//===--- SILGenDecl.cpp - Implements Lowering of ASTs -> SIL for Decls ----===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "Initialization.h" #include "LValue.h" #include "RValue.h" #include "SILGen.h" #include "SILGenDynamicCast.h" #include "Scope.h" #include "SwitchEnumBuilder.h" #include "swift/AST/ASTMangler.h" #include "swift/AST/GenericEnvironment.h" #include "swift/AST/Module.h" #include "swift/AST/NameLookup.h" #include "swift/AST/ProtocolConformance.h" #include "swift/Basic/ProfileCounter.h" #include "swift/SIL/FormalLinkage.h" #include "swift/SIL/PrettyStackTrace.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILDebuggerClient.h" #include "swift/SIL/SILType.h" #include "swift/SIL/TypeLowering.h" #include "llvm/ADT/SmallString.h" #include using namespace swift; using namespace Lowering; void Initialization::_anchor() {} void SILDebuggerClient::anchor() {} namespace { /// A "null" initialization that indicates that any value being initialized /// into this initialization should be discarded. This represents AnyPatterns /// (that is, 'var (_)') that bind to values without storing them. class BlackHoleInitialization : public Initialization { public: BlackHoleInitialization() {} bool canSplitIntoTupleElements() const override { return true; } MutableArrayRef splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type, SmallVectorImpl &buf) override { // "Destructure" an ignored binding into multiple ignored bindings. for (auto fieldType : cast(type)->getElementTypes()) { (void) fieldType; buf.push_back(InitializationPtr(new BlackHoleInitialization())); } return buf; } void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override { /// This just ignores the provided value. } void finishUninitialized(SILGenFunction &SGF) override { // do nothing } }; } // end anonymous namespace static void copyOrInitValueIntoHelper( SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit, ArrayRef subInitializations, llvm::function_ref func) { auto sourceType = value.getType().castTo(); auto sourceSILType = value.getType(); for (unsigned i = 0, e = sourceType->getNumElements(); i != e; ++i) { SILType fieldTy = sourceSILType.getTupleElementType(i); ManagedValue elt = func(value, i, fieldTy); subInitializations[i]->copyOrInitValueInto(SGF, loc, elt, isInit); subInitializations[i]->finishInitialization(SGF); } } void TupleInitialization::copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) { // In the object case, emit a destructure operation and return. if (value.getType().isObject()) { return SGF.B.emitDestructureValueOperation( loc, value, [&](unsigned i, ManagedValue subValue) { auto &subInit = SubInitializations[i]; subInit->copyOrInitValueInto(SGF, loc, subValue, isInit); subInit->finishInitialization(SGF); }); } // In the address case, we forward the underlying value and store it // into memory and then create a +1 cleanup. since we assume here // that we have a +1 value since we are forwarding into memory. assert(value.isPlusOne(SGF) && "Can not store a +0 value into memory?!"); value = ManagedValue::forUnmanaged(value.forward(SGF)); return copyOrInitValueIntoHelper( SGF, loc, value, isInit, SubInitializations, [&](ManagedValue aggregate, unsigned i, SILType fieldType) -> ManagedValue { ManagedValue elt = SGF.B.createTupleElementAddr(loc, value, i, fieldType); if (!fieldType.isAddressOnly(SGF.F)) { return SGF.B.createLoadTake(loc, elt); } return SGF.emitManagedRValueWithCleanup(elt.getValue()); }); } void TupleInitialization::finishUninitialized(SILGenFunction &SGF) { for (auto &subInit : SubInitializations) { subInit->finishUninitialized(SGF); } } namespace { class CleanupClosureConstant : public Cleanup { SILValue closure; public: CleanupClosureConstant(SILValue closure) : closure(closure) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { SGF.B.emitDestroyValueOperation(l, closure); } void dump(SILGenFunction &) const override { #ifndef NDEBUG llvm::errs() << "CleanupClosureConstant\n" << "State:" << getState() << "\n" << "closure:" << closure << "\n"; #endif } }; } // end anonymous namespace SubstitutionMap SILGenFunction::getForwardingSubstitutionMap() { return F.getForwardingSubstitutionMap(); } void SILGenFunction::visitFuncDecl(FuncDecl *fd) { // Generate the local function body. SGM.emitFunction(fd); } MutableArrayRef SingleBufferInitialization:: splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type, SmallVectorImpl &buf) { assert(SplitCleanups.empty() && "getting sub-initializations twice?"); auto address = getAddressForInPlaceInitialization(SGF, loc); return splitSingleBufferIntoTupleElements(SGF, loc, type, address, buf, SplitCleanups); } MutableArrayRef SingleBufferInitialization:: splitSingleBufferIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type, SILValue baseAddr, SmallVectorImpl &buf, TinyPtrVector &splitCleanups) { // Destructure the buffer into per-element buffers. for (auto i : indices(cast(type)->getElementTypes())) { // Project the element. SILValue eltAddr = SGF.B.createTupleElementAddr(loc, baseAddr, i); // Create an initialization to initialize the element. auto &eltTL = SGF.getTypeLowering(eltAddr->getType()); auto eltInit = SGF.useBufferAsTemporary(eltAddr, eltTL); // Remember the element cleanup. auto eltCleanup = eltInit->getInitializedCleanup(); if (eltCleanup.isValid()) splitCleanups.push_back(eltCleanup); buf.emplace_back(eltInit.release()); } return buf; } void SingleBufferInitialization:: copyOrInitValueIntoSingleBuffer(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit, SILValue destAddr) { // Emit an unchecked access around initialization of the local buffer to // silence access marker verification. // // FIXME: This is not a good place for FormalEvaluationScope + // UnenforcedFormalAccess. However, there's no way to identify the buffer // initialization sequence after SILGen, and no easy way to wrap the // Initialization in an access during top-level expression evaluation. FormalEvaluationScope scope(SGF); if (!isInit) { assert(value.getValue() != destAddr && "copying in place?!"); SILValue accessAddr = UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify); value.copyInto(SGF, loc, accessAddr); return; } // If we didn't evaluate into the initialization buffer, do so now. if (value.getValue() != destAddr) { SILValue accessAddr = UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify); value.forwardInto(SGF, loc, accessAddr); } else { // If we did evaluate into the initialization buffer, disable the // cleanup. value.forwardCleanup(SGF); } } void SingleBufferInitialization::finishInitialization(SILGenFunction &SGF) { // Forward all of the split element cleanups, assuming we made any. for (CleanupHandle eltCleanup : SplitCleanups) SGF.Cleanups.forwardCleanup(eltCleanup); } bool KnownAddressInitialization::isInPlaceInitializationOfGlobal() const { return isa(address); } bool TemporaryInitialization::isInPlaceInitializationOfGlobal() const { return isa(Addr); } void TemporaryInitialization::finishInitialization(SILGenFunction &SGF) { SingleBufferInitialization::finishInitialization(SGF); if (Cleanup.isValid()) SGF.Cleanups.setCleanupState(Cleanup, CleanupState::Active); } namespace { class ReleaseValueCleanup : public Cleanup { SILValue v; public: ReleaseValueCleanup(SILValue v) : v(v) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { if (v->getType().isAddress()) SGF.B.createDestroyAddr(l, v); else SGF.B.emitDestroyValueOperation(l, v); } void dump(SILGenFunction &) const override { #ifndef NDEBUG llvm::errs() << "ReleaseValueCleanup\n" << "State:" << getState() << "\n" << "Value:" << v << "\n"; #endif } }; } // end anonymous namespace namespace { /// Cleanup to destroy an initialized variable. class DeallocStackCleanup : public Cleanup { SILValue Addr; public: DeallocStackCleanup(SILValue addr) : Addr(addr) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { SGF.B.createDeallocStack(l, Addr); } void dump(SILGenFunction &) const override { #ifndef NDEBUG llvm::errs() << "DeallocStackCleanup\n" << "State:" << getState() << "\n" << "Addr:" << Addr << "\n"; #endif } }; } // end anonymous namespace namespace { /// Cleanup to destroy an initialized 'var' variable. class DestroyLocalVariable : public Cleanup { VarDecl *Var; public: DestroyLocalVariable(VarDecl *var) : Var(var) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { SGF.destroyLocalVariable(l, Var); } void dump(SILGenFunction &SGF) const override { #ifndef NDEBUG llvm::errs() << "DestroyLocalVariable\n" << "State:" << getState() << "\n" << "Decl: "; Var->print(llvm::errs()); llvm::errs() << "\n"; if (isActive()) { auto loc = SGF.VarLocs[Var]; assert((loc.box || loc.value) && "One of box or value should be set"); if (loc.box) { llvm::errs() << "Box: " << loc.box << "\n"; } else { llvm::errs() << "Value: " << loc.value << "\n"; } } llvm::errs() << "\n"; #endif } }; } // end anonymous namespace namespace { /// Cleanup to destroy an uninitialized local variable. class DeallocateUninitializedLocalVariable : public Cleanup { VarDecl *Var; public: DeallocateUninitializedLocalVariable(VarDecl *var) : Var(var) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { SGF.deallocateUninitializedLocalVariable(l, Var); } void dump(SILGenFunction &) const override { #ifndef NDEBUG llvm::errs() << "DeallocateUninitializedLocalVariable\n" << "State:" << getState() << "\n"; // TODO: Make sure we dump var. llvm::errs() << "\n"; #endif } }; } // end anonymous namespace namespace { /// An initialization of a local 'var'. class LocalVariableInitialization : public SingleBufferInitialization { /// The local variable decl being initialized. VarDecl *decl; SILGenFunction &SGF; /// The cleanup we pushed to deallocate the local variable before it /// gets initialized. CleanupHandle DeallocCleanup; /// The cleanup we pushed to destroy and deallocate the local variable. CleanupHandle ReleaseCleanup; bool DidFinish = false; public: /// Sets up an initialization for the allocated box. This pushes a /// CleanupUninitializedBox cleanup that will be replaced when /// initialization is completed. LocalVariableInitialization(VarDecl *decl, Optional kind, uint16_t ArgNo, SILGenFunction &SGF) : decl(decl), SGF(SGF) { assert(decl->getDeclContext()->isLocalContext() && "can't emit a local var for a non-local var decl"); assert(decl->hasStorage() && "can't emit storage for a computed variable"); assert(!SGF.VarLocs.count(decl) && "Already have an entry for this decl?"); // The box type's context is lowered in the minimal resilience domain. auto boxType = SGF.SGM.Types.getContextBoxTypeForCapture( decl, SGF.SGM.Types.getLoweredRValueType(TypeExpansionContext::minimal(), decl->getType()), SGF.F.getGenericEnvironment(), /*mutable*/ true); // The variable may have its lifetime extended by a closure, heap-allocate // it using a box. SILDebugVariable DbgVar(decl->isLet(), ArgNo); SILValue allocBox = SGF.B.createAllocBox(decl, boxType, DbgVar); // Mark the memory as uninitialized, so DI will track it for us. if (kind) allocBox = SGF.B.createMarkUninitialized(decl, allocBox, kind.getValue()); SILValue addr = SGF.B.createProjectBox(decl, allocBox, 0); /// Remember that this is the memory location that we're emitting the /// decl to. SGF.VarLocs[decl] = SILGenFunction::VarLoc::get(addr, allocBox); // Push a cleanup to destroy the local variable. This has to be // inactive until the variable is initialized. SGF.Cleanups.pushCleanupInState(CleanupState::Dormant, decl); ReleaseCleanup = SGF.Cleanups.getTopCleanup(); // Push a cleanup to deallocate the local variable. SGF.Cleanups.pushCleanup(decl); DeallocCleanup = SGF.Cleanups.getTopCleanup(); } ~LocalVariableInitialization() override { assert(DidFinish && "did not call VarInit::finishInitialization!"); } SILValue getAddress() const { assert(SGF.VarLocs.count(decl) && "did not emit var?!"); return SGF.VarLocs[decl].value; } SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF, SILLocation loc) override { return getAddress(); } bool isInPlaceInitializationOfGlobal() const override { return isa(getAddress()); } void finishUninitialized(SILGenFunction &SGF) override { LocalVariableInitialization::finishInitialization(SGF); } void finishInitialization(SILGenFunction &SGF) override { SingleBufferInitialization::finishInitialization(SGF); assert(!DidFinish && "called LocalVariableInitialization::finishInitialization twice!"); SGF.Cleanups.setCleanupState(DeallocCleanup, CleanupState::Dead); SGF.Cleanups.setCleanupState(ReleaseCleanup, CleanupState::Active); DidFinish = true; } }; } // end anonymous namespace namespace { /// Initialize a writeback buffer that receives the value of a 'let' /// declaration. class LetValueInitialization : public Initialization { /// The VarDecl for the let decl. VarDecl *vd; /// The address of the buffer used for the binding, if this is an address-only /// let. SILValue address; /// The cleanup we pushed to destroy the local variable. CleanupHandle DestroyCleanup; /// Cleanups we introduced when splitting. TinyPtrVector SplitCleanups; bool DidFinish = false; public: LetValueInitialization(VarDecl *vd, SILGenFunction &SGF) : vd(vd) { auto &lowering = SGF.getTypeLowering(vd->getType()); // Decide whether we need a temporary stack buffer to evaluate this 'let'. // There are three cases we need to handle here: parameters, initialized (or // bound) decls, and uninitialized ones. bool needsTemporaryBuffer; bool isUninitialized = false; assert(!isa(vd) && "should not bind function params on this path"); if (vd->getParentPatternBinding() && !vd->getParentInitializer()) { // This value is uninitialized (and unbound) if it has a pattern binding // decl, with no initializer value. assert(!vd->hasNonPatternBindingInit() && "Bound values aren't uninit!"); // If this is a let-value without an initializer, then we need a temporary // buffer. DI will make sure it is only assigned to once. needsTemporaryBuffer = true; isUninitialized = true; } else { // If this is a let with an initializer or bound value, we only need a // buffer if the type is address only. needsTemporaryBuffer = lowering.isAddressOnly() && SGF.silConv.useLoweredAddresses(); } if (needsTemporaryBuffer) { address = SGF.emitTemporaryAllocation(vd, lowering.getLoweredType()); if (isUninitialized) address = SGF.B.createMarkUninitializedVar(vd, address); DestroyCleanup = SGF.enterDormantTemporaryCleanup(address, lowering); SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(address); } else if (!lowering.isTrivial()) { // Push a cleanup to destroy the let declaration. This has to be // inactive until the variable is initialized: if control flow exits the // before the value is bound, we don't want to destroy the value. SGF.Cleanups.pushCleanupInState( CleanupState::Dormant, vd); DestroyCleanup = SGF.Cleanups.getTopCleanup(); } else { DestroyCleanup = CleanupHandle::invalid(); } } ~LetValueInitialization() override { assert(DidFinish && "did not call LetValueInit::finishInitialization!"); } bool hasAddress() const { return (bool)address; } bool canPerformInPlaceInitialization() const override { return hasAddress(); } bool isInPlaceInitializationOfGlobal() const override { return isa(address); } SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF, SILLocation loc) override { // Emit into the buffer that 'let's produce for address-only values if // we have it. assert(hasAddress()); return address; } /// Return true if we can get the addresses of elements with the /// 'getSubInitializationsForTuple' method. /// /// Let-value initializations cannot be broken into constituent pieces if a /// scalar value needs to be bound. If there is an address in play, then we /// can initialize the address elements of the tuple though. bool canSplitIntoTupleElements() const override { return hasAddress(); } MutableArrayRef splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type, SmallVectorImpl &buf) override { assert(SplitCleanups.empty()); auto address = getAddressForInPlaceInitialization(SGF, loc); return SingleBufferInitialization ::splitSingleBufferIntoTupleElements(SGF, loc, type, address, buf, SplitCleanups); } void bindValue(SILValue value, SILGenFunction &SGF) { assert(!SGF.VarLocs.count(vd) && "Already emitted this vardecl?"); // If we're binding an address to this let value, then we can use it as an // address later. This happens when binding an address only parameter to // an argument, for example. if (value->getType().isAddress()) address = value; SGF.VarLocs[vd] = SILGenFunction::VarLoc::get(value); // Emit a debug_value[_addr] instruction to record the start of this value's // lifetime. SILLocation PrologueLoc(vd); PrologueLoc.markAsPrologue(); SILDebugVariable DbgVar(vd->isLet(), /*ArgNo=*/0); if (address) SGF.B.createDebugValueAddr(PrologueLoc, value, DbgVar); else SGF.B.createDebugValue(PrologueLoc, value, DbgVar); } void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override { // If this let value has an address, we can handle it just like a single // buffer value. if (hasAddress()) return SingleBufferInitialization:: copyOrInitValueIntoSingleBuffer(SGF, loc, value, isInit, address); // Otherwise, we bind the value. if (isInit) { // Disable the rvalue expression cleanup, since the let value // initialization has a cleanup that lives for the entire scope of the // let declaration. bindValue(value.forward(SGF), SGF); } else { // Disable the expression cleanup of the copy, since the let value // initialization has a cleanup that lives for the entire scope of the // let declaration. bindValue(value.copyUnmanaged(SGF, loc).forward(SGF), SGF); } } void finishUninitialized(SILGenFunction &SGF) override { LetValueInitialization::finishInitialization(SGF); } void finishInitialization(SILGenFunction &SGF) override { assert(!DidFinish && "called LetValueInit::finishInitialization twice!"); assert(SGF.VarLocs.count(vd) && "Didn't bind a value to this let!"); // Deactivate any cleanups we made when splitting the tuple. for (auto cleanup : SplitCleanups) SGF.Cleanups.forwardCleanup(cleanup); // Activate the destroy cleanup. if (DestroyCleanup != CleanupHandle::invalid()) SGF.Cleanups.setCleanupState(DestroyCleanup, CleanupState::Active); DidFinish = true; } }; } // end anonymous namespace namespace { /// Initialize a variable of reference-storage type. class ReferenceStorageInitialization : public Initialization { InitializationPtr VarInit; public: ReferenceStorageInitialization(InitializationPtr &&subInit) : VarInit(std::move(subInit)) { assert(VarInit->canPerformInPlaceInitialization()); } void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override { auto address = VarInit->getAddressForInPlaceInitialization(SGF, loc); // If this is not an initialization, copy the value before we translateIt, // translation expects a +1 value. if (isInit) value.forwardInto(SGF, loc, address); else value.copyInto(SGF, loc, address); } void finishUninitialized(SILGenFunction &SGF) override { ReferenceStorageInitialization::finishInitialization(SGF); } void finishInitialization(SILGenFunction &SGF) override { VarInit->finishInitialization(SGF); } }; } // end anonymous namespace namespace { /// Abstract base class for refutable pattern initializations. class RefutablePatternInitialization : public Initialization { /// This is the label to jump to if the pattern fails to match. JumpDest failureDest; public: RefutablePatternInitialization(JumpDest failureDest) : failureDest(failureDest) { assert(failureDest.isValid() && "Refutable patterns can only exist in failable conditions"); } JumpDest getFailureDest() const { return failureDest; } void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override = 0; void bindVariable(SILLocation loc, VarDecl *var, ManagedValue value, CanType formalValueType, SILGenFunction &SGF) { // Initialize the variable value. InitializationPtr init = SGF.emitInitializationForVarDecl(var, var->isLet()); RValue(SGF, loc, formalValueType, value).forwardInto(SGF, loc, init.get()); } }; } // end anonymous namespace namespace { class ExprPatternInitialization : public RefutablePatternInitialization { ExprPattern *P; public: ExprPatternInitialization(ExprPattern *P, JumpDest patternFailDest) : RefutablePatternInitialization(patternFailDest), P(P) {} void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override; }; } // end anonymous namespace void ExprPatternInitialization:: copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) { assert(isInit && "Only initialization is supported for refutable patterns"); FullExpr scope(SGF.Cleanups, CleanupLocation(P)); bindVariable(P, P->getMatchVar(), value, P->getType()->getCanonicalType(), SGF); // Emit the match test. SILValue testBool; { FullExpr scope(SGF.Cleanups, CleanupLocation(P->getMatchExpr())); testBool = SGF.emitRValueAsSingleValue(P->getMatchExpr()). getUnmanagedValue(); } assert(testBool->getType().getASTType()->isBool()); auto i1Value = SGF.emitUnwrapIntegerResult(loc, testBool); SILBasicBlock *contBB = SGF.B.splitBlockForFallthrough(); auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc); SGF.B.createCondBranch(loc, i1Value, contBB, falseBB); SGF.B.setInsertionPoint(contBB); } namespace { class EnumElementPatternInitialization : public RefutablePatternInitialization { EnumElementDecl *ElementDecl; InitializationPtr subInitialization; public: EnumElementPatternInitialization(EnumElementDecl *ElementDecl, InitializationPtr &&subInitialization, JumpDest patternFailDest) : RefutablePatternInitialization(patternFailDest), ElementDecl(ElementDecl), subInitialization(std::move(subInitialization)) {} void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override { assert(isInit && "Only initialization is supported for refutable patterns"); emitEnumMatch(value, ElementDecl, subInitialization.get(), getFailureDest(), loc, SGF); } static void emitEnumMatch(ManagedValue value, EnumElementDecl *ElementDecl, Initialization *subInit, JumpDest FailureDest, SILLocation loc, SILGenFunction &SGF); void finishInitialization(SILGenFunction &SGF) override { if (subInitialization.get()) subInitialization->finishInitialization(SGF); } }; } // end anonymous namespace /// If \p elt belongs to an enum that has exactly two cases and that can be /// exhaustively switched, return the other case. Otherwise, return nullptr. static EnumElementDecl *getOppositeBinaryDecl(const SILGenFunction &SGF, const EnumElementDecl *elt) { const EnumDecl *enumDecl = elt->getParentEnum(); if (!enumDecl->isEffectivelyExhaustive(SGF.SGM.SwiftModule, SGF.F.getResilienceExpansion())) { return nullptr; } EnumDecl::ElementRange range = enumDecl->getAllElements(); auto iter = range.begin(); if (iter == range.end()) return nullptr; bool seenDecl = false; EnumElementDecl *result = nullptr; if (*iter == elt) { seenDecl = true; } else { result = *iter; } ++iter; if (iter == range.end()) return nullptr; if (seenDecl) { assert(!result); result = *iter; } else { if (elt != *iter) return nullptr; seenDecl = true; } ++iter; // If we reach this point, we saw the decl we were looking for and one other // case. If we have any additional cases, then we do not have a binary enum. if (iter != range.end()) return nullptr; // This is always true since we have already returned earlier nullptr if we // did not see the decl at all. assert(seenDecl); return result; } void EnumElementPatternInitialization::emitEnumMatch( ManagedValue value, EnumElementDecl *eltDecl, Initialization *subInit, JumpDest failureDest, SILLocation loc, SILGenFunction &SGF) { // Create all of the blocks early so we can maintain a consistent ordering // (and update less tests). Break this at your fingers parallel. // // *NOTE* This needs to be in reverse order to preserve the textual SIL. auto *contBlock = SGF.createBasicBlock(); auto *someBlock = SGF.createBasicBlock(); auto *defaultBlock = SGF.createBasicBlock(); auto *originalBlock = SGF.B.getInsertionBB(); SwitchEnumBuilder switchBuilder(SGF.B, loc, value); // Handle the none case. // // *NOTE*: Since we are performing an initialization here, it is *VERY* // important that we emit the negative case first. The reason why is that // currently the initialization has a dormant cleanup in a scope that may be // after the failureDest depth. Once we run the positive case, this // initialization will be enabled. Thus if we run the negative case /after/ // the positive case, a cleanup will be emitted for the initialization on the // negative path... but the actual initialization happened on the positive // path, causing a use (the destroy on the negative path) to be created that // does not dominate its definition (in the positive path). auto handler = [&SGF, &loc, &failureDest](ManagedValue mv, SwitchCaseFullExpr &&expr) { expr.exit(); SGF.Cleanups.emitBranchAndCleanups(failureDest, loc); }; // If we have a binary enum, do not emit a true default case. This ensures // that we do not emit a destroy_value on a .None. bool inferredBinaryEnum = false; if (auto *otherDecl = getOppositeBinaryDecl(SGF, eltDecl)) { inferredBinaryEnum = true; switchBuilder.addCase(otherDecl, defaultBlock, nullptr, handler); } else { switchBuilder.addDefaultCase( defaultBlock, nullptr, handler, SwitchEnumBuilder::DefaultDispatchTime::BeforeNormalCases); } // Always insert the some case at the front of the list. In the default case, // this will not matter, but in the case where we have a binary enum, we want // to preserve the old ordering of .some/.none. to make it easier to update // tests. switchBuilder.addCase( eltDecl, someBlock, contBlock, [&SGF, &loc, &eltDecl, &subInit, &value](ManagedValue mv, SwitchCaseFullExpr &&expr) { // If the enum case has no bound value, we're done. if (!eltDecl->hasAssociatedValues()) { assert( subInit == nullptr && "Cannot have a subinit when there is no value to match against"); expr.exitAndBranch(loc); return; } if (subInit == nullptr) { // If there is no subinitialization, then we are done matching. Don't // bother projecting out the any elements value only to ignore it. expr.exitAndBranch(loc); return; } // Otherwise, the bound value for the enum case is available. SILType eltTy = value.getType().getEnumElementType( eltDecl, SGF.SGM.M, SGF.getTypeExpansionContext()); auto &eltTL = SGF.getTypeLowering(eltTy); if (mv.getType().isAddress()) { // If the enum is address-only, take from the enum we have and load it // if // the element value is loadable. assert((eltTL.isTrivial() || mv.hasCleanup()) && "must be able to consume value"); mv = SGF.B.createUncheckedTakeEnumDataAddr(loc, mv, eltDecl, eltTy); // Load a loadable data value. if (eltTL.isLoadable()) mv = SGF.B.createLoadTake(loc, mv); } // If the payload is indirect, project it out of the box. if (eltDecl->isIndirect() || eltDecl->getParentEnum()->isIndirect()) { ManagedValue boxedValue = SGF.B.createProjectBox(loc, mv, 0); auto &boxedTL = SGF.getTypeLowering(boxedValue.getType()); // We must treat the boxed value as +0 since it may be shared. Copy it // if nontrivial. // // NOTE: The APIs that we are usinng here will ensure that if we have // a trivial value, the load_borrow will become a load [trivial] and // the copies will be "automagically" elided. if (boxedTL.isLoadable() || !SGF.silConv.useLoweredAddresses()) { UnenforcedAccess access; SILValue accessAddress = access.beginAccess( SGF, loc, boxedValue.getValue(), SILAccessKind::Read); auto mvAccessAddress = ManagedValue::forUnmanaged(accessAddress); { Scope loadScope(SGF, loc); ManagedValue borrowedVal = SGF.B.createLoadBorrow(loc, mvAccessAddress); mv = loadScope.popPreservingValue( borrowedVal.copyUnmanaged(SGF, loc)); } access.endAccess(SGF); } else { // If we do not have a loadable value, just do a copy of the // boxedValue. mv = boxedValue.copyUnmanaged(SGF, loc); } } // Reabstract to the substituted type, if needed. CanType substEltTy = value.getType() .getASTType() ->getTypeOfMember(SGF.SGM.M.getSwiftModule(), eltDecl, eltDecl->getArgumentInterfaceType()) ->getCanonicalType(); AbstractionPattern origEltTy = (eltDecl == SGF.getASTContext().getOptionalSomeDecl() ? AbstractionPattern(substEltTy) : SGF.SGM.M.Types.getAbstractionPattern(eltDecl)); mv = SGF.emitOrigToSubstValue(loc, mv, origEltTy, substEltTy); // Pass the +1 value down into the sub initialization. subInit->copyOrInitValueInto(SGF, loc, mv, /*is an init*/ true); expr.exitAndBranch(loc); }); std::move(switchBuilder).emit(); // If we inferred a binary enum, put the asked for case first so we preserve // the current code structure. This just ensures that less test updates are // needed. if (inferredBinaryEnum) { if (auto *switchEnum = dyn_cast(originalBlock->getTerminator())) { switchEnum->swapCase(0, 1); } else { auto *switchEnumAddr = cast(originalBlock->getTerminator()); switchEnumAddr->swapCase(0, 1); } } // Reset the insertion point to the end of contBlock. SGF.B.setInsertionPoint(contBlock); } namespace { class IsPatternInitialization : public RefutablePatternInitialization { IsPattern *pattern; InitializationPtr subInitialization; public: IsPatternInitialization(IsPattern *pattern, InitializationPtr &&subInitialization, JumpDest patternFailDest) : RefutablePatternInitialization(patternFailDest), pattern(pattern), subInitialization(std::move(subInitialization)) {} void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override; void finishInitialization(SILGenFunction &SGF) override { if (subInitialization.get()) subInitialization->finishInitialization(SGF); } }; } // end anonymous namespace void IsPatternInitialization:: copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) { assert(isInit && "Only initialization is supported for refutable patterns"); // Try to perform the cast to the destination type, producing an optional that // indicates whether we succeeded. auto destType = OptionalType::get(pattern->getCastTypeLoc().getType()); value = emitConditionalCheckedCast(SGF, loc, value, pattern->getType(), destType, pattern->getCastKind(), SGFContext(), ProfileCounter(), ProfileCounter()) .getAsSingleValue(SGF, loc); // Now that we have our result as an optional, we can use an enum projection // to do all the work. EnumElementPatternInitialization:: emitEnumMatch(value, SGF.getASTContext().getOptionalSomeDecl(), subInitialization.get(), getFailureDest(), loc, SGF); } namespace { class BoolPatternInitialization : public RefutablePatternInitialization { BoolPattern *pattern; public: BoolPatternInitialization(BoolPattern *pattern, JumpDest patternFailDest) : RefutablePatternInitialization(patternFailDest), pattern(pattern) {} void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) override; }; } // end anonymous namespace void BoolPatternInitialization:: copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc, ManagedValue value, bool isInit) { assert(isInit && "Only initialization is supported for refutable patterns"); // Extract the i1 from the Bool struct. auto i1Value = SGF.emitUnwrapIntegerResult(loc, value.forward(SGF)); // Branch on the boolean based on whether we're testing for true or false. SILBasicBlock *trueBB = SGF.B.splitBlockForFallthrough(); auto contBB = trueBB; auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc); if (!pattern->getValue()) std::swap(trueBB, falseBB); SGF.B.createCondBranch(loc, i1Value, trueBB, falseBB); SGF.B.setInsertionPoint(contBB); } namespace { /// InitializationForPattern - A visitor for traversing a pattern, generating /// SIL code to allocate the declared variables, and generating an /// Initialization representing the needed initializations. /// /// It is important that any Initialization created for a pattern that might /// not have an immediate initializer implement finishUninitialized. Note /// that this only applies to irrefutable patterns. struct InitializationForPattern : public PatternVisitor { SILGenFunction &SGF; /// This is the place that should be jumped to if the pattern fails to match. /// This is invalid for irrefutable pattern initializations. JumpDest patternFailDest; InitializationForPattern(SILGenFunction &SGF, JumpDest patternFailDest) : SGF(SGF), patternFailDest(patternFailDest) {} // Paren, Typed, and Var patterns are noops, just look through them. InitializationPtr visitParenPattern(ParenPattern *P) { return visit(P->getSubPattern()); } InitializationPtr visitTypedPattern(TypedPattern *P) { return visit(P->getSubPattern()); } InitializationPtr visitVarPattern(VarPattern *P) { return visit(P->getSubPattern()); } // AnyPatterns (i.e, _) don't require any storage. Any value bound here will // just be dropped. InitializationPtr visitAnyPattern(AnyPattern *P) { return InitializationPtr(new BlackHoleInitialization()); } // Bind to a named pattern by creating a memory location and initializing it // with the initial value. InitializationPtr visitNamedPattern(NamedPattern *P) { if (!P->getDecl()->hasName()) { // Unnamed parameters don't require any storage. Any value bound here will // just be dropped. return InitializationPtr(new BlackHoleInitialization()); } return SGF.emitInitializationForVarDecl(P->getDecl(), P->getDecl()->isLet()); } // Bind a tuple pattern by aggregating the component variables into a // TupleInitialization. InitializationPtr visitTuplePattern(TuplePattern *P) { TupleInitialization *init = new TupleInitialization(); for (auto &elt : P->getElements()) init->SubInitializations.push_back(visit(elt.getPattern())); return InitializationPtr(init); } InitializationPtr visitEnumElementPattern(EnumElementPattern *P) { InitializationPtr subInit; if (auto *subP = P->getSubPattern()) subInit = visit(subP); auto *res = new EnumElementPatternInitialization(P->getElementDecl(), std::move(subInit), patternFailDest); return InitializationPtr(res); } InitializationPtr visitOptionalSomePattern(OptionalSomePattern *P) { InitializationPtr subInit = visit(P->getSubPattern()); auto *res = new EnumElementPatternInitialization(P->getElementDecl(), std::move(subInit), patternFailDest); return InitializationPtr(res); } InitializationPtr visitIsPattern(IsPattern *P) { InitializationPtr subInit; if (auto *subP = P->getSubPattern()) subInit = visit(subP); return InitializationPtr(new IsPatternInitialization(P, std::move(subInit), patternFailDest)); } InitializationPtr visitBoolPattern(BoolPattern *P) { return InitializationPtr(new BoolPatternInitialization(P, patternFailDest)); } InitializationPtr visitExprPattern(ExprPattern *P) { return InitializationPtr(new ExprPatternInitialization(P, patternFailDest)); } }; } // end anonymous namespace InitializationPtr SILGenFunction::emitInitializationForVarDecl(VarDecl *vd, bool forceImmutable) { // If this is a computed variable, we don't need to do anything here. // We'll generate the getter and setter when we see their FuncDecls. if (!vd->hasStorage()) return InitializationPtr(new BlackHoleInitialization()); if (vd->isDebuggerVar()) { DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient(); assert(DebugClient && "Debugger variables with no debugger client"); SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient(); assert(SILDebugClient && "Debugger client doesn't support SIL"); SILValue SV = SILDebugClient->emitLValueForVariable(vd, B); VarLocs[vd] = SILGenFunction::VarLoc::get(SV); return InitializationPtr(new KnownAddressInitialization(SV)); } CanType varType = vd->getType()->getCanonicalType(); assert(!isa(varType) && "local variables should never be inout"); // If this is a 'let' initialization for a non-global, set up a // let binding, which stores the initialization value into VarLocs directly. if (forceImmutable && vd->getDeclContext()->isLocalContext() && !isa(varType)) return InitializationPtr(new LetValueInitialization(vd, *this)); // If the variable has no initial value, emit a mark_uninitialized instruction // so that DI tracks and enforces validity of it. bool isUninitialized = vd->getParentPatternBinding() && !vd->getParentInitializer(); // If this is a global variable, initialize it without allocations or // cleanups. InitializationPtr Result; if (!vd->getDeclContext()->isLocalContext()) { auto *silG = SGM.getSILGlobalVariable(vd, NotForDefinition); B.createAllocGlobal(vd, silG); SILValue addr = B.createGlobalAddr(vd, silG); if (isUninitialized) addr = B.createMarkUninitializedVar(vd, addr); VarLocs[vd] = SILGenFunction::VarLoc::get(addr); Result = InitializationPtr(new KnownAddressInitialization(addr)); } else { Optional uninitKind; if (isUninitialized) { uninitKind = MarkUninitializedInst::Kind::Var; } Result = emitLocalVariableWithCleanup(vd, uninitKind); } // If we're initializing a weak or unowned variable, this requires a change in // type. if (isa(varType)) Result = InitializationPtr(new ReferenceStorageInitialization(std::move(Result))); return Result; } void SILGenFunction::emitPatternBinding(PatternBindingDecl *PBD, unsigned idx) { auto initialization = emitPatternBindingInitialization(PBD->getPattern(idx), JumpDest::invalid()); // If an initial value expression was specified by the decl, emit it into // the initialization. Otherwise, mark it uninitialized for DI to resolve. if (auto *Init = PBD->getExecutableInit(idx)) { FullExpr Scope(Cleanups, CleanupLocation(Init)); emitExprInto(Init, initialization.get(), SILLocation(PBD)); } else { initialization->finishUninitialized(*this); } } void SILGenFunction::visitPatternBindingDecl(PatternBindingDecl *PBD) { // Allocate the variables and build up an Initialization over their // allocated storage. for (unsigned i : range(PBD->getNumPatternEntries())) { emitPatternBinding(PBD, i); } } void SILGenFunction::visitVarDecl(VarDecl *D) { // We handle emitting the variable storage when we see the pattern binding. // Emit the variable's accessors. D->visitEmittedAccessors([&](AccessorDecl *accessor) { SGM.emitFunction(accessor); }); } /// Emit literals for the major, minor, and subminor components of the version /// and return a tuple of SILValues for them. static std::tuple emitVersionLiterals(SILLocation loc, SILGenBuilder &B, ASTContext &ctx, llvm::VersionTuple Vers) { unsigned major = Vers.getMajor(); unsigned minor = (Vers.getMinor().hasValue() ? Vers.getMinor().getValue() : 0); unsigned subminor = (Vers.getSubminor().hasValue() ? Vers.getSubminor().getValue() : 0); SILType wordType = SILType::getBuiltinWordType(ctx); SILValue majorValue = B.createIntegerLiteral(loc, wordType, major); SILValue minorValue = B.createIntegerLiteral(loc, wordType, minor); SILValue subminorValue = B.createIntegerLiteral(loc, wordType, subminor); return std::make_tuple(majorValue, minorValue, subminorValue); } /// Emit a check that returns 1 if the running OS version is in /// the specified version range and 0 otherwise. The returned SILValue /// (which has type Builtin.Int1) represents the result of this check. SILValue SILGenFunction::emitOSVersionRangeCheck(SILLocation loc, const VersionRange &range) { // Emit constants for the checked version range. SILValue majorValue; SILValue minorValue; SILValue subminorValue; std::tie(majorValue, minorValue, subminorValue) = emitVersionLiterals(loc, B, getASTContext(), range.getLowerEndpoint()); // Emit call to _stdlib_isOSVersionAtLeast(major, minor, patch) FuncDecl *versionQueryDecl = getASTContext().getIsOSVersionAtLeastDecl(); assert(versionQueryDecl); auto silDeclRef = SILDeclRef(versionQueryDecl); SILValue availabilityGTEFn = emitGlobalFunctionRef( loc, silDeclRef, getConstantInfo(getTypeExpansionContext(), silDeclRef)); SILValue args[] = {majorValue, minorValue, subminorValue}; return B.createApply(loc, availabilityGTEFn, SubstitutionMap(), args); } /// Emit the boolean test and/or pattern bindings indicated by the specified /// stmt condition. If the condition fails, control flow is transferred to the /// specified JumpDest. The insertion point is left in the block where the /// condition has matched and any bound variables are in scope. /// void SILGenFunction::emitStmtCondition(StmtCondition Cond, JumpDest FalseDest, SILLocation loc, ProfileCounter NumTrueTaken, ProfileCounter NumFalseTaken) { assert(B.hasValidInsertionPoint() && "emitting condition at unreachable point"); for (const auto &elt : Cond) { SILLocation booleanTestLoc = loc; SILValue booleanTestValue; switch (elt.getKind()) { case StmtConditionElement::CK_PatternBinding: { InitializationPtr initialization = InitializationForPattern(*this, FalseDest).visit(elt.getPattern()); // Emit the initial value into the initialization. FullExpr Scope(Cleanups, CleanupLocation(elt.getInitializer())); emitExprInto(elt.getInitializer(), initialization.get()); // Pattern bindings handle their own tests, we don't need a boolean test. continue; } case StmtConditionElement::CK_Boolean: { // Handle boolean conditions. auto *expr = elt.getBoolean(); // Evaluate the condition as an i1 value (guaranteed by Sema). FullExpr Scope(Cleanups, CleanupLocation(expr)); booleanTestValue = emitRValue(expr).forwardAsSingleValue(*this, expr); booleanTestValue = emitUnwrapIntegerResult(expr, booleanTestValue); booleanTestLoc = expr; break; } case StmtConditionElement::CK_Availability: // Check the running OS version to determine whether it is in the range // specified by elt. VersionRange OSVersion = elt.getAvailability()->getAvailableRange(); assert(!OSVersion.isEmpty()); if (OSVersion.isAll()) { // If there's no check for the current platform, this condition is // trivially true. SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext()); booleanTestValue = B.createIntegerLiteral(loc, i1, true); } else { booleanTestValue = emitOSVersionRangeCheck(loc, OSVersion); } break; } // Now that we have a boolean test as a Builtin.i1, emit the branch. assert(booleanTestValue->getType(). castTo()->isFixedWidth(1) && "Sema forces conditions to have Builtin.i1 type"); // Just branch on the condition. On failure, we unwind any active cleanups, // on success we fall through to a new block. auto FailBB = Cleanups.emitBlockForCleanups(FalseDest, loc); SILBasicBlock *ContBB = createBasicBlock(); B.createCondBranch(booleanTestLoc, booleanTestValue, ContBB, FailBB, NumTrueTaken, NumFalseTaken); // Finally, emit the continue block and keep emitting the rest of the // condition. B.emitBlock(ContBB); } } InitializationPtr SILGenFunction::emitPatternBindingInitialization(Pattern *P, JumpDest failureDest) { return InitializationForPattern(*this, failureDest).visit(P); } /// Enter a cleanup to deallocate the given location. CleanupHandle SILGenFunction::enterDeallocStackCleanup(SILValue temp) { assert(temp->getType().isAddress() && "dealloc must have an address type"); Cleanups.pushCleanup(temp); return Cleanups.getTopCleanup(); } CleanupHandle SILGenFunction::enterDestroyCleanup(SILValue valueOrAddr) { Cleanups.pushCleanup(valueOrAddr); return Cleanups.getTopCleanup(); } namespace { /// A cleanup that deinitializes an opaque existential container /// before a value has been stored into it, or after its value was taken. class DeinitExistentialCleanup: public Cleanup { SILValue existentialAddr; CanType concreteFormalType; ExistentialRepresentation repr; public: DeinitExistentialCleanup(SILValue existentialAddr, CanType concreteFormalType, ExistentialRepresentation repr) : existentialAddr(existentialAddr), concreteFormalType(concreteFormalType), repr(repr) {} void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { switch (repr) { case ExistentialRepresentation::None: case ExistentialRepresentation::Class: case ExistentialRepresentation::Metatype: llvm_unreachable("cannot cleanup existential"); case ExistentialRepresentation::Opaque: if (SGF.silConv.useLoweredAddresses()) { SGF.B.createDeinitExistentialAddr(l, existentialAddr); } else { SGF.B.createDeinitExistentialValue(l, existentialAddr); } break; case ExistentialRepresentation::Boxed: auto box = SGF.B.createLoad(l, existentialAddr, LoadOwnershipQualifier::Take); SGF.B.createDeallocExistentialBox(l, concreteFormalType, box); break; } } void dump(SILGenFunction &) const override { #ifndef NDEBUG llvm::errs() << "DeinitExistentialCleanup\n" << "State:" << getState() << "\n" << "Value:" << existentialAddr << "\n"; #endif } }; } // end anonymous namespace /// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox /// of the specified value. CleanupHandle SILGenFunction::enterDeinitExistentialCleanup( CleanupState state, SILValue addr, CanType concreteFormalType, ExistentialRepresentation repr) { assert(addr->getType().isAddress()); Cleanups.pushCleanupInState(state, addr, concreteFormalType, repr); return Cleanups.getTopCleanup(); } /// Create a LocalVariableInitialization for the uninitialized var. InitializationPtr SILGenFunction::emitLocalVariableWithCleanup( VarDecl *vd, Optional kind, unsigned ArgNo) { return InitializationPtr( new LocalVariableInitialization(vd, kind, ArgNo, *this)); } /// Create an Initialization for an uninitialized temporary. std::unique_ptr SILGenFunction::emitTemporary(SILLocation loc, const TypeLowering &tempTL) { SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType()); return useBufferAsTemporary(addr, tempTL); } std::unique_ptr SILGenFunction::emitFormalAccessTemporary(SILLocation loc, const TypeLowering &tempTL) { SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType()); CleanupHandle cleanup = enterDormantFormalAccessTemporaryCleanup(addr, loc, tempTL); return std::unique_ptr( new TemporaryInitialization(addr, cleanup)); } /// Create an Initialization for an uninitialized buffer. std::unique_ptr SILGenFunction::useBufferAsTemporary(SILValue addr, const TypeLowering &tempTL) { CleanupHandle cleanup = enterDormantTemporaryCleanup(addr, tempTL); return std::unique_ptr( new TemporaryInitialization(addr, cleanup)); } CleanupHandle SILGenFunction::enterDormantTemporaryCleanup(SILValue addr, const TypeLowering &tempTL) { if (tempTL.isTrivial()) return CleanupHandle::invalid(); Cleanups.pushCleanupInState(CleanupState::Dormant, addr); return Cleanups.getCleanupsDepth(); } namespace { struct FormalAccessReleaseValueCleanup : Cleanup { FormalEvaluationContext::stable_iterator Depth; FormalAccessReleaseValueCleanup() : Depth() {} void setState(SILGenFunction &SGF, CleanupState newState) override { if (newState == CleanupState::Dead) { getEvaluation(SGF).setFinished(); } Cleanup::setState(SGF, newState); } void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind) override { getEvaluation(SGF).finish(SGF); } void dump(SILGenFunction &SGF) const override { #ifndef NDEBUG llvm::errs() << "FormalAccessReleaseValueCleanup " << "State:" << getState() << "\n" << "Value:" << getValue(SGF) << "\n"; #endif } OwnedFormalAccess &getEvaluation(SILGenFunction &SGF) const { auto &evaluation = *SGF.FormalEvalContext.find(Depth); assert(evaluation.getKind() == FormalAccess::Owned); return static_cast(evaluation); } SILValue getValue(SILGenFunction &SGF) const { return getEvaluation(SGF).getValue(); } }; } // end anonymous namespace ManagedValue SILGenFunction::emitFormalAccessManagedBufferWithCleanup(SILLocation loc, SILValue addr) { assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope"); auto &lowering = getTypeLowering(addr->getType()); if (lowering.isTrivial()) return ManagedValue::forUnmanaged(addr); auto &cleanup = Cleanups.pushCleanup(); CleanupHandle handle = Cleanups.getTopCleanup(); FormalEvalContext.push(loc, handle, addr); cleanup.Depth = FormalEvalContext.stable_begin(); return ManagedValue(addr, handle); } ManagedValue SILGenFunction::emitFormalAccessManagedRValueWithCleanup(SILLocation loc, SILValue value) { assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope"); auto &lowering = getTypeLowering(value->getType()); if (lowering.isTrivial()) return ManagedValue::forUnmanaged(value); auto &cleanup = Cleanups.pushCleanup(); CleanupHandle handle = Cleanups.getTopCleanup(); FormalEvalContext.push(loc, handle, value); cleanup.Depth = FormalEvalContext.stable_begin(); return ManagedValue(value, handle); } CleanupHandle SILGenFunction::enterDormantFormalAccessTemporaryCleanup( SILValue addr, SILLocation loc, const TypeLowering &tempTL) { assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope"); if (tempTL.isTrivial()) return CleanupHandle::invalid(); auto &cleanup = Cleanups.pushCleanup(); CleanupHandle handle = Cleanups.getTopCleanup(); Cleanups.setCleanupState(handle, CleanupState::Dormant); FormalEvalContext.push(loc, handle, addr); cleanup.Depth = FormalEvalContext.stable_begin(); return handle; } void SILGenFunction::destroyLocalVariable(SILLocation silLoc, VarDecl *vd) { assert(vd->getDeclContext()->isLocalContext() && "can't emit a local var for a non-local var decl"); assert(vd->hasStorage() && "can't emit storage for a computed variable"); assert(VarLocs.count(vd) && "var decl wasn't emitted?!"); auto loc = VarLocs[vd]; // For a heap variable, the box is responsible for the value. We just need // to give up our retain count on it. if (loc.box) { B.emitDestroyValueOperation(silLoc, loc.box); return; } // For 'let' bindings, we emit a release_value or destroy_addr, depending on // whether we have an address or not. SILValue Val = loc.value; if (!Val->getType().isAddress()) B.emitDestroyValueOperation(silLoc, Val); else B.createDestroyAddr(silLoc, Val); } void SILGenFunction::deallocateUninitializedLocalVariable(SILLocation silLoc, VarDecl *vd) { assert(vd->getDeclContext()->isLocalContext() && "can't emit a local var for a non-local var decl"); assert(vd->hasStorage() && "can't emit storage for a computed variable"); assert(VarLocs.count(vd) && "var decl wasn't emitted?!"); auto loc = VarLocs[vd]; // Ignore let values captured without a memory location. if (!loc.value->getType().isAddress()) return; assert(loc.box && "captured var should have been given a box"); B.createDeallocBox(silLoc, loc.box); }