred. StoredPointer allocationMetadataPointer( MetadataAllocation Allocation) { if (Allocation.Tag == GenericMetadataCacheTag) { struct GenericMetadataCacheEntry { StoredPointer Left, Right; StoredPointer LockedStorage; uint8_t LockedStorageKind; uint8_t TrackingInfo; uint16_t NumKeyParameters; uint16_t NumWitnessTables; uint32_t Hash; StoredPointer Value; }; auto AllocationBytes = getReader().readBytes(RemoteAddress(Allocation.Ptr), Allocation.Size); auto Entry = reinterpret_cast( AllocationBytes.get()); if (!Entry) return 0; return Entry->Value; } return 0; } /// Get the name of a metadata tag, if known. llvm::Optional metadataAllocationTagName(int Tag) { switch (Tag) { #define TAG(name, value) \ case value: \ return std::string(#name); #include "../../../stdlib/public/runtime/MetadataAllocatorTags.def" default: return llvm::None; } } llvm::Optional> metadataAllocationCacheNode(MetadataAllocation Allocation) { switch (Allocation.Tag) { case BoxesTag: case ObjCClassWrappersTag: case FunctionTypesTag: case MetatypeTypesTag: case ExistentialMetatypeValueWitnessTablesTag: case ExistentialMetatypesTag: case ExistentialTypesTag: case OpaqueExistentialValueWitnessTablesTag: case ClassExistentialValueWitnessTablesTag: case ForeignWitnessTablesTag: case TupleCacheTag: case GenericMetadataCacheTag: case ForeignMetadataCacheTag: case GenericWitnessTableCacheTag: { auto NodeBytes = getReader().readBytes( RemoteAddress(Allocation.Ptr), sizeof(MetadataCacheNode)); auto Node = reinterpret_cast *>(NodeBytes.get()); if (!Node) return llvm::None; return *Node; } default: return llvm::None; } } /// Iterate the metadata allocations in the target process, calling Call with /// each allocation found. Returns None on success, and a string describing /// the error on failure. llvm::Optional iterateMetadataAllocations( std::function)> Call) { std::string IterationEnabledName = "_swift_debug_metadataAllocationIterationEnabled"; std::string AllocationPoolPointerName = "_swift_debug_allocationPoolPointer"; auto IterationEnabledAddr = getReader().getSymbolAddress(IterationEnabledName); if (!IterationEnabledAddr) return "unable to look up debug variable " + IterationEnabledName; char IterationEnabled; if (!getReader().readInteger(IterationEnabledAddr, &IterationEnabled)) return "failed to read value of " + IterationEnabledName; if (!IterationEnabled) return std::string("remote process does not have metadata allocation " "iteration enabled"); auto AllocationPoolAddrAddr = getReader().getSymbolAddress(AllocationPoolPointerName); if (!AllocationPoolAddrAddr) return "unable to look up debug variable " + AllocationPoolPointerName; auto AllocationPoolAddr = getReader().readPointer(AllocationPoolAddrAddr, sizeof(StoredPointer)); if (!AllocationPoolAddr) return "failed to read value of " + AllocationPoolPointerName; struct PoolRange { StoredPointer Begin; StoredSize Remaining; }; struct PoolTrailer { StoredPointer PrevTrailer; StoredSize PoolSize; }; struct alignas(StoredPointer) AllocationHeader { uint16_t Size; uint16_t Tag; }; auto PoolBytes = getReader() .readBytes(AllocationPoolAddr->getResolvedAddress(), sizeof(PoolRange)); auto Pool = reinterpret_cast(PoolBytes.get()); if (!Pool) return std::string("failure reading allocation pool contents"); auto TrailerPtr = Pool->Begin + Pool->Remaining; while (TrailerPtr) { auto TrailerBytes = getReader() .readBytes(RemoteAddress(TrailerPtr), sizeof(PoolTrailer)); auto Trailer = reinterpret_cast(TrailerBytes.get()); if (!Trailer) break; auto PoolStart = TrailerPtr - Trailer->PoolSize; auto PoolBytes = getReader() .readBytes(RemoteAddress(PoolStart), Trailer->PoolSize); auto PoolPtr = (const char *)PoolBytes.get(); if (!PoolPtr) break; uintptr_t Offset = 0; while (Offset < Trailer->PoolSize) { auto AllocationPtr = PoolPtr + Offset; auto Header = (const AllocationHeader *)AllocationPtr; if (Header->Size == 0) break; auto RemoteAddr = PoolStart + Offset + sizeof(AllocationHeader); MetadataAllocation Allocation; Allocation.Tag = Header->Tag; Allocation.Ptr = RemoteAddr; Allocation.Size = Header->Size; Call(Allocation); Offset += sizeof(AllocationHeader) + Header->Size; } TrailerPtr = Trailer->PrevTrailer; } return llvm::None; } llvm::Optional iterateMetadataAllocationBacktraces( std::function Call) { std::string BacktraceListName = "_swift_debug_metadataAllocationBacktraceList"; auto BacktraceListAddr = getReader().getSymbolAddress(BacktraceListName); if (!BacktraceListAddr) return "unable to look up debug variable " + BacktraceListName; auto BacktraceListNextPtr = getReader().readPointer(BacktraceListAddr, sizeof(StoredPointer)); if (!BacktraceListNextPtr) return llvm::None; auto BacktraceListNext = BacktraceListNextPtr->getResolvedAddress(); while (BacktraceListNext) { auto HeaderBytes = getReader().readBytes( RemoteAddress(BacktraceListNext), sizeof(MetadataAllocationBacktraceHeader)); auto HeaderPtr = reinterpret_cast *>( HeaderBytes.get()); if (HeaderPtr == nullptr) { // FIXME: std::stringstream would be better, but LLVM's standard library // introduces a vtable and we don't want that. char result[128]; std::snprintf(result, sizeof(result), "unable to read Next pointer %#" PRIx64, BacktraceListNext.getAddressData()); return std::string(result); } auto BacktraceAddrPtr = BacktraceListNext + sizeof(MetadataAllocationBacktraceHeader); auto BacktraceBytes = getReader().readBytes(RemoteAddress(BacktraceAddrPtr), HeaderPtr->Count * sizeof(StoredPointer)); auto BacktracePtr = reinterpret_cast(BacktraceBytes.get()); Call(HeaderPtr->Allocation, HeaderPtr->Count, BacktracePtr); BacktraceListNext = RemoteAddress(HeaderPtr->Next); } return llvm::None; } private: const TypeInfo * getClosureContextInfo(StoredPointer Context, const ClosureContextInfo &Info, remote::TypeInfoProvider *ExternalTypeInfo) { RecordTypeInfoBuilder Builder(getBuilder().getTypeConverter(), RecordKind::ClosureContext); auto Metadata = readMetadataFromInstance(Context); if (!Metadata) return nullptr; // Calculate the offset of the first capture. // See GenHeap.cpp, buildPrivateMetadata(). auto OffsetToFirstCapture = this->readOffsetToFirstCaptureFromMetadata(*Metadata); if (!OffsetToFirstCapture) return nullptr; // Initialize the builder. Builder.addField(*OffsetToFirstCapture, /*alignment=*/sizeof(StoredPointer), /*numExtraInhabitants=*/0, /*bitwiseTakable=*/true); // Skip the closure's necessary bindings struct, if it's present. auto SizeOfNecessaryBindings = Info.NumBindings * sizeof(StoredPointer); Builder.addField(/*size=*/SizeOfNecessaryBindings, /*alignment=*/sizeof(StoredPointer), /*numExtraInhabitants=*/0, /*bitwiseTakable=*/true); // FIXME: should be unordered_set but I'm too lazy to write a hash // functor std::set> Done; GenericArgumentMap Subs; ArrayRef CaptureTypes = Info.CaptureTypes; // Closure context element layout depends on the layout of the // captured types, but captured types might depend on element // layout (of previous elements). Use an iterative approach to // solve the problem. while (!CaptureTypes.empty()) { const TypeRef *OrigCaptureTR = CaptureTypes[0]; // If we failed to demangle the capture type, we cannot proceed. if (OrigCaptureTR == nullptr) return nullptr; const TypeRef *SubstCaptureTR = nullptr; // If we have enough substitutions to make this captured value's // type concrete, or we know it's size anyway (because it is a // class reference or metatype, for example), go ahead and add // it to the layout. if (OrigCaptureTR->isConcreteAfterSubstitutions(Subs)) SubstCaptureTR = OrigCaptureTR->subst(getBuilder(), Subs); else if (getBuilder().getTypeConverter().hasFixedSize(OrigCaptureTR)) SubstCaptureTR = OrigCaptureTR; if (SubstCaptureTR != nullptr) { Builder.addField("", SubstCaptureTR, ExternalTypeInfo); if (Builder.isInvalid()) return nullptr; // Try the next capture type. CaptureTypes = CaptureTypes.slice(1); continue; } // Ok, we do not have enough substitutions yet. Perhaps we have // enough elements figured out that we can pick off some // metadata sources though, and use those to derive some new // substitutions. bool Progress = false; for (auto Source : Info.MetadataSources) { // Don't read a source more than once. if (Done.count(Source)) continue; // If we don't have enough information to read this source // (because it is fulfilled by metadata from a capture at // at unknown offset), keep going. if (!isMetadataSourceReady(Source.second, Builder)) continue; auto Metadata = readMetadataSource(Context, Source.second, Builder); if (!Metadata) return nullptr; auto *SubstTR = readTypeFromMetadata(*Metadata); if (SubstTR == nullptr) return nullptr; if (!TypeRef::deriveSubstitutions(Subs, Source.first, SubstTR)) return nullptr; Done.insert(Source); Progress = true; } // If we failed to make any forward progress above, we're stuck // and cannot close out this layout. if (!Progress) return nullptr; } // Ok, we have a complete picture now. return Builder.build(); } /// Checks if we have enough information to read the given metadata /// source. /// /// \param Builder Used to obtain offsets of elements known so far. bool isMetadataSourceReady(const MetadataSource *MS, const RecordTypeInfoBuilder &Builder) { switch (MS->getKind()) { case MetadataSourceKind::ClosureBinding: return true; case MetadataSourceKind::ReferenceCapture: { unsigned Index = cast(MS)->getIndex(); return Index < Builder.getNumFields(); } case MetadataSourceKind::MetadataCapture: { unsigned Index = cast(MS)->getIndex(); return Index < Builder.getNumFields(); } case MetadataSourceKind::GenericArgument: { auto Base = cast(MS)->getSource(); return isMetadataSourceReady(Base, Builder); } case MetadataSourceKind::Self: case MetadataSourceKind::SelfWitnessTable: return true; } swift_unreachable("Unhandled MetadataSourceKind in switch."); } /// Read metadata for a captured generic type from a closure context. /// /// \param Context The closure context in the remote process. /// /// \param MS The metadata source, which must be "ready" as per the /// above. /// /// \param Builder Used to obtain offsets of elements known so far. llvm::Optional readMetadataSource(StoredPointer Context, const MetadataSource *MS, const RecordTypeInfoBuilder &Builder) { switch (MS->getKind()) { case MetadataSourceKind::ClosureBinding: { unsigned Index = cast(MS)->getIndex(); // Skip the context's HeapObject header // (one word each for isa pointer and reference counts). // // Metadata and conformance tables are stored consecutively after // the heap object header, in the 'necessary bindings' area. // // We should only have the index of a type metadata record here. unsigned Offset = getSizeOfHeapObject() + sizeof(StoredPointer) * Index; StoredPointer MetadataAddress; if (!getReader().readInteger(RemoteAddress(Context + Offset), &MetadataAddress)) break; return MetadataAddress; } case MetadataSourceKind::ReferenceCapture: { unsigned Index = cast(MS)->getIndex(); // We should already have enough type information to know the offset // of this capture in the context. unsigned CaptureOffset = Builder.getFieldOffset(Index); StoredPointer CaptureAddress; if (!getReader().readInteger(RemoteAddress(Context + CaptureOffset), &CaptureAddress)) break; // Read the requested capture's isa pointer. return readMetadataFromInstance(CaptureAddress); } case MetadataSourceKind::MetadataCapture: { unsigned Index = cast(MS)->getIndex(); // We should already have enough type information to know the offset // of this capture in the context. unsigned CaptureOffset = Builder.getFieldOffset(Index); StoredPointer CaptureAddress; if (!getReader().readInteger(RemoteAddress(Context + CaptureOffset), &CaptureAddress)) break; return CaptureAddress; } case MetadataSourceKind::GenericArgument: { auto *GAMS = cast(MS); auto Base = readMetadataSource(Context, GAMS->getSource(), Builder); if (!Base) break; unsigned Index = GAMS->getIndex(); auto Arg = readGenericArgFromMetadata(*Base, Index); if (!Arg) break; return *Arg; } case MetadataSourceKind::Self: case MetadataSourceKind::SelfWitnessTable: break; } return llvm::None; } }; } // end namespace reflection } // end namespace swift #endif // SWIFT_REFLECTION_REFLECTIONCONTEXT_H