//===--- ScanDependencies.cpp -- Scans the dependencies of a module -------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "ScanDependencies.h" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/DiagnosticEngine.h" #include "swift/AST/DiagnosticsFrontend.h" #include "swift/AST/Module.h" #include "swift/AST/ModuleDependencies.h" #include "swift/AST/ModuleLoader.h" #include "swift/AST/SourceFile.h" #include "swift/ClangImporter/ClangImporter.h" #include "swift/Basic/Defer.h" #include "swift/Basic/LLVM.h" #include "swift/Basic/STLExtras.h" #include "swift/Frontend/Frontend.h" #include "swift/Frontend/FrontendOptions.h" #include "swift/Frontend/ModuleInterfaceLoader.h" #include "swift/Strings.h" #include "clang/Basic/Module.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/YAMLParser.h" #include using namespace swift; using namespace llvm::yaml; namespace { struct BatchScanInput { StringRef moduleName; StringRef arguments; StringRef outputPath; bool isSwift; }; static std::string getScalaNodeText(Node *N) { SmallString<32> Buffer; return cast(N)->getValue(Buffer).str(); } /// Parse an entry like this, where the "platforms" key-value pair is optional: /// { /// "swiftModuleName": "Foo", /// "arguments": "-target 10.15", /// "output": "../Foo.json" /// }, static bool parseBatchInputEntries(ASTContext &Ctx, llvm::StringSaver &saver, Node *Node, std::vector &result) { auto *SN = cast(Node); if (!SN) return true; for (auto It = SN->begin(); It != SN->end(); ++It) { auto *MN = cast(&*It); BatchScanInput entry; Optional> Platforms; for (auto &Pair: *MN) { auto Key = getScalaNodeText(Pair.getKey()); auto* Value = Pair.getValue(); if (Key == "clangModuleName") { entry.moduleName = saver.save(getScalaNodeText(Value)); entry.isSwift = false; } else if (Key == "swiftModuleName") { entry.moduleName = saver.save(getScalaNodeText(Value)); entry.isSwift = true; } else if (Key == "arguments") { entry.arguments = saver.save(getScalaNodeText(Value)); } else if (Key == "output") { entry.outputPath = saver.save(getScalaNodeText(Value)); } else { // Future proof. continue; } } if (entry.moduleName.empty()) return true; if (entry.outputPath.empty()) return true; result.emplace_back(std::move(entry)); } return false; } static Optional> parseBatchScanInputFile(ASTContext &ctx, StringRef batchInputPath, llvm::StringSaver &saver) { assert(!batchInputPath.empty()); namespace yaml = llvm::yaml; std::vector result; // Load the input file. llvm::ErrorOr> FileBufOrErr = llvm::MemoryBuffer::getFile(batchInputPath); if (!FileBufOrErr) { ctx.Diags.diagnose(SourceLoc(), diag::batch_scan_input_file_missing, batchInputPath); return None; } StringRef Buffer = FileBufOrErr->get()->getBuffer(); // Use a new source manager instead of the one from ASTContext because we // don't want the Json file to be persistent. SourceManager SM; yaml::Stream Stream(llvm::MemoryBufferRef(Buffer, batchInputPath), SM.getLLVMSourceMgr()); for (auto DI = Stream.begin(); DI != Stream.end(); ++ DI) { assert(DI != Stream.end() && "Failed to read a document"); yaml::Node *N = DI->getRoot(); assert(N && "Failed to find a root"); if (parseBatchInputEntries(ctx, saver, N, result)) { ctx.Diags.diagnose(SourceLoc(), diag::batch_scan_input_file_corrupted, batchInputPath); return None; } } return result; } } /// Find all of the imported Clang modules starting with the given module name. static void findAllImportedClangModules(ASTContext &ctx, StringRef moduleName, ModuleDependenciesCache &cache, std::vector &allModules, llvm::StringSet<> &knownModules) { if (!knownModules.insert(moduleName).second) return; allModules.push_back(moduleName.str()); auto dependencies = cache.findDependencies( moduleName, ModuleDependenciesKind::Clang); if (!dependencies) return; for (const auto &dep : dependencies->getModuleDependencies()) { findAllImportedClangModules(ctx, dep, cache, allModules, knownModules); } } /// Resolve the direct dependencies of the given module. static std::vector resolveDirectDependencies( CompilerInstance &instance, ModuleDependencyID module, ModuleDependenciesCache &cache, InterfaceSubContextDelegate &ASTDelegate) { auto &ctx = instance.getASTContext(); auto knownDependencies = *cache.findDependencies(module.first, module.second); auto isSwift = knownDependencies.isSwiftTextualModule(); // Find the dependencies of every module this module directly depends on. std::set result; for (auto dependsOn : knownDependencies.getModuleDependencies()) { // Figure out what kind of module we need. bool onlyClangModule = !isSwift || module.first == dependsOn; // Retrieve the dependencies for this module. if (auto found = ctx.getModuleDependencies( dependsOn, onlyClangModule, cache, ASTDelegate)) { result.insert({dependsOn, found->getKind()}); } } if (isSwift) { // A record of all of the Clang modules referenced from this Swift module. std::vector allClangModules; llvm::StringSet<> knownModules; // If the Swift module has a bridging header, add those dependencies. if (knownDependencies.getBridgingHeader()) { auto clangImporter = static_cast(ctx.getClangModuleLoader()); if (!clangImporter->addBridgingHeaderDependencies(module.first, cache)) { // Grab the updated module dependencies. // FIXME: This is such a hack. knownDependencies = *cache.findDependencies(module.first, module.second); // Add the Clang modules referenced from the bridging header to the // set of Clang modules we know about. auto swiftDeps = knownDependencies.getAsSwiftTextualModule(); for (const auto &clangDep : swiftDeps->bridgingModuleDependencies) { findAllImportedClangModules(ctx, clangDep, cache, allClangModules, knownModules); } } } // Find all of the Clang modules this Swift module depends on. for (const auto &dep : result) { if (dep.second != ModuleDependenciesKind::Clang) continue; findAllImportedClangModules(ctx, dep.first, cache, allClangModules, knownModules); } // Look for overlays for each of the Clang modules. The Swift module // directly depends on these. for (const auto &clangDep : allClangModules) { if (auto found = ctx.getModuleDependencies( clangDep, /*onlyClangModule=*/false, cache, ASTDelegate)) { // ASTContext::getModuleDependencies returns dependencies for a module with a given name. // This Clang module may have the same name as the Swift module we are resolving, so we // need to make sure we don't add a dependency from a Swift module to itself. if ((found->getKind() == ModuleDependenciesKind::SwiftTextual || found->getKind() == ModuleDependenciesKind::SwiftBinary || found->getKind() == ModuleDependenciesKind::SwiftPlaceholder) && clangDep != module.first) { result.insert({clangDep, found->getKind()}); } } } } return std::vector(result.begin(), result.end()); } static void discoverCrosssImportOverlayDependencies( CompilerInstance &instance, StringRef mainModuleName, ArrayRef allDependencies, ModuleDependenciesCache &cache, InterfaceSubContextDelegate &ASTDelegate, llvm::function_ref action) { // Modules explicitly imported. Only these can be secondary module. llvm::SetVector newOverlays; for (auto dep: allDependencies) { auto moduleName = dep.first; auto dependencies = *cache.findDependencies(moduleName, dep.second); // Collect a map from secondary module name to cross-import overlay names. auto overlayMap = dependencies.collectCrossImportOverlayNames( instance.getASTContext(), moduleName); if (overlayMap.empty()) continue; std::for_each(allDependencies.begin(), allDependencies.end(), [&](ModuleDependencyID Id) { // check if any explicitly imported modules can serve as a secondary // module, and add the overlay names to the dependencies list. for (auto overlayName: overlayMap[Id.first]) { if (std::find_if(allDependencies.begin(), allDependencies.end(), [&](ModuleDependencyID Id) { return Id.first == overlayName.str(); }) == allDependencies.end()) { newOverlays.insert(overlayName); } } }); } // No new cross-import overlays are found, return. if (newOverlays.empty()) return; // Construct a dummy main to resolve the newly discovered cross import overlays. StringRef dummyMainName = "DummyMainModuleForResolvingCrossImportOverlays"; auto dummyMainDependencies = ModuleDependencies::forMainSwiftModule({}); // Update main module's dependencies to include these new overlays. auto mainDep = *cache.findDependencies(mainModuleName, ModuleDependenciesKind::SwiftTextual); std::for_each(newOverlays.begin(), newOverlays.end(), [&](Identifier modName) { dummyMainDependencies.addModuleDependency(modName.str()); mainDep.addModuleDependency(modName.str()); }); cache.updateDependencies({mainModuleName.str(), ModuleDependenciesKind::SwiftTextual}, mainDep); // Record the dummy main module's direct dependencies. The dummy main module // only directly depend on these newly discovered overlay modules. cache.recordDependencies(dummyMainName, dummyMainDependencies); llvm::SetVector, std::set> allModules; // Seed the all module list from the dummpy main module. allModules.insert({dummyMainName.str(), dummyMainDependencies.getKind()}); // Explore the dependencies of every module. for (unsigned currentModuleIdx = 0; currentModuleIdx < allModules.size(); ++currentModuleIdx) { auto module = allModules[currentModuleIdx]; auto discoveredModules = resolveDirectDependencies(instance, module, cache, ASTDelegate); allModules.insert(discoveredModules.begin(), discoveredModules.end()); } // Report any discovered modules to the clients, which include all overlays // and their dependencies. std::for_each(/* +1 to exclude dummy main*/allModules.begin() + 1, allModules.end(), action); } /// Write a single JSON field. namespace { template void writeJSONSingleField(llvm::raw_ostream &out, StringRef fieldName, const T &value, unsigned indentLevel, bool trailingComma); /// Write a string value as JSON. void writeJSONValue(llvm::raw_ostream &out, StringRef value, unsigned indentLevel) { out << "\""; out << value; out << "\""; } /// Write a boolean value as JSON. void writeJSONValue(llvm::raw_ostream &out, bool value, unsigned indentLevel) { out.write_escaped(value ? "true" : "false"); } /// Write a module identifier. void writeJSONValue(llvm::raw_ostream &out, const ModuleDependencyID &module, unsigned indentLevel) { out << "{\n"; std::string moduleKind; if (module.second == ModuleDependenciesKind::SwiftTextual) moduleKind = "swift"; else if (module.second == ModuleDependenciesKind::SwiftBinary) // FIXME: rename to be consistent in the clients (swift-driver) moduleKind = "swiftPrebuiltExternal"; else if (module.second == ModuleDependenciesKind::SwiftPlaceholder) moduleKind = "swiftPlaceholder"; else moduleKind = "clang"; writeJSONSingleField( out, moduleKind, module.first, indentLevel + 1, /*trailingComma=*/false); out.indent(indentLevel * 2); out << "}"; } /// Write a JSON array. template void writeJSONValue(llvm::raw_ostream &out, ArrayRef values, unsigned indentLevel) { out << "[\n"; for (const auto &value: values) { out.indent((indentLevel + 1) * 2); writeJSONValue(out, value, indentLevel + 1); if (&value != &values.back()) { out << ","; } out << "\n"; } out.indent(indentLevel * 2); out << "]"; } /// Write a JSON array. template void writeJSONValue(llvm::raw_ostream &out, const std::vector &values, unsigned indentLevel) { writeJSONValue(out, llvm::makeArrayRef(values), indentLevel); } /// Write a single JSON field. template void writeJSONSingleField(llvm::raw_ostream &out, StringRef fieldName, const T &value, unsigned indentLevel, bool trailingComma) { out.indent(indentLevel * 2); writeJSONValue(out, fieldName, indentLevel); out << ": "; writeJSONValue(out, value, indentLevel); if (trailingComma) out << ","; out << "\n"; } } static void writePrescanJSON(llvm::raw_ostream &out, const ModuleDependencies &mainModuleDependencies) { // Write out a JSON containing all main module imports. out << "{\n"; SWIFT_DEFER { out << "}\n"; }; writeJSONSingleField(out, "imports", mainModuleDependencies.getModuleDependencies(), 0, false); } static void writeJSON(llvm::raw_ostream &out, CompilerInstance &instance, ModuleDependenciesCache &cache, InterfaceSubContextDelegate &ASTDelegate, ArrayRef allModules) { // Write out a JSON description of all of the dependencies. out << "{\n"; SWIFT_DEFER { out << "}\n"; }; // Name of the main module. writeJSONSingleField(out, "mainModuleName", allModules.front().first, /*indentLevel=*/1, /*trailingComma=*/true); // Write out all of the modules. out << " \"modules\": [\n"; SWIFT_DEFER { out << " ]\n"; }; for (const auto &module : allModules) { auto directDependencies = resolveDirectDependencies( instance, ModuleDependencyID(module.first, module.second), cache, ASTDelegate); // Grab the completed module dependencies. auto moduleDeps = *cache.findDependencies(module.first, module.second); // The module we are describing. out.indent(2 * 2); writeJSONValue(out, module, 2); out << ",\n"; out.indent(2 * 2); out << "{\n"; auto swiftPlaceholderDeps = moduleDeps.getAsPlaceholderDependencyModule(); auto swiftTextualDeps = moduleDeps.getAsSwiftTextualModule(); auto swiftBinaryDeps = moduleDeps.getAsSwiftBinaryModule(); auto clangDeps = moduleDeps.getAsClangModule(); // Module path. const char *modulePathSuffix = moduleDeps.isSwiftModule() ? ".swiftmodule" : ".pcm"; std::string modulePath; if (swiftPlaceholderDeps) modulePath = swiftPlaceholderDeps->compiledModulePath; else if (swiftBinaryDeps) modulePath = swiftBinaryDeps->compiledModulePath; else modulePath = module.first + modulePathSuffix; writeJSONSingleField(out, "modulePath", modulePath, /*indentLevel=*/3, /*trailingComma=*/true); // Source files. if (swiftTextualDeps) { writeJSONSingleField(out, "sourceFiles", swiftTextualDeps->sourceFiles, 3, /*trailingComma=*/true); } else if (clangDeps) { writeJSONSingleField(out, "sourceFiles", clangDeps->fileDependencies, 3, /*trailingComma=*/true); } // Direct dependencies. if (swiftTextualDeps || swiftBinaryDeps || clangDeps) writeJSONSingleField(out, "directDependencies", directDependencies, 3, /*trailingComma=*/true); // Swift and Clang-specific details. out.indent(3 * 2); out << "\"details\": {\n"; out.indent(4 * 2); if (swiftTextualDeps) { out << "\"swift\": {\n"; /// Swift interface file, if there is one. The main module, for example, will not have /// an interface file. if (swiftTextualDeps->swiftInterfaceFile) { writeJSONSingleField(out, "moduleInterfacePath", *swiftTextualDeps->swiftInterfaceFile, 5, /*trailingComma=*/true); writeJSONSingleField(out, "contextHash", swiftTextualDeps->contextHash, 5, /*trailingComma=*/true); out.indent(5 * 2); out << "\"commandLine\": [\n"; for (auto &arg :swiftTextualDeps->buildCommandLine) { out.indent(6 * 2); out << "\"" << arg << "\""; if (&arg != &swiftTextualDeps->buildCommandLine.back()) out << ","; out << "\n"; } out.indent(5 * 2); out << "],\n"; out.indent(5 * 2); out << "\"compiledModuleCandidates\": [\n"; for (auto &candidate: swiftTextualDeps->compiledModuleCandidates) { out.indent(6 * 2); out << "\"" << candidate << "\""; if (&candidate != &swiftTextualDeps->compiledModuleCandidates.back()) out << ","; out << "\n"; } out.indent(5 * 2); out << "],\n"; } writeJSONSingleField( out, "isFramework", swiftTextualDeps->isFramework, 5, /*trailingComma=*/!swiftTextualDeps->extraPCMArgs.empty() || swiftTextualDeps->bridgingHeaderFile.hasValue()); if (!swiftTextualDeps->extraPCMArgs.empty()) { out.indent(5 * 2); out << "\"extraPcmArgs\": [\n"; for (auto &arg : swiftTextualDeps->extraPCMArgs) { out.indent(6 * 2); out << "\"" << arg << "\""; if (&arg != &swiftTextualDeps->extraPCMArgs.back()) out << ","; out << "\n"; } out.indent(5 * 2); out << (swiftTextualDeps->bridgingHeaderFile.hasValue() ? "],\n" : "]\n"); } /// Bridging header and its source file dependencies, if any. if (swiftTextualDeps->bridgingHeaderFile) { out.indent(5 * 2); out << "\"bridgingHeader\": {\n"; writeJSONSingleField(out, "path", *swiftTextualDeps->bridgingHeaderFile, 6, /*trailingComma=*/true); writeJSONSingleField(out, "sourceFiles", swiftTextualDeps->bridgingSourceFiles, 6, /*trailingComma=*/true); writeJSONSingleField(out, "moduleDependencies", swiftTextualDeps->bridgingModuleDependencies, 6, /*trailingComma=*/false); out.indent(5 * 2); out << "}\n"; } } else if (swiftPlaceholderDeps) { out << "\"swiftPlaceholder\": {\n"; // Module doc file if (swiftPlaceholderDeps->moduleDocPath != "") writeJSONSingleField(out, "moduleDocPath", swiftPlaceholderDeps->moduleDocPath, /*indentLevel=*/5, /*trailingComma=*/true); // Module Source Info file if (swiftPlaceholderDeps->moduleDocPath != "") writeJSONSingleField(out, "moduleSourceInfoPath", swiftPlaceholderDeps->sourceInfoPath, /*indentLevel=*/5, /*trailingComma=*/false); } else if (swiftBinaryDeps) { out << "\"swiftPrebuiltExternal\": {\n"; assert(swiftBinaryDeps->compiledModulePath != "" && "Expected .swiftmodule for a Binary Swift Module Dependency."); writeJSONSingleField(out, "compiledModulePath", swiftBinaryDeps->compiledModulePath, /*indentLevel=*/5, /*trailingComma=*/true); // Module doc file if (swiftBinaryDeps->moduleDocPath != "") writeJSONSingleField(out, "moduleDocPath", swiftBinaryDeps->moduleDocPath, /*indentLevel=*/5, /*trailingComma=*/true); // Module Source Info file if (swiftBinaryDeps->moduleDocPath != "") writeJSONSingleField(out, "moduleSourceInfoPath", swiftBinaryDeps->sourceInfoPath, /*indentLevel=*/5, /*trailingComma=*/false); } else { out << "\"clang\": {\n"; // Module map file. writeJSONSingleField(out, "moduleMapPath", clangDeps->moduleMapFile, 5, /*trailingComma=*/true); // Context hash. writeJSONSingleField(out, "contextHash", clangDeps->contextHash, 5, /*trailingComma=*/true); // Command line. writeJSONSingleField(out, "commandLine", clangDeps->nonPathCommandLine, 5, /*trailingComma=*/false); } out.indent(4 * 2); out << "}\n"; out.indent(3 * 2); out << "}\n"; out.indent(2 * 2); out << "}"; if (&module != &allModules.back()) out << ","; out << "\n"; } } static bool diagnoseCycle(CompilerInstance &instance, ModuleDependenciesCache &cache, ModuleDependencyID mainId, InterfaceSubContextDelegate &astDelegate) { llvm::SetVector, std::set> openSet; llvm::SetVector, std::set> closeSet; // Start from the main module. openSet.insert(mainId); while(!openSet.empty()) { auto &lastOpen = openSet.back(); auto beforeSize = openSet.size(); for (auto dep: resolveDirectDependencies(instance, lastOpen, cache, astDelegate)) { if (closeSet.count(dep)) continue; if (openSet.insert(dep)) { break; } else { // Find a cycle, diagnose. auto startIt = std::find(openSet.begin(), openSet.end(), dep); assert(startIt != openSet.end()); llvm::SmallString<64> buffer; for (auto it = startIt; it != openSet.end(); ++ it) { buffer.append(it->first); buffer.append((it->second == ModuleDependenciesKind::SwiftTextual || it->second == ModuleDependenciesKind::SwiftBinary)? ".swiftmodule": ".pcm"); buffer.append(" -> "); } buffer.append(startIt->first); buffer.append((startIt->second == ModuleDependenciesKind::SwiftTextual || startIt->second == ModuleDependenciesKind::SwiftBinary)? ".swiftmodule": ".pcm"); instance.getASTContext().Diags.diagnose(SourceLoc(), diag::scanner_find_cycle, buffer.str()); return true; } } // No new node added. We can close this node if (openSet.size() == beforeSize) { closeSet.insert(openSet.back()); openSet.pop_back(); } else { assert(openSet.size() == beforeSize + 1); } } assert(openSet.empty()); return false; } static bool scanModuleDependencies(CompilerInstance &instance, StringRef moduleName, bool isClang, StringRef outputPath) { ASTContext &ctx = instance.getASTContext(); auto &FEOpts = instance.getInvocation().getFrontendOptions(); ModuleInterfaceLoaderOptions LoaderOpts(FEOpts); auto ModuleCachePath = getModuleCachePathFromClang(ctx .getClangModuleLoader()->getClangInstance()); llvm::SetVector, std::set> allModules; // Retrieve the instance's module dependency cache. ModuleDependenciesCache *cache = instance.getModuleDependencyCache(); assert(cache && "Dependency Scanner expected a ModuleDependenciesCache on a compiler instance."); InterfaceSubContextDelegateImpl ASTDelegate(ctx.SourceMgr, ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts, ctx.ClangImporterOpts, LoaderOpts, /*buildModuleCacheDirIfAbsent*/false, ModuleCachePath, FEOpts.PrebuiltModuleCachePath, FEOpts.SerializeModuleInterfaceDependencyHashes, FEOpts.shouldTrackSystemDependencies()); std::error_code EC; llvm::raw_fd_ostream out(outputPath, EC, llvm::sys::fs::F_None); Optional rootDeps; if (isClang) { // Loading the clang module using Clang importer. // This action will populate the cache with the main module's dependencies. rootDeps = ctx.getModuleDependencies(moduleName, /*IsClang*/true, *cache, ASTDelegate); } else { // Loading the swift module's dependencies. rootDeps = ctx.getSwiftModuleDependencies(moduleName, *cache, ASTDelegate); } if (!rootDeps.hasValue()) { // We cannot find the clang module, abort. return true; } // Add the main module. allModules.insert({moduleName.str(), isClang ? ModuleDependenciesKind::Clang: ModuleDependenciesKind::SwiftTextual}); // Output module prescan. if (FEOpts.ImportPrescan) { writePrescanJSON(out, rootDeps.getValue()); return false; } // Explore the dependencies of every module. for (unsigned currentModuleIdx = 0; currentModuleIdx < allModules.size(); ++currentModuleIdx) { auto module = allModules[currentModuleIdx]; auto discoveredModules = resolveDirectDependencies(instance, module, *cache, ASTDelegate); allModules.insert(discoveredModules.begin(), discoveredModules.end()); } // Write out the JSON description. writeJSON(out, instance, *cache, ASTDelegate, allModules.getArrayRef()); return false; } bool swift::scanClangDependencies(CompilerInstance &instance) { return scanModuleDependencies(instance, instance.getMainModule()->getNameStr(), /*isClang*/true, instance.getInvocation().getFrontendOptions() .InputsAndOutputs.getSingleOutputFilename()); } bool swift::batchScanModuleDependencies(CompilerInstance &instance, llvm::StringRef batchInputFile) { const CompilerInvocation &invok = instance.getInvocation(); (void)instance.getMainModule(); llvm::BumpPtrAllocator alloc; llvm::StringSaver saver(alloc); auto results = parseBatchScanInputFile(instance.getASTContext(), batchInputFile, saver); if (!results.hasValue()) return true; auto &diags = instance.getDiags(); ForwardingDiagnosticConsumer FDC(diags); // Keep track of all compiler instances we have created. llvm::StringMap> subInstanceMap; for (auto &entry: *results) { CompilerInstance *pInstance = nullptr; if (entry.arguments.empty()) { // Use the compiler's instance if no arguments are specified. pInstance = &instance; } else if (subInstanceMap.count(entry.arguments)) { // Use the previously created instance if we've seen the arguments before. pInstance = subInstanceMap[entry.arguments].get(); } else { // Create a new instance by the arguments and save it in the map. pInstance = subInstanceMap.insert({entry.arguments, std::make_unique()}).first->getValue().get(); SmallVector args; llvm::cl::TokenizeGNUCommandLine(entry.arguments, saver, args); CompilerInvocation subInvok = invok; pInstance->addDiagnosticConsumer(&FDC); if (subInvok.parseArgs(args, diags)) { instance.getDiags().diagnose(SourceLoc(), diag::scanner_arguments_invalid, entry.arguments); return true; } if (pInstance->setup(subInvok)) { instance.getDiags().diagnose(SourceLoc(), diag::scanner_arguments_invalid, entry.arguments); return true; } } assert(pInstance); // Scan using the chosen compiler instance. if (scanModuleDependencies(*pInstance, entry.moduleName, !entry.isSwift, entry.outputPath)) { return true; } } return false; } bool swift::scanDependencies(CompilerInstance &instance) { ASTContext &Context = instance.getASTContext(); ModuleDecl *mainModule = instance.getMainModule(); const CompilerInvocation &invocation = instance.getInvocation(); const FrontendOptions &opts = invocation.getFrontendOptions(); std::string path = opts.InputsAndOutputs.getSingleOutputFilename(); std::error_code EC; llvm::raw_fd_ostream out(path, EC, llvm::sys::fs::F_None); if (out.has_error() || EC) { Context.Diags.diagnose(SourceLoc(), diag::error_opening_output, path, EC.message()); out.clear_error(); return true; } // Main module file name. auto newExt = file_types::getExtension(file_types::TY_SwiftModuleFile); llvm::SmallString<32> mainModulePath = mainModule->getName().str(); llvm::sys::path::replace_extension(mainModulePath, newExt); std::string apinotesVer = (llvm::Twine("-fapinotes-swift-version=") + instance.getASTContext().LangOpts.EffectiveLanguageVersion .asAPINotesVersionString()).str(); // Compute the dependencies of the main module. auto mainDependencies = ModuleDependencies::forMainSwiftModule({ // ExtraPCMArgs "-Xcc", "-target", "-Xcc", instance.getASTContext().LangOpts.Target.str(), "-Xcc", apinotesVer }); // Compute Implicit dependencies of the main module { llvm::StringSet<> alreadyAddedModules; for (auto fileUnit : mainModule->getFiles()) { auto sf = dyn_cast(fileUnit); if (!sf) continue; mainDependencies.addModuleDependencies(*sf, alreadyAddedModules); } const auto &importInfo = mainModule->getImplicitImportInfo(); // Swift standard library. switch (importInfo.StdlibKind) { case ImplicitStdlibKind::None: case ImplicitStdlibKind::Builtin: break; case ImplicitStdlibKind::Stdlib: mainDependencies.addModuleDependency("Swift", &alreadyAddedModules); break; } // Add any implicit module names. for (const auto &import : importInfo.AdditionalUnloadedImports) { mainDependencies.addModuleDependency(import.module.getModulePath(), &alreadyAddedModules); } // Already-loaded, implicitly imported module names. for (const auto &import : importInfo.AdditionalImports) { mainDependencies.addModuleDependency(import.module.importedModule->getNameStr(), &alreadyAddedModules); } // Add the bridging header. if (!importInfo.BridgingHeaderPath.empty()) { mainDependencies.addBridgingHeader(importInfo.BridgingHeaderPath); } // If we are to import the underlying Clang module of the same name, // add a dependency with the same name to trigger the search. if (importInfo.ShouldImportUnderlyingModule) { mainDependencies.addModuleDependency(mainModule->getName().str(), &alreadyAddedModules); } } // If import-prescan is specified, discover and serialize main module dependencies only and exit. if (opts.ImportPrescan) { writePrescanJSON(out, mainDependencies); // This process succeeds regardless of whether any errors occurred. // FIXME: We shouldn't need this, but it's masking bugs in our scanning // logic where we don't create a fresh context when scanning Swift interfaces // that includes their own command-line flags. Context.Diags.resetHadAnyError(); return false; } // Add the main module. StringRef mainModuleName = mainModule->getNameStr(); llvm::SetVector, std::set> allModules; allModules.insert({mainModuleName.str(), mainDependencies.getKind()}); // Retrieve the instance's module dependency cache. ModuleDependenciesCache *cache = instance.getModuleDependencyCache(); assert(cache && "Dependency Scanner expected a ModuleDependenciesCache on a compiler instance."); cache->recordDependencies(mainModuleName, std::move(mainDependencies)); auto &ctx = instance.getASTContext(); auto ModuleCachePath = getModuleCachePathFromClang(ctx .getClangModuleLoader()->getClangInstance()); auto &FEOpts = instance.getInvocation().getFrontendOptions(); ModuleInterfaceLoaderOptions LoaderOpts(FEOpts); InterfaceSubContextDelegateImpl ASTDelegate(ctx.SourceMgr, ctx.Diags, ctx.SearchPathOpts, ctx.LangOpts, ctx.ClangImporterOpts, LoaderOpts, /*buildModuleCacheDirIfAbsent*/false, ModuleCachePath, FEOpts.PrebuiltModuleCachePath, FEOpts.SerializeModuleInterfaceDependencyHashes, FEOpts.shouldTrackSystemDependencies()); // Explore the dependencies of every module. for (unsigned currentModuleIdx = 0; currentModuleIdx < allModules.size(); ++currentModuleIdx) { auto module = allModules[currentModuleIdx]; auto discoveredModules = resolveDirectDependencies(instance, module, *cache, ASTDelegate); allModules.insert(discoveredModules.begin(), discoveredModules.end()); } // We have all explicit imports now, resolve cross import overlays. discoverCrosssImportOverlayDependencies(instance, mainModuleName, /*All transitive dependencies*/allModules.getArrayRef().slice(1), *cache, ASTDelegate, [&](ModuleDependencyID id) { allModules.insert(id); }); // Dignose cycle in dependency graph. if (diagnoseCycle(instance, *cache, /*MainModule*/allModules.front(), ASTDelegate)) return true; // Write out the JSON description. writeJSON(out, instance, *cache, ASTDelegate, allModules.getArrayRef()); // Update the dependency tracker. if (auto depTracker = instance.getDependencyTracker()) { for (auto module : allModules) { auto deps = cache->findDependencies(module.first, module.second); if (!deps) continue; if (auto swiftDeps = deps->getAsSwiftTextualModule()) { if (auto swiftInterfaceFile = swiftDeps->swiftInterfaceFile) depTracker->addDependency(*swiftInterfaceFile, /*IsSystem=*/false); for (const auto &sourceFile : swiftDeps->sourceFiles) depTracker->addDependency(sourceFile, /*IsSystem=*/false); for (const auto &bridgingSourceFile : swiftDeps->bridgingSourceFiles) depTracker->addDependency(bridgingSourceFile, /*IsSystem=*/false); } else if (auto clangDeps = deps->getAsClangModule()) { if (!clangDeps->moduleMapFile.empty()) depTracker->addDependency(clangDeps->moduleMapFile, /*IsSystem=*/false); for (const auto &sourceFile : clangDeps->fileDependencies) depTracker->addDependency(sourceFile, /*IsSystem=*/false); } } } // This process succeeds regardless of whether any errors occurred. // FIXME: We shouldn't need this, but it's masking bugs in our scanning // logic where we don't create a fresh context when scanning Swift interfaces // that includes their own command-line flags. Context.Diags.resetHadAnyError(); return false; }