//===--- TgmathDerivatives.swift.gyb --------------------------*- swift -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2020 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // This file defines derivatives for tgmath functions. //===----------------------------------------------------------------------===// import Swift #if os(macOS) || os(iOS) || os(tvOS) || os(watchOS) import Darwin.C.tgmath #elseif os(Linux) || os(FreeBSD) || os(PS4) || os(Android) || os(Cygwin) || os(Haiku) import Glibc #elseif os(Windows) import MSVCRT #else #error("Unsupported platform") #endif @usableFromInline @derivative(of: fma) func _jvpFma ( _ x: T, _ y: T, _ z: T ) -> (value: T, differential: (T, T, T) -> T) where T == T.TangentVector { return (fma(x, y, z), { (dx, dy, dz) in dx * y + dy * x + dz }) } @usableFromInline @derivative(of: fma) func _vjpFma ( _ x: T, _ y: T, _ z: T ) -> (value: T, pullback: (T) -> (T, T, T)) where T == T.TangentVector { return (fma(x, y, z), { v in (v * y, v * x, v) }) } @usableFromInline @derivative(of: remainder) func _jvpRemainder ( _ x: T, _ y: T ) -> (value: T, differential: (T, T) -> T) where T == T.TangentVector { fatalError(""" Unimplemented JVP for 'remainder(_:)'. \ https://bugs.swift.org/browse/TF-1108 tracks this issue """) } @usableFromInline @derivative(of: remainder) func _vjpRemainder ( _ x: T, _ y: T ) -> (value: T, pullback: (T) -> (T, T)) where T == T.TangentVector { return (remainder(x, y), { v in (v, -v * ((x / y).rounded(.toNearestOrEven))) }) } @usableFromInline @derivative(of: fmod) func _jvpFmod ( _ x: T, _ y: T ) -> (value: T, differential: (T, T) -> T) where T == T.TangentVector { fatalError(""" Unimplemented JVP for 'fmod(_:)'. \ https://bugs.swift.org/browse/TF-1108 tracks this issue """) } @usableFromInline @derivative(of: fmod) func _vjpFmod ( _ x: T, _ y: T ) -> (value: T, pullback: (T) -> (T, T)) where T == T.TangentVector { return (fmod(x, y), { v in (v, -v * ((x / y).rounded(.towardZero))) }) } %for derivative_kind in ['jvp', 'vjp']: % linear_map_kind = 'differential' if derivative_kind == 'jvp' else 'pullback' @usableFromInline @derivative(of: sqrt) func _${derivative_kind}Sqrt ( _ x: T ) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector { let value = sqrt(x) return (value, { v in v / (2 * value) }) } @usableFromInline @derivative(of: ceil) func _${derivative_kind}Ceil ( _ x: T ) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector { return (ceil(x), { v in 0 }) } @usableFromInline @derivative(of: floor) func _${derivative_kind}Floor ( _ x: T ) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector { return (floor(x), { v in 0 }) } @usableFromInline @derivative(of: round) func _${derivative_kind}Round ( _ x: T ) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector { return (round(x), { v in 0 }) } @usableFromInline @derivative(of: trunc) func _${derivative_kind}Trunc ( _ x: T ) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector { return (trunc(x), { v in 0 }) } %end # for derivative_kind in ['jvp', 'vjp']: %for derivative_kind in ['jvp', 'vjp']: % linear_map_kind = 'differential' if derivative_kind == 'jvp' else 'pullback' % for T in ['Float', 'Double', 'Float80']: % if T == 'Float80': #if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64)) % end @inlinable @derivative(of: exp) func _${derivative_kind}Exp(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { let value = exp(x) return (value, { v in value * v }) } @inlinable @derivative(of: exp2) func _${derivative_kind}Exp2(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { let value = exp2(x) return (value, { v in v * ${T}(M_LN2) * value }) } @inlinable @derivative(of: log) func _${derivative_kind}Log(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (log(x), { v in v / x }) } @inlinable @derivative(of: log10) func _${derivative_kind}Log10(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (log10(x), { v in v * ${T}(M_LOG10E) / x }) } @inlinable @derivative(of: log2) func _${derivative_kind}Log2(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (log2(x), { v in v / (${T}(M_LN2) * x) }) } @inlinable @derivative(of: sin) func _${derivative_kind}Sin(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (sin(x), { v in v * cos(x) }) } @inlinable @derivative(of: cos) func _${derivative_kind}Cos(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (cos(x), { v in -v * sin(x) }) } @inlinable @derivative(of: tan) func _${derivative_kind}Tan(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { let value = tan(x) return (value, { v in v * (1 + value * value) }) } @inlinable @derivative(of: asin) func _${derivative_kind}Asin(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (asin(x), { v in v / sqrt(1 - x * x) }) } @inlinable @derivative(of: acos) func _${derivative_kind}Acos(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (acos(x), { v in -v / sqrt(1 - x * x) }) } @inlinable @derivative(of: atan) func _${derivative_kind}Atan(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (atan(x), { v in v / (1 + x * x) }) } @inlinable @derivative(of: sinh) func _${derivative_kind}Sinh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (sinh(x), { v in v * cosh(x) }) } @inlinable @derivative(of: cosh) func _${derivative_kind}Cosh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (cosh(x), { v in v * sinh(x) }) } @inlinable @derivative(of: tanh) func _${derivative_kind}Tanh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { let value = tanh(x) return (value, { v in v * (1 - value * value) }) } @inlinable @derivative(of: asinh) func _${derivative_kind}Asinh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (asinh(x), { v in v / sqrt(1 + x * x) }) } @inlinable @derivative(of: acosh) func _${derivative_kind}Acosh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (acosh(x), { v in v / sqrt(x * x - 1) }) } @inlinable @derivative(of: atanh) func _${derivative_kind}Atanh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (atanh(x), { v in v / (1 - x * x) }) } @inlinable @derivative(of: expm1) func _${derivative_kind}Expm1(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (expm1(x), { v in exp(x) * v }) } @inlinable @derivative(of: log1p) func _${derivative_kind}Log1p(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (log1p(x), { v in v / (x + 1) }) } @inlinable @derivative(of: erf) func _${derivative_kind}Erf(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (erf(x), { v in v * ${T}(M_2_SQRTPI) * exp(-x * x) }) } @inlinable @derivative(of: erfc) func _${derivative_kind}Erfc(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) { return (erfc(x), { v in v * -${T}(M_2_SQRTPI) * exp(-x * x) }) } % if T == 'Float80': #endif % end # if T == 'Float80': % end # for T in ['Float', 'Double', 'Float80']: %end # for derivative_kind in ['jvp', 'vjp']: