//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Implementations of runtime functions for looking up a type by name. // //===----------------------------------------------------------------------===// #include "swift/Basic/Lazy.h" #include "swift/Demangling/Demangler.h" #include "swift/Demangling/TypeDecoder.h" #include "swift/Reflection/Records.h" #include "swift/ABI/TypeIdentity.h" #include "swift/Runtime/Casting.h" #include "swift/Runtime/Concurrent.h" #include "swift/Runtime/Debug.h" #include "swift/Runtime/HeapObject.h" #include "swift/Runtime/Metadata.h" #include "swift/Runtime/Mutex.h" #include "swift/Strings.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringExtras.h" #include "Private.h" #include "../CompatibilityOverride/CompatibilityOverride.h" #include "ImageInspection.h" #include #include #include using namespace swift; using namespace Demangle; using namespace reflection; #if SWIFT_OBJC_INTEROP #include #include #include #include #endif /// A Demangler suitable for resolving runtime type metadata strings. template class DemanglerForRuntimeTypeResolution : public Base { public: using Base::demangleSymbol; using Base::demangleType; // Force callers to explicitly pass `nullptr` to demangleSymbol or // demangleType if they don't want to demangle symbolic references. NodePointer demangleSymbol(StringRef symbolName) = delete; NodePointer demangleType(StringRef typeName) = delete; NodePointer demangleTypeRef(StringRef symbolName) { // Resolve symbolic references to type contexts into the absolute address of // the type context descriptor, so that if we see a symbolic reference in // the mangled name we can immediately find the associated metadata. return Base::demangleType(symbolName, ResolveAsSymbolicReference(*this)); } }; /// Resolve the relative reference in a mangled symbolic reference. static uintptr_t resolveSymbolicReferenceOffset(SymbolicReferenceKind kind, Directness isIndirect, int32_t offset, const void *base) { auto ptr = detail::applyRelativeOffset(base, offset); // Indirect references may be authenticated in a way appropriate for the // referent. if (isIndirect == Directness::Indirect) { switch (kind) { case SymbolicReferenceKind::Context: { ContextDescriptor *contextPtr = *(const TargetSignedContextPointer *)ptr; return (uintptr_t)contextPtr; } case SymbolicReferenceKind::AccessorFunctionReference: { swift_unreachable("should not be indirectly referenced"); } } swift_unreachable("unknown symbolic reference kind"); } else { return ptr; } } NodePointer ResolveAsSymbolicReference::operator()(SymbolicReferenceKind kind, Directness isIndirect, int32_t offset, const void *base) { // Resolve the absolute pointer to the entity being referenced. auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base); // Figure out this symbolic reference's grammatical role. Node::Kind nodeKind; bool isType; switch (kind) { case Demangle::SymbolicReferenceKind::Context: { auto descriptor = (const ContextDescriptor *)ptr; switch (descriptor->getKind()) { case ContextDescriptorKind::Protocol: nodeKind = Node::Kind::ProtocolSymbolicReference; isType = false; break; case ContextDescriptorKind::OpaqueType: nodeKind = Node::Kind::OpaqueTypeDescriptorSymbolicReference; isType = false; break; default: if (auto typeContext = dyn_cast(descriptor)) { nodeKind = Node::Kind::TypeSymbolicReference; isType = true; break; } // References to other kinds of context aren't yet implemented. return nullptr; } break; } case Demangle::SymbolicReferenceKind::AccessorFunctionReference: { // Save the pointer to the accessor function. We can't demangle it any // further as AST, but the consumer of the demangle tree may be able to // invoke the function to resolve the thing they're trying to access. nodeKind = Node::Kind::AccessorFunctionReference; isType = false; #if SWIFT_PTRAUTH // The pointer refers to an accessor function, which we need to sign. ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr, ptrauth_key_function_pointer, 0); #endif break; } } auto node = Dem.createNode(nodeKind, ptr); if (isType) { auto typeNode = Dem.createNode(Node::Kind::Type); typeNode->addChild(node, Dem); node = typeNode; } return node; } static NodePointer _buildDemanglingForSymbolicReference(SymbolicReferenceKind kind, const void *resolvedReference, Demangler &Dem) { switch (kind) { case SymbolicReferenceKind::Context: return _buildDemanglingForContext( (const ContextDescriptor *)resolvedReference, {}, Dem); case SymbolicReferenceKind::AccessorFunctionReference: #if SWIFT_PTRAUTH // The pointer refers to an accessor function, which we need to sign. resolvedReference = ptrauth_sign_unauthenticated(resolvedReference, ptrauth_key_function_pointer, 0); #endif return Dem.createNode(Node::Kind::AccessorFunctionReference, (uintptr_t)resolvedReference); } swift_unreachable("invalid symbolic reference kind"); } NodePointer ResolveToDemanglingForContext::operator()(SymbolicReferenceKind kind, Directness isIndirect, int32_t offset, const void *base) { auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base); return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem); } NodePointer ExpandResolvedSymbolicReferences::operator()(SymbolicReferenceKind kind, const void *ptr) { return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem); } #pragma mark Nominal type descriptor cache // Type Metadata Cache. namespace { struct TypeMetadataSection { const TypeMetadataRecord *Begin, *End; const TypeMetadataRecord *begin() const { return Begin; } const TypeMetadataRecord *end() const { return End; } }; struct NominalTypeDescriptorCacheEntry { private: const char *Name; size_t NameLength; const ContextDescriptor *Description; public: NominalTypeDescriptorCacheEntry(const llvm::StringRef name, const ContextDescriptor *description) : Description(description) { char *nameCopy = reinterpret_cast(malloc(name.size())); memcpy(nameCopy, name.data(), name.size()); Name = nameCopy; NameLength = name.size(); } const ContextDescriptor *getDescription() const { return Description; } bool matchesKey(llvm::StringRef aName) { return aName == llvm::StringRef{Name, NameLength}; } friend llvm::hash_code hash_value(const NominalTypeDescriptorCacheEntry &value) { return hash_value(llvm::StringRef{value.Name, value.NameLength}); } template static size_t getExtraAllocationSize(T &&... ignored) { return 0; } }; } // end anonymous namespace struct TypeMetadataPrivateState { ConcurrentReadableHashMap NominalCache; ConcurrentReadableArray SectionsToScan; TypeMetadataPrivateState() { initializeTypeMetadataRecordLookup(); } }; static Lazy TypeMetadataRecords; static void _registerTypeMetadataRecords(TypeMetadataPrivateState &T, const TypeMetadataRecord *begin, const TypeMetadataRecord *end) { T.SectionsToScan.push_back(TypeMetadataSection{begin, end}); } void swift::addImageTypeMetadataRecordBlockCallbackUnsafe( const void *baseAddress, const void *records, uintptr_t recordsSize) { assert(recordsSize % sizeof(TypeMetadataRecord) == 0 && "weird-sized type metadata section?!"); // If we have a section, enqueue the type metadata for lookup. auto recordBytes = reinterpret_cast(records); auto recordsBegin = reinterpret_cast(records); auto recordsEnd = reinterpret_cast(recordBytes + recordsSize); // Type metadata cache should always be sufficiently initialized by this // point. Attempting to go through get() may also lead to an infinite loop, // since we register records during the initialization of // TypeMetadataRecords. _registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(), recordsBegin, recordsEnd); } void swift::addImageTypeMetadataRecordBlockCallback(const void *baseAddress, const void *records, uintptr_t recordsSize) { TypeMetadataRecords.get(); addImageTypeMetadataRecordBlockCallbackUnsafe(baseAddress, records, recordsSize); } void swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin, const TypeMetadataRecord *end) { auto &T = TypeMetadataRecords.get(); _registerTypeMetadataRecords(T, begin, end); } static const ContextDescriptor * _findContextDescriptor(Demangle::NodePointer node, Demangle::Demangler &Dem); /// Find the context descriptor for the type extended by the given extension. /// /// If \p maybeExtension isn't actually an extension context, returns nullptr. static const ContextDescriptor * _findExtendedTypeContextDescriptor(const ContextDescriptor *maybeExtension, Demangler &demangler, Demangle::NodePointer *demangledNode = nullptr) { auto extension = dyn_cast(maybeExtension); if (!extension) return nullptr; Demangle::NodePointer localNode; Demangle::NodePointer &node = demangledNode ? *demangledNode : localNode; auto mangledName = extension->getMangledExtendedContext(); node = demangler.demangleType(mangledName, ResolveAsSymbolicReference(demangler)); if (!node) return nullptr; if (node->getKind() == Node::Kind::Type) { if (node->getNumChildren() < 1) return nullptr; node = node->getChild(0); } if (Demangle::isSpecialized(node)) { auto unspec = Demangle::getUnspecialized(node, demangler); if (!unspec.isSuccess()) return nullptr; node = unspec.result(); } return _findContextDescriptor(node, demangler); } /// Recognize imported tag types, which have a special mangling rule. /// /// This should be kept in sync with the AST mangler and with /// buildContextDescriptorMangling in MetadataReader. bool swift::_isCImportedTagType(const TypeContextDescriptor *type, const ParsedTypeIdentity &identity) { // Tag types are always imported as structs or enums. if (type->getKind() != ContextDescriptorKind::Enum && type->getKind() != ContextDescriptorKind::Struct) return false; // Not a typedef imported as a nominal type. if (identity.isCTypedef()) return false; // Not a related entity. if (identity.isAnyRelatedEntity()) return false; // Imported from C. return type->Parent->isCImportedContext(); } ParsedTypeIdentity ParsedTypeIdentity::parse(const TypeContextDescriptor *type) { ParsedTypeIdentity result; // The first component is the user-facing name and (unless overridden) // the ABI name. StringRef component = type->Name.get(); result.UserFacingName = component; // If we don't have import info, we're done. if (!type->getTypeContextDescriptorFlags().hasImportInfo()) { result.FullIdentity = result.UserFacingName; return result; } // Otherwise, start parsing the import information. result.ImportInfo.emplace(); // The identity starts with the user-facing name. const char *startOfIdentity = component.begin(); const char *endOfIdentity = component.end(); #ifndef NDEBUG enum { AfterName, AfterABIName, AfterSymbolNamespace, AfterRelatedEntityName, AfterIdentity, } stage = AfterName; #endif while (true) { // Parse the next component. If it's empty, we're done. component = StringRef(component.end() + 1); if (component.empty()) break; // Update the identity bounds and assert that the identity // components are in the right order. auto kind = TypeImportComponent(component[0]); if (kind == TypeImportComponent::ABIName) { #ifndef NDEBUG assert(stage < AfterABIName); stage = AfterABIName; assert(result.UserFacingName != component.drop_front(1) && "user-facing name was same as the ABI name"); #endif startOfIdentity = component.begin() + 1; endOfIdentity = component.end(); } else if (kind == TypeImportComponent::SymbolNamespace) { #ifndef NDEBUG assert(stage < AfterSymbolNamespace); stage = AfterSymbolNamespace; #endif endOfIdentity = component.end(); } else if (kind == TypeImportComponent::RelatedEntityName) { #ifndef NDEBUG assert(stage < AfterRelatedEntityName); stage = AfterRelatedEntityName; #endif endOfIdentity = component.end(); } else { #ifndef NDEBUG // Anything else is assumed to not be part of the identity. stage = AfterIdentity; #endif } // Collect the component, whatever it is. result.ImportInfo->collect(component); } #ifndef NDEBUG assert(stage != AfterName && "no components?"); #endif // Record the full identity. result.FullIdentity = StringRef(startOfIdentity, endOfIdentity - startOfIdentity); return result; } #if SWIFT_OBJC_INTEROP /// Determine whether the two demangle trees both refer to the same /// Objective-C class or protocol referenced by name. static bool sameObjCTypeManglings(Demangle::NodePointer node1, Demangle::NodePointer node2) { // Entities need to be of the same kind. if (node1->getKind() != node2->getKind()) return false; auto name1 = Demangle::getObjCClassOrProtocolName(node1); if (!name1) return false; auto name2 = Demangle::getObjCClassOrProtocolName(node2); if (!name2) return false; return *name1 == *name2; } #endif bool swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context, Demangle::NodePointer node) { while (context) { if (node->getKind() == Demangle::Node::Kind::Type) node = node->getChild(0); // We can directly match symbolic references to the current context. if (node) { if (node->getKind() == Demangle::Node::Kind::TypeSymbolicReference || node->getKind() == Demangle::Node::Kind::ProtocolSymbolicReference){ if (equalContexts(context, reinterpret_cast(node->getIndex()))) { return true; } } } switch (context->getKind()) { case ContextDescriptorKind::Module: { auto module = cast(context); // Match to a mangled module name. if (node->getKind() != Demangle::Node::Kind::Module) return false; if (!node->getText().equals(module->Name.get())) return false; node = nullptr; break; } case ContextDescriptorKind::Extension: { auto extension = cast(context); // Check whether the extension context matches the mangled context. if (node->getKind() != Demangle::Node::Kind::Extension) return false; if (node->getNumChildren() < 2) return false; // Check that the context being extended matches as well. auto extendedContextNode = node->getChild(1); DemanglerForRuntimeTypeResolution<> demangler; auto extendedDescriptorFromNode = _findContextDescriptor(extendedContextNode, demangler); Demangle::NodePointer extendedContextDemangled; auto extendedDescriptorFromDemangled = _findExtendedTypeContextDescriptor(extension, demangler, &extendedContextDemangled); // Determine whether the contexts match. bool contextsMatch = extendedDescriptorFromNode && extendedDescriptorFromDemangled && equalContexts(extendedDescriptorFromNode, extendedDescriptorFromDemangled); #if SWIFT_OBJC_INTEROP // If we have manglings of the same Objective-C type, the contexts match. if (!contextsMatch && (!extendedDescriptorFromNode || !extendedDescriptorFromDemangled) && sameObjCTypeManglings(extendedContextNode, extendedContextDemangled)) { contextsMatch = true; } #endif if (!contextsMatch) return false; // Check whether the generic signature of the extension matches the // mangled constraints, if any. if (node->getNumChildren() >= 3) { // NB: If we ever support extensions with independent generic arguments // like `extension Array where Element == Optional`, we'd need // to look at the mangled context name to match up generic arguments. // That would probably need a new extension mangling form, though. // TODO } // The parent context of the extension should match in the mangling and // context descriptor. node = node->getChild(0); break; } case ContextDescriptorKind::Protocol: // Match a protocol context. if (node->getKind() == Demangle::Node::Kind::Protocol) { auto proto = llvm::cast(context); auto nameNode = node->getChild(1); if (nameNode->getKind() != Demangle::Node::Kind::Identifier) return false; if (nameNode->getText() == proto->Name.get()) { node = node->getChild(0); break; } } return false; default: if (auto type = llvm::dyn_cast(context)) { llvm::Optional _identity; auto getIdentity = [&]() -> const ParsedTypeIdentity & { if (_identity) return *_identity; _identity = ParsedTypeIdentity::parse(type); return *_identity; }; switch (node->getKind()) { // If the mangled name doesn't indicate a type kind, accept anything. // Otherwise, try to match them up. case Demangle::Node::Kind::OtherNominalType: break; case Demangle::Node::Kind::Structure: // We allow non-structs to match Kind::Structure if they are // imported C tag types. This is necessary because we artificially // make imported C tag types Kind::Structure. if (type->getKind() != ContextDescriptorKind::Struct && !_isCImportedTagType(type, getIdentity())) return false; break; case Demangle::Node::Kind::Class: if (type->getKind() != ContextDescriptorKind::Class) return false; break; case Demangle::Node::Kind::Enum: if (type->getKind() != ContextDescriptorKind::Enum) return false; break; case Demangle::Node::Kind::TypeAlias: if (!getIdentity().isCTypedef()) return false; break; default: return false; } auto nameNode = node->getChild(1); // Declarations synthesized by the Clang importer get a small tag // string in addition to their name. if (nameNode->getKind() == Demangle::Node::Kind::RelatedEntityDeclName){ if (!getIdentity().isRelatedEntity( nameNode->getFirstChild()->getText())) return false; nameNode = nameNode->getChild(1); } else if (getIdentity().isAnyRelatedEntity()) { return false; } // We should only match public or internal declarations with stable // names. The runtime metadata for private declarations would be // anonymized. if (nameNode->getKind() == Demangle::Node::Kind::Identifier) { if (nameNode->getText() != getIdentity().getABIName()) return false; node = node->getChild(0); break; } return false; } // We don't know about this kind of context, or it doesn't have a stable // name we can match to. return false; } context = context->Parent; } // We should have reached the top of the node tree at the same time we reached // the top of the context tree. if (node) return false; return true; } // returns the nominal type descriptor for the type named by typeName static const ContextDescriptor * _searchTypeMetadataRecords(TypeMetadataPrivateState &T, Demangle::NodePointer node) { for (auto §ion : T.SectionsToScan.snapshot()) { for (const auto &record : section) { if (auto context = record.getContextDescriptor()) { if (_contextDescriptorMatchesMangling(context, node)) { return context; } } } } return nullptr; } #define DESCRIPTOR_MANGLING_SUFFIX_Structure Mn #define DESCRIPTOR_MANGLING_SUFFIX_Enum Mn #define DESCRIPTOR_MANGLING_SUFFIX_Protocol Mp #define DESCRIPTOR_MANGLING_SUFFIX_(X) X #define DESCRIPTOR_MANGLING_SUFFIX(KIND) \ DESCRIPTOR_MANGLING_SUFFIX_(DESCRIPTOR_MANGLING_SUFFIX_ ## KIND) #define DESCRIPTOR_MANGLING_(CHAR, SUFFIX) \ $sS ## CHAR ## SUFFIX #define DESCRIPTOR_MANGLING(CHAR, SUFFIX) DESCRIPTOR_MANGLING_(CHAR, SUFFIX) #define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \ extern "C" const ContextDescriptor DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND)); // FIXME: When the _Concurrency library gets merged into the Standard Library, // we will be able to reference those symbols directly as well. #define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME) #if !SWIFT_OBJC_INTEROP # define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME) #endif #include "swift/Demangling/StandardTypesMangling.def" static const ContextDescriptor * _findContextDescriptor(Demangle::NodePointer node, Demangle::Demangler &Dem) { NodePointer symbolicNode = node; if (symbolicNode->getKind() == Node::Kind::Type) symbolicNode = symbolicNode->getChild(0); // If we have a symbolic reference to a context, resolve it immediately. if (symbolicNode->getKind() == Node::Kind::TypeSymbolicReference) { return cast( (const ContextDescriptor *)symbolicNode->getIndex()); } #if SWIFT_STDLIB_SHORT_MANGLING_LOOKUPS // Fast-path lookup for standard library type references with short manglings. if (symbolicNode->getNumChildren() >= 2 && symbolicNode->getChild(0)->getKind() == Node::Kind::Module && symbolicNode->getChild(0)->getText().equals("Swift") && symbolicNode->getChild(1)->getKind() == Node::Kind::Identifier) { auto name = symbolicNode->getChild(1)->getText(); #define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \ if (name.equals(#TYPENAME)) { \ return &DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND)); \ } // FIXME: When the _Concurrency library gets merged into the Standard Library, // we will be able to reference those symbols directly as well. #define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME) #if !SWIFT_OBJC_INTEROP # define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME) #endif #include "swift/Demangling/StandardTypesMangling.def" } #endif const ContextDescriptor *foundContext = nullptr; auto &T = TypeMetadataRecords.get(); // Nothing to resolve if have a generic parameter. if (symbolicNode->getKind() == Node::Kind::DependentGenericParamType) return nullptr; auto mangling = Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem); if (!mangling.isSuccess()) return nullptr; StringRef mangledName = mangling.result(); // Look for an existing entry. // Find the bucket for the metadata entry. { auto snapshot = T.NominalCache.snapshot(); if (auto Value = snapshot.find(mangledName)) return Value->getDescription(); } // Check type metadata records // Scan any newly loaded images for context descriptors, then try the context foundContext = _searchTypeMetadataRecords(T, node); // Check protocol conformances table. Note that this has no support for // resolving generic types yet. if (!foundContext) foundContext = _searchConformancesByMangledTypeName(node); if (foundContext) T.NominalCache.getOrInsert(mangledName, [&](NominalTypeDescriptorCacheEntry *entry, bool created) { if (created) new (entry) NominalTypeDescriptorCacheEntry{mangledName, foundContext}; return true; }); return foundContext; } #pragma mark Protocol descriptor cache namespace { struct ProtocolSection { const ProtocolRecord *Begin, *End; const ProtocolRecord *begin() const { return Begin; } const ProtocolRecord *end() const { return End; } }; struct ProtocolDescriptorCacheEntry { private: const char *Name; size_t NameLength; const ProtocolDescriptor *Description; public: ProtocolDescriptorCacheEntry(const llvm::StringRef name, const ProtocolDescriptor *description) : Description(description) { char *nameCopy = reinterpret_cast(malloc(name.size())); memcpy(nameCopy, name.data(), name.size()); Name = nameCopy; NameLength = name.size(); } const ProtocolDescriptor *getDescription() const { return Description; } bool matchesKey(llvm::StringRef aName) { return aName == llvm::StringRef{Name, NameLength}; } friend llvm::hash_code hash_value(const ProtocolDescriptorCacheEntry &value) { return hash_value(llvm::StringRef{value.Name, value.NameLength}); } template static size_t getExtraAllocationSize(T &&... ignored) { return 0; } }; struct ProtocolMetadataPrivateState { ConcurrentReadableHashMap ProtocolCache; ConcurrentReadableArray SectionsToScan; ProtocolMetadataPrivateState() { initializeProtocolLookup(); } }; static Lazy Protocols; } static void _registerProtocols(ProtocolMetadataPrivateState &C, const ProtocolRecord *begin, const ProtocolRecord *end) { C.SectionsToScan.push_back(ProtocolSection{begin, end}); } void swift::addImageProtocolsBlockCallbackUnsafe(const void *baseAddress, const void *protocols, uintptr_t protocolsSize) { assert(protocolsSize % sizeof(ProtocolRecord) == 0 && "protocols section not a multiple of ProtocolRecord"); // If we have a section, enqueue the protocols for lookup. auto protocolsBytes = reinterpret_cast(protocols); auto recordsBegin = reinterpret_cast(protocols); auto recordsEnd = reinterpret_cast(protocolsBytes + protocolsSize); // Conformance cache should always be sufficiently initialized by this point. _registerProtocols(Protocols.unsafeGetAlreadyInitialized(), recordsBegin, recordsEnd); } void swift::addImageProtocolsBlockCallback(const void *baseAddress, const void *protocols, uintptr_t protocolsSize) { Protocols.get(); addImageProtocolsBlockCallbackUnsafe(baseAddress, protocols, protocolsSize); } void swift::swift_registerProtocols(const ProtocolRecord *begin, const ProtocolRecord *end) { auto &C = Protocols.get(); _registerProtocols(C, begin, end); } static const ProtocolDescriptor * _searchProtocolRecords(ProtocolMetadataPrivateState &C, NodePointer node) { for (auto §ion : C.SectionsToScan.snapshot()) { for (const auto &record : section) { if (auto protocol = record.Protocol.getPointer()) { if (_contextDescriptorMatchesMangling(protocol, node)) return protocol; } } } return nullptr; } static const ProtocolDescriptor * _findProtocolDescriptor(NodePointer node, Demangle::Demangler &Dem, std::string &mangledName) { const ProtocolDescriptor *foundProtocol = nullptr; auto &T = Protocols.get(); // If we have a symbolic reference to a context, resolve it immediately. NodePointer symbolicNode = node; if (symbolicNode->getKind() == Node::Kind::Type) symbolicNode = symbolicNode->getChild(0); if (symbolicNode->getKind() == Node::Kind::ProtocolSymbolicReference) return cast( (const ContextDescriptor *)symbolicNode->getIndex()); auto mangling = Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem); if (!mangling.isSuccess()) return nullptr; mangledName = mangling.result().str(); // Look for an existing entry. // Find the bucket for the metadata entry. { auto snapshot = T.ProtocolCache.snapshot(); if (auto Value = snapshot.find(mangledName)) return Value->getDescription(); } // Check type metadata records foundProtocol = _searchProtocolRecords(T, node); if (foundProtocol) { T.ProtocolCache.getOrInsert(mangledName, [&](ProtocolDescriptorCacheEntry *entry, bool created) { if (created) new (entry) ProtocolDescriptorCacheEntry{mangledName, foundProtocol}; return true; }); } return foundProtocol; } #pragma mark Type field descriptor cache namespace { struct FieldDescriptorCacheEntry { private: const Metadata *Type; const FieldDescriptor *Description; public: FieldDescriptorCacheEntry(const Metadata *type, const FieldDescriptor *description) : Type(type), Description(description) {} const FieldDescriptor *getDescription() { return Description; } int compareWithKey(const Metadata *other) const { auto a = (uintptr_t)Type; auto b = (uintptr_t)other; return a == b ? 0 : (a < b ? -1 : 1); } template static size_t getExtraAllocationSize(Args &&... ignored) { return 0; } }; } // namespace #pragma mark Metadata lookup via mangled name llvm::Optional swift::_depthIndexToFlatIndex(unsigned depth, unsigned index, llvm::ArrayRef paramCounts) { // Out-of-bounds depth. if (depth >= paramCounts.size()) return None; // Compute the flat index. unsigned flatIndex = index + (depth == 0 ? 0 : paramCounts[depth - 1]); // Out-of-bounds index. if (flatIndex >= paramCounts[depth]) return None; return flatIndex; } /// Gather generic parameter counts from a context descriptor. /// /// \returns true if the innermost descriptor is generic. bool swift::_gatherGenericParameterCounts( const ContextDescriptor *descriptor, llvm::SmallVectorImpl &genericParamCounts, Demangler &BorrowFrom) { DemanglerForRuntimeTypeResolution<> demangler; demangler.providePreallocatedMemory(BorrowFrom); if (auto extension = _findExtendedTypeContextDescriptor(descriptor, demangler)) { // If we have a nominal type extension descriptor, extract the extended type // and use that. If the extension is not nominal, then we can use the // extension's own signature. descriptor = extension; } // Once we hit a non-generic descriptor, we're done. if (!descriptor->isGeneric()) return false; // Recurse to record the parent context's generic parameters. auto parent = descriptor->Parent.get(); (void)_gatherGenericParameterCounts(parent, genericParamCounts, demangler); // Record a new level of generic parameters if the count exceeds the // previous count. unsigned parentCount = parent->getNumGenericParams(); unsigned myCount = descriptor->getNumGenericParams(); if (myCount > parentCount) { genericParamCounts.push_back(myCount); return true; } return false; } /// Retrieve the generic parameters introduced in this context. static llvm::ArrayRef getLocalGenericParams(const ContextDescriptor *context) { if (!context->isGeneric()) return { }; // Determine where to start looking at generic parameters. unsigned startParamIndex; if (auto parent = context->Parent.get()) startParamIndex = parent->getNumGenericParams(); else startParamIndex = 0; auto genericContext = context->getGenericContext(); return genericContext->getGenericParams().slice(startParamIndex); } static llvm::Optional _gatherGenericParameters(const ContextDescriptor *context, llvm::ArrayRef genericArgs, const Metadata *parent, llvm::SmallVectorImpl &genericParamCounts, llvm::SmallVectorImpl &allGenericArgsVec, Demangler &demangler) { auto makeCommonErrorStringGetter = [&] { auto metadataVector = genericArgs.vec(); return [=] { std::string str; str += "_gatherGenericParameters: context: "; #if SWIFT_STDLIB_HAS_DLADDR SymbolInfo contextInfo; if (lookupSymbol(context, &contextInfo)) { str += contextInfo.symbolName.get(); str += " "; } #endif char *contextStr; swift_asprintf(&contextStr, "%p", context); str += contextStr; free(contextStr); str += " <"; bool first = true; for (const Metadata *metadata : genericArgs) { if (!first) str += ", "; first = false; str += nameForMetadata(metadata); } str += "> "; str += "parent: "; if (parent) str += nameForMetadata(parent); else str += ""; str += " - "; return str; }; }; // Figure out the various levels of generic parameters we have in // this type. (void)_gatherGenericParameterCounts(context, genericParamCounts, demangler); unsigned numTotalGenericParams = genericParamCounts.empty() ? 0 : genericParamCounts.back(); // Check whether we have the right number of generic arguments. if (genericArgs.size() == getLocalGenericParams(context).size()) { // Okay: genericArgs is the innermost set of generic arguments. } else if (genericArgs.size() == numTotalGenericParams && !parent) { // Okay: genericArgs is the complete set of generic arguments. } else { auto commonString = makeCommonErrorStringGetter(); auto genericArgsSize = genericArgs.size(); return TypeLookupError([=] { return commonString() + "incorrect number of generic args (" + std::to_string(genericArgsSize) + "), " + std::to_string(getLocalGenericParams(context).size()) + " local params, " + std::to_string(numTotalGenericParams) + " total params"; }); } // If there are generic parameters at any level, check the generic // requirements and fill in the generic arguments vector. if (!genericParamCounts.empty()) { // Compute the set of generic arguments "as written". llvm::SmallVector allGenericArgs; // If we have a parent, gather it's generic arguments "as written". if (parent) { gatherWrittenGenericArgs(parent, parent->getTypeContextDescriptor(), allGenericArgs, demangler); } // Add the generic arguments we were given. allGenericArgs.insert(allGenericArgs.end(), genericArgs.begin(), genericArgs.end()); // Copy the generic arguments needed for metadata from the generic // arguments "as written". auto generics = context->getGenericContext(); assert(generics); { auto genericParams = generics->getGenericParams(); unsigned n = genericParams.size(); if (allGenericArgs.size() != n) { auto commonString = makeCommonErrorStringGetter(); auto argsVecSize = allGenericArgsVec.size(); return TypeLookupError([=] { return commonString() + "have " + std::to_string(argsVecSize) + "generic args, expected " + std::to_string(n); }); } for (unsigned i = 0; i != n; ++i) { const auto ¶m = genericParams[i]; if (param.getKind() != GenericParamKind::Type) { auto commonString = makeCommonErrorStringGetter(); return TypeLookupError([=] { return commonString() + "param " + std::to_string(i) + " has unexpected kind " + std::to_string(static_cast(param.getKind())); }); } if (param.hasExtraArgument()) { auto commonString = makeCommonErrorStringGetter(); return TypeLookupError([=] { return commonString() + "param " + std::to_string(i) + "has extra argument"; }); } if (param.hasKeyArgument()) allGenericArgsVec.push_back(allGenericArgs[i]); } } // If we have the wrong number of generic arguments, fail. // Check whether the generic requirements are satisfied, collecting // any extra arguments we need for the instantiation function. SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs, genericParamCounts); auto error = _checkGenericRequirements( generics->getGenericRequirements(), allGenericArgsVec, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }); if (error) return *error; // If we still have the wrong number of generic arguments, this is // some kind of metadata mismatch. if (generics->getGenericContextHeader().getNumArguments() != allGenericArgsVec.size()) { auto commonString = makeCommonErrorStringGetter(); auto argsVecSize = allGenericArgsVec.size(); return TypeLookupError([=] { return commonString() + "generic argument count mismatch, expected " + std::to_string( generics->getGenericContextHeader().getNumArguments()) + ", have " + std::to_string(argsVecSize); }); } } return llvm::None; } namespace { /// Find the offset of the protocol requirement for an associated type with /// the given name in the given protocol descriptor. llvm::Optional findAssociatedTypeByName(const ProtocolDescriptor *protocol, StringRef name) { // If we don't have associated type names, there's nothing to do. const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get(); if (!associatedTypeNamesPtr) return None; // Look through the list of associated type names. StringRef associatedTypeNames(associatedTypeNamesPtr); unsigned matchingAssocTypeIdx = 0; bool found = false; while (!associatedTypeNames.empty()) { // Avoid using StringRef::split because its definition is not // provided in the header so that it requires linking with libSupport.a. auto splitIdx = associatedTypeNames.find(' '); if (associatedTypeNames.substr(0, splitIdx) == name) { found = true; break; } ++matchingAssocTypeIdx; associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1); } if (!found) return None; // We have a match on the Nth associated type; go find the Nth associated // type requirement. unsigned currentAssocTypeIdx = 0; unsigned numRequirements = protocol->NumRequirements; auto requirements = protocol->getRequirements(); for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) { if (requirements[reqIdx].Flags.getKind() != ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction) continue; if (currentAssocTypeIdx == matchingAssocTypeIdx) return requirements.begin() + reqIdx; ++currentAssocTypeIdx; } swift_unreachable("associated type names don't line up"); } namespace { static Lazy DynamicReplacementLock; } namespace { struct OpaqueTypeMappings { llvm::DenseMap descriptorMapping; const OpaqueTypeDescriptor* find(const OpaqueTypeDescriptor *orig) { const OpaqueTypeDescriptor *replacement = nullptr; DynamicReplacementLock.get().withLock([&] { auto entry = descriptorMapping.find(orig); if (entry != descriptorMapping.end()) replacement = entry->second; }); return replacement; } // We take a mutex argument to make sure someone is holding the lock. void insert(const OpaqueTypeDescriptor *orig, const OpaqueTypeDescriptor *replacement, const Mutex &) { descriptorMapping[orig] = replacement; } }; } // end unnamed namespace static Lazy opaqueTypeMappings; static const OpaqueTypeDescriptor * _findOpaqueTypeDescriptor(NodePointer demangleNode, Demangler &dem) { // Directly resolve a symbolic reference. if (demangleNode->getKind() == Node::Kind::OpaqueTypeDescriptorSymbolicReference) { auto context = (const ContextDescriptor *)demangleNode->getIndex(); auto *orig = cast(context); if (auto *entry = opaqueTypeMappings.get().find(orig)) { return entry; } return orig; } // TODO: Find non-symbolic-referenced opaque decls. return nullptr; } /// Constructs metadata by decoding a mangled type name, for use with /// \c TypeDecoder. class DecodedMetadataBuilder { private: /// The demangler we'll use when building new nodes. Demangler &demangler; /// Substitute generic parameters. SubstGenericParameterFn substGenericParameter; /// Substitute dependent witness tables. SubstDependentWitnessTableFn substWitnessTable; /// Ownership information related to the metadata we are trying to lookup. TypeReferenceOwnership ReferenceOwnership; public: DecodedMetadataBuilder(Demangler &demangler, SubstGenericParameterFn substGenericParameter, SubstDependentWitnessTableFn substWitnessTable) : demangler(demangler), substGenericParameter(substGenericParameter), substWitnessTable(substWitnessTable) { } using BuiltType = const Metadata *; using BuiltTypeDecl = const ContextDescriptor *; using BuiltProtocolDecl = ProtocolDescriptorRef; BuiltType decodeMangledType(NodePointer node) { return Demangle::decodeMangledType(*this, node).getType(); } Demangle::NodeFactory &getNodeFactory() { return demangler; } TypeLookupErrorOr resolveOpaqueType(NodePointer opaqueDecl, llvm::ArrayRef> genericArgs, unsigned ordinal) { auto descriptor = _findOpaqueTypeDescriptor(opaqueDecl, demangler); if (!descriptor) return BuiltType(); auto outerContext = descriptor->Parent.get(); llvm::SmallVector allGenericArgs; for (auto argSet : genericArgs) { allGenericArgs.append(argSet.begin(), argSet.end()); } // Gather the generic parameters we need to parameterize the opaque decl. llvm::SmallVector genericParamCounts; llvm::SmallVector allGenericArgsVec; if (auto error = _gatherGenericParameters( outerContext, allGenericArgs, BuiltType(), /* no parent */ genericParamCounts, allGenericArgsVec, demangler)) return *error; auto mangledName = descriptor->getUnderlyingTypeArgument(ordinal); SubstGenericParametersFromMetadata substitutions(descriptor, allGenericArgsVec.data()); return swift_getTypeByMangledName(MetadataState::Complete, mangledName, allGenericArgsVec.data(), [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); } BuiltTypeDecl createTypeDecl(NodePointer node, bool &typeAlias) const { // Look for a nominal type descriptor based on its mangled name. return _findContextDescriptor(node, demangler); } BuiltProtocolDecl createProtocolDecl(NodePointer node) const { // Look for a protocol descriptor based on its mangled name. std::string mangledName; if (auto protocol = _findProtocolDescriptor(node, demangler, mangledName)) return ProtocolDescriptorRef::forSwift(protocol);; #if SWIFT_OBJC_INTEROP // Look for a Swift-defined @objc protocol with the Swift 3 mangling that // is used for Objective-C entities. auto mangling = mangleNodeAsObjcCString(node, demangler); if (mangling.isSuccess()) { const char *objcMangledName = mangling.result(); if (auto protocol = objc_getProtocol(objcMangledName)) return ProtocolDescriptorRef::forObjC(protocol); } #endif return ProtocolDescriptorRef(); } BuiltProtocolDecl createObjCProtocolDecl( const std::string &mangledName) const { #if SWIFT_OBJC_INTEROP return ProtocolDescriptorRef::forObjC( objc_getProtocol(mangledName.c_str())); #else return ProtocolDescriptorRef(); #endif } TypeLookupErrorOr createObjCClassType(const std::string &mangledName) const { #if SWIFT_OBJC_INTEROP auto objcClass = objc_getClass(mangledName.c_str()); return swift_getObjCClassMetadata((const ClassMetadata *)objcClass); #else return BuiltType(); #endif } TypeLookupErrorOr createBoundGenericObjCClassType(const std::string &mangledName, llvm::ArrayRef args) const { // Generic arguments of lightweight Objective-C generic classes are not // reified in the metadata. return createObjCClassType(mangledName); } TypeLookupErrorOr createNominalType(BuiltTypeDecl metadataOrTypeDecl, BuiltType parent) const { // Treat nominal type creation the same way as generic type creation, // but with no generic arguments at this level. return createBoundGenericType(metadataOrTypeDecl, { }, parent); } TypeLookupErrorOr createTypeAliasType(BuiltTypeDecl typeAliasDecl, BuiltType parent) const { // We can't support sugared types here since we have no way to // resolve the underlying type of the type alias. However, some // CF types are mangled as type aliases. return createNominalType(typeAliasDecl, parent); } TypeLookupErrorOr createBoundGenericType(BuiltTypeDecl anyTypeDecl, llvm::ArrayRef genericArgs, BuiltType parent) const { auto typeDecl = dyn_cast(anyTypeDecl); if (!typeDecl) { if (auto protocol = dyn_cast(anyTypeDecl)) return _getSimpleProtocolTypeMetadata(protocol); return BuiltType(); } // Figure out the various levels of generic parameters we have in // this type. llvm::SmallVector genericParamCounts; llvm::SmallVector allGenericArgsVec; if (auto error = _gatherGenericParameters(typeDecl, genericArgs, parent, genericParamCounts, allGenericArgsVec, demangler)) return *error; // Call the access function. auto accessFunction = typeDecl->getAccessFunction(); if (!accessFunction) return BuiltType(); return accessFunction(MetadataState::Abstract, allGenericArgsVec).Value; } TypeLookupErrorOr createBuiltinType(StringRef builtinName, StringRef mangledName) const { #define BUILTIN_TYPE(Symbol, _) \ if (mangledName.equals(#Symbol)) \ return &METADATA_SYM(Symbol).base; #include "swift/Runtime/BuiltinTypes.def" return BuiltType(); } TypeLookupErrorOr createMetatypeType( BuiltType instance, llvm::Optional repr = None) const { return swift_getMetatypeMetadata(instance); } TypeLookupErrorOr createExistentialMetatypeType( BuiltType instance, llvm::Optional repr = None) const { if (instance->getKind() != MetadataKind::Existential && instance->getKind() != MetadataKind::ExistentialMetatype) { return TYPE_LOOKUP_ERROR_FMT("Tried to build an existential metatype from " "a type that was neither an existential nor " "an existential metatype"); } return swift_getExistentialMetatypeMetadata(instance); } TypeLookupErrorOr createProtocolCompositionType(llvm::ArrayRef protocols, BuiltType superclass, bool isClassBound) const { // Determine whether we have a class bound. ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any; if (isClassBound || superclass) { classConstraint = ProtocolClassConstraint::Class; } else { for (auto protocol : protocols) { if (protocol.getClassConstraint() == ProtocolClassConstraint::Class) { classConstraint = ProtocolClassConstraint::Class; break; } } } return swift_getExistentialTypeMetadata(classConstraint, superclass, protocols.size(), protocols.data()); } TypeLookupErrorOr createDynamicSelfType(BuiltType selfType) const { // Free-standing mangled type strings should not contain DynamicSelfType. return BuiltType(); } BuiltType createGenericTypeParameterType(unsigned depth, unsigned index) const { // Use the callback, when provided. if (substGenericParameter) return substGenericParameter(depth, index); return BuiltType(); } TypeLookupErrorOr createFunctionType( llvm::ArrayRef> params, BuiltType result, FunctionTypeFlags flags, FunctionMetadataDifferentiabilityKind diffKind, BuiltType globalActorType) const { assert( (flags.isDifferentiable() && diffKind.isDifferentiable()) || (!flags.isDifferentiable() && !diffKind.isDifferentiable())); llvm::SmallVector paramTypes; llvm::SmallVector paramFlags; // Fill in the parameters. paramTypes.reserve(params.size()); if (flags.hasParameterFlags()) paramFlags.reserve(params.size()); for (const auto ¶m : params) { paramTypes.push_back(param.getType()); if (flags.hasParameterFlags()) paramFlags.push_back(param.getFlags().getIntValue()); } if (globalActorType) flags = flags.withGlobalActor(true); return flags.hasGlobalActor() ? swift_getFunctionTypeMetadataGlobalActor(flags, diffKind, paramTypes.data(), flags.hasParameterFlags() ? paramFlags.data() : nullptr, result, globalActorType) : flags.isDifferentiable() ? swift_getFunctionTypeMetadataDifferentiable( flags, diffKind, paramTypes.data(), flags.hasParameterFlags() ? paramFlags.data() : nullptr, result) : swift_getFunctionTypeMetadata( flags, paramTypes.data(), flags.hasParameterFlags() ? paramFlags.data() : nullptr, result); } TypeLookupErrorOr createImplFunctionType( Demangle::ImplParameterConvention calleeConvention, llvm::ArrayRef> params, llvm::ArrayRef> results, llvm::Optional> errorResult, ImplFunctionTypeFlags flags) { // We can't realize the metadata for a SILFunctionType. return BuiltType(); } TypeLookupErrorOr createTupleType(llvm::ArrayRef elements, std::string labels) const { auto flags = TupleTypeFlags().withNumElements(elements.size()); if (!labels.empty()) flags = flags.withNonConstantLabels(true); return MetadataResponse(swift_getTupleTypeMetadata( MetadataState::Abstract, flags, elements.data(), labels.empty() ? nullptr : labels.c_str(), /*proposedWitnesses=*/nullptr)) .Value; } TypeLookupErrorOr createDependentMemberType(StringRef name, BuiltType base) const { // Should not have unresolved dependent member types here. return BuiltType(); } TypeLookupErrorOr createDependentMemberType(StringRef name, BuiltType base, BuiltProtocolDecl protocol) const { #if SWIFT_OBJC_INTEROP if (protocol.isObjC()) return BuiltType(); #endif auto swiftProtocol = protocol.getSwiftProtocol(); auto witnessTable = swift_conformsToProtocol(base, swiftProtocol); if (!witnessTable) return BuiltType(); // Look for the named associated type within the protocol. auto assocType = findAssociatedTypeByName(swiftProtocol, name); if (!assocType) return nullptr; // Call the associated type access function. return swift_getAssociatedTypeWitness( MetadataState::Abstract, const_cast(witnessTable), base, swiftProtocol->getRequirementBaseDescriptor(), *assocType).Value; } #define REF_STORAGE(Name, ...) \ TypeLookupErrorOr create##Name##StorageType(BuiltType base) { \ ReferenceOwnership.set##Name(); \ return base; \ } #include "swift/AST/ReferenceStorage.def" TypeLookupErrorOr createSILBoxType(BuiltType base) const { // FIXME: Implement. return BuiltType(); } using BuiltSILBoxField = llvm::PointerIntPair; using BuiltSubstitution = std::pair; struct BuiltLayoutConstraint { bool operator==(BuiltLayoutConstraint rhs) const { return true; } operator bool() const { return true; } }; using BuiltLayoutConstraint = BuiltLayoutConstraint; BuiltLayoutConstraint getLayoutConstraint(LayoutConstraintKind kind) { return {}; } BuiltLayoutConstraint getLayoutConstraintWithSizeAlign(LayoutConstraintKind kind, unsigned size, unsigned alignment) { return {}; } #if LLVM_PTR_SIZE == 4 /// Unfortunately the alignment of TypeRef is too large to squeeze in 3 extra /// bits on (some?) 32-bit systems. class BigBuiltTypeIntPair { BuiltType Ptr; RequirementKind Int; public: BigBuiltTypeIntPair(BuiltType ptr, RequirementKind i) : Ptr(ptr), Int(i) {} RequirementKind getInt() const { return Int; } BuiltType getPointer() const { return Ptr; } uint64_t getOpaqueValue() const { return (uint64_t)Ptr | ((uint64_t)Int << 32); } }; #endif struct Requirement : public RequirementBase, #endif BuiltLayoutConstraint> { Requirement(RequirementKind kind, BuiltType first, BuiltType second) : RequirementBase(kind, first, second) {} Requirement(RequirementKind kind, BuiltType first, BuiltLayoutConstraint second) : RequirementBase(kind, first, second) {} }; using BuiltRequirement = Requirement; TypeLookupErrorOr createSILBoxTypeWithLayout( llvm::ArrayRef Fields, llvm::ArrayRef Substitutions, llvm::ArrayRef Requirements) const { // FIXME: Implement. return BuiltType(); } bool isExistential(BuiltType) { // FIXME: Implement. return true; } TypeReferenceOwnership getReferenceOwnership() const { return ReferenceOwnership; } TypeLookupErrorOr createOptionalType(BuiltType base) { // Mangled types for building metadata don't contain sugared types return BuiltType(); } TypeLookupErrorOr createArrayType(BuiltType base) { // Mangled types for building metadata don't contain sugared types return BuiltType(); } TypeLookupErrorOr createDictionaryType(BuiltType key, BuiltType value) { // Mangled types for building metadata don't contain sugared types return BuiltType(); } TypeLookupErrorOr createParenType(BuiltType base) { // Mangled types for building metadata don't contain sugared types return BuiltType(); } }; } SWIFT_CC(swift) static TypeLookupErrorOr swift_getTypeByMangledNodeImpl(MetadataRequest request, Demangler &demangler, Demangle::NodePointer node, const void *const *origArgumentVector, SubstGenericParameterFn substGenericParam, SubstDependentWitnessTableFn substWitnessTable) { // Simply call an accessor function if that's all we got. if (node->getKind() == Node::Kind::AccessorFunctionReference) { // The accessor function is passed the pointer to the original argument // buffer. It's assumed to match the generic context. auto accessorFn = (const Metadata *(*)(const void * const *))node->getIndex(); auto type = accessorFn(origArgumentVector); // We don't call checkMetadataState here since the result may not really // *be* type metadata. If the accessor returns a type, it is responsible // for completing the metadata. return TypeInfo{MetadataResponse{type, MetadataState::Complete}, TypeReferenceOwnership()}; } // TODO: propagate the request down to the builder instead of calling // swift_checkMetadataState after the fact. DecodedMetadataBuilder builder(demangler, substGenericParam, substWitnessTable); auto type = Demangle::decodeMangledType(builder, node); if (type.isError()) { return *type.getError(); } if (!type.getType()) { return TypeLookupError("NULL type but no error provided"); } return TypeInfo{swift_checkMetadataState(request, type.getType()), builder.getReferenceOwnership()}; } SWIFT_CC(swift) static TypeLookupErrorOr swift_getTypeByMangledNameImpl(MetadataRequest request, StringRef typeName, const void *const *origArgumentVector, SubstGenericParameterFn substGenericParam, SubstDependentWitnessTableFn substWitnessTable) { DemanglerForRuntimeTypeResolution> demangler; NodePointer node; // Check whether this is the convenience syntax "ModuleName.ClassName". auto getDotPosForConvenienceSyntax = [&]() -> size_t { size_t dotPos = llvm::StringRef::npos; for (unsigned i = 0; i < typeName.size(); ++i) { // Should only contain one dot. if (typeName[i] == '.') { if (dotPos == llvm::StringRef::npos) { dotPos = i; continue; } else { return llvm::StringRef::npos; } } // Should not contain symbolic references. if ((unsigned char)typeName[i] <= '\x1F') { return llvm::StringRef::npos; } } return dotPos; }; auto dotPos = getDotPosForConvenienceSyntax(); if (dotPos != llvm::StringRef::npos) { // Form a demangle tree for this class. NodePointer classNode = demangler.createNode(Node::Kind::Class); NodePointer moduleNode = demangler.createNode(Node::Kind::Module, typeName.substr(0, dotPos)); NodePointer nameNode = demangler.createNode(Node::Kind::Identifier, typeName.substr(dotPos + 1)); classNode->addChild(moduleNode, demangler); classNode->addChild(nameNode, demangler); node = classNode; } else { // Demangle the type name. node = demangler.demangleTypeRef(typeName); if (!node) { return TypeInfo(); } } return swift_getTypeByMangledNode(request, demangler, node, origArgumentVector, substGenericParam, substWitnessTable); } SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT const Metadata * _Nullable swift_getTypeByMangledNameInEnvironment( const char *typeNameStart, size_t typeNameLength, const TargetGenericEnvironment *environment, const void * const *genericArgs) { llvm::StringRef typeName(typeNameStart, typeNameLength); SubstGenericParametersFromMetadata substitutions(environment, genericArgs); return swift_getTypeByMangledName(MetadataState::Complete, typeName, genericArgs, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); } SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT const Metadata * _Nullable swift_getTypeByMangledNameInEnvironmentInMetadataState( size_t metadataState, const char *typeNameStart, size_t typeNameLength, const TargetGenericEnvironment *environment, const void * const *genericArgs) { llvm::StringRef typeName(typeNameStart, typeNameLength); SubstGenericParametersFromMetadata substitutions(environment, genericArgs); return swift_getTypeByMangledName((MetadataState)metadataState, typeName, genericArgs, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); } SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT const Metadata * _Nullable swift_getTypeByMangledNameInContext( const char *typeNameStart, size_t typeNameLength, const TargetContextDescriptor *context, const void * const *genericArgs) { llvm::StringRef typeName(typeNameStart, typeNameLength); SubstGenericParametersFromMetadata substitutions(context, genericArgs); return swift_getTypeByMangledName(MetadataState::Complete, typeName, genericArgs, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); } SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT const Metadata * _Nullable swift_getTypeByMangledNameInContextInMetadataState( size_t metadataState, const char *typeNameStart, size_t typeNameLength, const TargetContextDescriptor *context, const void * const *genericArgs) { llvm::StringRef typeName(typeNameStart, typeNameLength); SubstGenericParametersFromMetadata substitutions(context, genericArgs); return swift_getTypeByMangledName((MetadataState)metadataState, typeName, genericArgs, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); } /// Demangle a mangled name, but don't allow symbolic references. SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL const Metadata *_Nullable swift_stdlib_getTypeByMangledNameUntrusted(const char *typeNameStart, size_t typeNameLength) { llvm::StringRef typeName(typeNameStart, typeNameLength); for (char c : typeName) { if (c >= '\x01' && c <= '\x1F') return nullptr; } return swift_getTypeByMangledName(MetadataState::Complete, typeName, nullptr, {}, {}).getType().getMetadata(); } // ==== Function metadata functions ---------------------------------------------- static llvm::Optional cstrToStringRef(const char *typeNameStart, size_t typeNameLength) { llvm::StringRef typeName(typeNameStart, typeNameLength); for (char c : typeName) { if (c >= '\x01' && c <= '\x1F') return llvm::None; } return typeName; } SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI unsigned swift_func_getParameterCount(const char *typeNameStart, size_t typeNameLength) { llvm::Optional typeName = cstrToStringRef(typeNameStart, typeNameLength); if (!typeName) return -1; StackAllocatedDemangler<1024> demangler; auto node = demangler.demangleSymbol(*typeName); if (!node) return -2; node = node->findByKind(Node::Kind::Function, /*maxDepth=*/2); if (!node) return -3; node = node->findByKind(Node::Kind::Type, /*maxDepth=*/2); if (!node) return -4; node = node->findByKind(Node::Kind::ArgumentTuple, /*maxDepth=*/3); // Get the "deepest" Tuple from the ArgumentTuple, that's the arguments while (node && node->getKind() != Node::Kind::Tuple) { node = node->getFirstChild(); } if (node) { return node->getNumChildren(); } return -5; } SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI const Metadata *_Nullable swift_func_getReturnTypeInfo(const char *typeNameStart, size_t typeNameLength) { llvm::Optional typeName = cstrToStringRef(typeNameStart, typeNameLength); if (!typeName) return nullptr; StackAllocatedDemangler<1024> demangler; auto node = demangler.demangleSymbol(*typeName); if (!node) return nullptr; node = node->findByKind(Node::Kind::Function, /*maxDepth=*/2); if (!node) return nullptr; node = node->findByKind(Node::Kind::ReturnType, /*maxDepth=*/4); if (!node) return nullptr; DecodedMetadataBuilder builder( demangler, /*substGenericParam=*/ [](unsigned, unsigned) { return nullptr; }, /*SubstDependentWitnessTableFn=*/ [](const Metadata *, unsigned) { return nullptr; }); TypeDecoder decoder(builder); auto builtTypeOrError = decoder.decodeMangledType(node); if (builtTypeOrError.isError()) { auto err = builtTypeOrError.getError(); char *errStr = err->copyErrorString(); err->freeErrorString(errStr); return nullptr; } return builtTypeOrError.getType(); } SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI unsigned swift_func_getParameterTypeInfo( const char *typeNameStart, size_t typeNameLength, Metadata const **types, unsigned typesLength) { if (typesLength < 0) return -1; llvm::Optional typeName = cstrToStringRef(typeNameStart, typeNameLength); if (!typeName) return -1; StackAllocatedDemangler<1024> demangler; auto node = demangler.demangleSymbol(*typeName); if (!node) return -1; node = node->findByKind(Node::Kind::Function, /*maxDepth=*/2); if (!node) return -3; node = node->findByKind(Node::Kind::Type, /*maxDepth=*/2); if (!node) return -4; node = node->findByKind(Node::Kind::ArgumentTuple, /*maxDepth=*/3); // Get the "deepest" Tuple from the ArgumentTuple, that's the arguments while (node && node->getKind() != Node::Kind::Tuple) { node = node->getFirstChild(); } // Only successfully return if the expected parameter count is the same // as space prepared for it in the buffer. if (!node || (node && node->getNumChildren() != typesLength)) { return -5; } DecodedMetadataBuilder builder( demangler, /*substGenericParam=*/ [](unsigned, unsigned) { return nullptr; }, /*SubstDependentWitnessTableFn=*/ [](const Metadata *, unsigned) { return nullptr; }); TypeDecoder decoder(builder); auto typeIdx = 0; // for each parameter (TupleElement), store it into the provided buffer for (auto tupleElement : *node) { assert(tupleElement->getKind() == Node::Kind::TupleElement); assert(tupleElement->getNumChildren() == 1); auto typeNode = tupleElement->getFirstChild(); assert(typeNode->getKind() == Node::Kind::Type); auto builtTypeOrError = decoder.decodeMangledType(tupleElement); if (builtTypeOrError.isError()) { auto err = builtTypeOrError.getError(); char *errStr = err->copyErrorString(); err->freeErrorString(errStr); typeIdx += 1; continue; } types[typeIdx] = builtTypeOrError.getType(); typeIdx += 1; } // end foreach parameter if (node) { return node->getNumChildren(); } return -9; } // ==== End of Function metadata functions --------------------------------------- SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT MetadataResponse swift_getOpaqueTypeMetadata(MetadataRequest request, const void * const *arguments, const OpaqueTypeDescriptor *descriptor, unsigned index) { auto mangledName = descriptor->getUnderlyingTypeArgument(index); SubstGenericParametersFromMetadata substitutions(descriptor, arguments); return swift_getTypeByMangledName(request.getState(), mangledName, arguments, [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getResponse(); } SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT const WitnessTable * swift_getOpaqueTypeConformance(const void * const *arguments, const OpaqueTypeDescriptor *descriptor, unsigned index) { auto response = swift_getOpaqueTypeMetadata( MetadataRequest(MetadataState::Complete), arguments, descriptor, index); return (const WitnessTable *)response.Value; } #if SWIFT_OBJC_INTEROP // Return the ObjC class for the given type name. // This gets installed as a callback from libobjc. // FIXME: delete this #if and dlsym once we don't // need to build with older libobjc headers #if !OBJC_GETCLASSHOOK_DEFINED using objc_hook_getClass = BOOL(*)(const char * _Nonnull name, Class _Nullable * _Nonnull outClass); #endif static objc_hook_getClass OldGetClassHook; static BOOL getObjCClassByMangledName(const char * _Nonnull typeName, Class _Nullable * _Nonnull outClass) { // Demangle old-style class and protocol names, which are still used in the // ObjC metadata. StringRef typeStr(typeName); const Metadata *metadata = nullptr; if (typeStr.startswith("_Tt")) { Demangler demangler; auto node = demangler.demangleSymbol(typeName); if (!node) return NO; // If we successfully demangled but there is a suffix, then we did NOT use // the entire name, and this is NOT a match. Reject it. if (node->hasChildren() && node->getLastChild()->getKind() == Node::Kind::Suffix) return NO; metadata = swift_getTypeByMangledNode( MetadataState::Complete, demangler, node, nullptr, /* no substitutions */ [&](unsigned depth, unsigned index) { return nullptr; }, [&](const Metadata *type, unsigned index) { return nullptr; } ).getType().getMetadata(); } else { metadata = swift_stdlib_getTypeByMangledNameUntrusted(typeStr.data(), typeStr.size()); } if (metadata) { auto objcClass = reinterpret_cast( const_cast( swift_getObjCClassFromMetadataConditional(metadata))); if (objcClass) { *outClass = objcClass; return YES; } } return OldGetClassHook(typeName, outClass); } __attribute__((constructor)) static void installGetClassHook() { if (SWIFT_RUNTIME_WEAK_CHECK(objc_setHook_getClass)) { SWIFT_RUNTIME_WEAK_USE(objc_setHook_getClass(getObjCClassByMangledName, &OldGetClassHook)); } } #endif unsigned SubstGenericParametersFromMetadata:: buildDescriptorPath(const ContextDescriptor *context, Demangler &borrowFrom) const { assert(sourceIsMetadata); // Terminating condition: we don't have a context. if (!context) return 0; DemanglerForRuntimeTypeResolution<> demangler; demangler.providePreallocatedMemory(borrowFrom); if (auto extension = _findExtendedTypeContextDescriptor(context, demangler)) { // If we have a nominal type extension descriptor, extract the extended type // and use that. If the extension is not nominal, then we can use the // extension's own signature. context = extension; } // Add the parent's contribution to the descriptor path. const ContextDescriptor *parent = context->Parent.get(); unsigned numKeyGenericParamsInParent = buildDescriptorPath(parent, demangler); // If this context is non-generic, we're done. if (!context->isGeneric()) return numKeyGenericParamsInParent; // Count the number of key generic params at this level. auto allGenericParams = baseContext->getGenericContext()->getGenericParams(); unsigned parentCount = parent->getNumGenericParams(); unsigned localCount = context->getNumGenericParams(); auto localGenericParams = allGenericParams.slice(parentCount, localCount - parentCount); unsigned numKeyGenericParamsHere = 0; bool hasNonKeyGenericParams = false; for (const auto &genericParam : localGenericParams) { if (genericParam.hasKeyArgument()) ++numKeyGenericParamsHere; else hasNonKeyGenericParams = true; } // Form the path element if there are any new generic parameters. if (localCount > parentCount) descriptorPath.push_back(PathElement{localGenericParams, context->getNumGenericParams(), numKeyGenericParamsInParent, numKeyGenericParamsHere, hasNonKeyGenericParams}); return numKeyGenericParamsInParent + numKeyGenericParamsHere; } /// Builds a path from the generic environment. unsigned SubstGenericParametersFromMetadata:: buildEnvironmentPath( const TargetGenericEnvironment *environment) const { unsigned totalParamCount = 0; unsigned totalKeyParamCount = 0; auto genericParams = environment->getGenericParameters(); for (unsigned numLocalParams : environment->getGenericParameterCounts()) { // Adjust totalParamCount so we have the # of local parameters. numLocalParams -= totalParamCount; // Get the local generic parameters. auto localGenericParams = genericParams.slice(0, numLocalParams); genericParams = genericParams.slice(numLocalParams); // Count the parameters. unsigned numKeyGenericParamsInParent = totalKeyParamCount; unsigned numKeyGenericParamsHere = 0; bool hasNonKeyGenericParams = false; for (const auto &genericParam : localGenericParams) { if (genericParam.hasKeyArgument()) ++numKeyGenericParamsHere; else hasNonKeyGenericParams = true; } // Update totals. totalParamCount += numLocalParams; totalKeyParamCount += numKeyGenericParamsHere; // Add to the descriptor path. descriptorPath.push_back(PathElement{localGenericParams, totalParamCount, numKeyGenericParamsInParent, numKeyGenericParamsHere, hasNonKeyGenericParams}); } return totalKeyParamCount; } void SubstGenericParametersFromMetadata::setup() const { if (!descriptorPath.empty()) return; if (sourceIsMetadata && baseContext) { DemanglerForRuntimeTypeResolution> demangler; numKeyGenericParameters = buildDescriptorPath(baseContext, demangler); return; } if (!sourceIsMetadata && environment) { numKeyGenericParameters = buildEnvironmentPath(environment); return; } } const Metadata * SubstGenericParametersFromMetadata::getMetadata( unsigned depth, unsigned index) const { // On first access, compute the descriptor path. setup(); // If the depth is too great, there is nothing to do. if (depth >= descriptorPath.size()) return nullptr; /// Retrieve the descriptor path element at this depth. auto &pathElement = descriptorPath[depth]; // Check whether the index is clearly out of bounds. if (index >= pathElement.numTotalGenericParams) return nullptr; // Compute the flat index. unsigned flatIndex = pathElement.numKeyGenericParamsInParent; if (pathElement.hasNonKeyGenericParams > 0) { // We have non-key generic parameters at this level, so the index needs to // be checked more carefully. auto genericParams = pathElement.localGenericParams; // Make sure that the requested parameter itself has a key argument. if (!genericParams[index].hasKeyArgument()) return nullptr; // Increase the flat index for each parameter with a key argument, up to // the given index. for (const auto &genericParam : genericParams.slice(0, index)) { if (genericParam.hasKeyArgument()) ++flatIndex; } } else { flatIndex += index; } return (const Metadata *)genericArgs[flatIndex]; } const WitnessTable * SubstGenericParametersFromMetadata::getWitnessTable(const Metadata *type, unsigned index) const { // On first access, compute the descriptor path. setup(); return (const WitnessTable *)genericArgs[index + numKeyGenericParameters]; } const Metadata *SubstGenericParametersFromWrittenArgs::getMetadata( unsigned depth, unsigned index) const { if (auto flatIndex = _depthIndexToFlatIndex(depth, index, genericParamCounts)) { if (*flatIndex < allGenericArgs.size()) return allGenericArgs[*flatIndex]; } return nullptr; } const WitnessTable * SubstGenericParametersFromWrittenArgs::getWitnessTable(const Metadata *type, unsigned index) const { return nullptr; } /// Demangle the given type name to a generic parameter reference, which /// will be returned as (depth, index). static llvm::Optional> demangleToGenericParamRef(StringRef typeName) { StackAllocatedDemangler<1024> demangler; NodePointer node = demangler.demangleType(typeName); if (!node) return None; // Find the flat index that the right-hand side refers to. if (node->getKind() == Demangle::Node::Kind::Type) node = node->getChild(0); if (node->getKind() != Demangle::Node::Kind::DependentGenericParamType) return None; return std::pair(node->getChild(0)->getIndex(), node->getChild(1)->getIndex()); } void swift::gatherWrittenGenericArgs( const Metadata *metadata, const TypeContextDescriptor *description, llvm::SmallVectorImpl &allGenericArgs, Demangler &BorrowFrom) { if (!description) return; auto generics = description->getGenericContext(); if (!generics) return; bool missingWrittenArguments = false; auto genericArgs = description->getGenericArguments(metadata); for (auto param : generics->getGenericParams()) { switch (param.getKind()) { case GenericParamKind::Type: // The type should have a key argument unless it's been same-typed to // another type. if (param.hasKeyArgument()) { auto genericArg = *genericArgs++; allGenericArgs.push_back(genericArg); } else { // Leave a gap for us to fill in by looking at same type info. allGenericArgs.push_back(nullptr); missingWrittenArguments = true; } // We don't know about type parameters with extra arguments. Leave // a hole for it. if (param.hasExtraArgument()) { allGenericArgs.push_back(nullptr); ++genericArgs; } break; default: // We don't know about this kind of parameter. Create placeholders where // needed. if (param.hasKeyArgument()) { allGenericArgs.push_back(nullptr); ++genericArgs; } if (param.hasExtraArgument()) { allGenericArgs.push_back(nullptr); ++genericArgs; } break; } } // If there is no follow-up work to do, we're done. if (!missingWrittenArguments) return; // We have generic arguments that would be written, but have been // canonicalized away. Use same-type requirements to reconstitute them. // Retrieve the mapping information needed for depth/index -> flat index. llvm::SmallVector genericParamCounts; (void)_gatherGenericParameterCounts(description, genericParamCounts, BorrowFrom); // Walk through the generic requirements to evaluate same-type // constraints that are needed to fill in missing generic arguments. for (const auto &req : generics->getGenericRequirements()) { // We only care about same-type constraints. if (req.Flags.getKind() != GenericRequirementKind::SameType) continue; auto lhsParam = demangleToGenericParamRef(req.getParam()); if (!lhsParam) continue; // If we don't yet have an argument for this parameter, it's a // same-type-to-concrete constraint. auto lhsFlatIndex = _depthIndexToFlatIndex(lhsParam->first, lhsParam->second, genericParamCounts); if (!lhsFlatIndex || *lhsFlatIndex >= allGenericArgs.size()) continue; if (!allGenericArgs[*lhsFlatIndex]) { // Substitute into the right-hand side. SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs, genericParamCounts); allGenericArgs[*lhsFlatIndex] = swift_getTypeByMangledName(MetadataState::Abstract, req.getMangledTypeName(), (const void * const *)allGenericArgs.data(), [&substitutions](unsigned depth, unsigned index) { return substitutions.getMetadata(depth, index); }, [&substitutions](const Metadata *type, unsigned index) { return substitutions.getWitnessTable(type, index); }).getType().getMetadata(); continue; } // If we do have an argument for this parameter, it might be that // the right-hand side is itself a generic parameter, which means // we have a same-type constraint A == B where A is already filled in. auto rhsParam = demangleToGenericParamRef(req.getMangledTypeName()); if (!rhsParam) continue; auto rhsFlatIndex = _depthIndexToFlatIndex(rhsParam->first, rhsParam->second, genericParamCounts); if (!rhsFlatIndex || *rhsFlatIndex >= allGenericArgs.size()) continue; if (allGenericArgs[*rhsFlatIndex] || !allGenericArgs[*lhsFlatIndex]) continue; allGenericArgs[*rhsFlatIndex] = allGenericArgs[*lhsFlatIndex]; } } struct InitializeDynamicReplacementLookup { InitializeDynamicReplacementLookup() { initializeDynamicReplacementLookup(); } }; SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN static InitializeDynamicReplacementLookup initDynamicReplacements; SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END void DynamicReplacementDescriptor::enableReplacement() const { auto *chainRoot = const_cast( replacedFunctionKey->root.get()); // Make sure this entry is not already enabled. // This does not work until we make sure that when a dynamic library is // unloaded all descriptors are removed. #if 0 for (auto *curr = chainRoot; curr != nullptr; curr = curr->next) { if (curr == chainEntry.get()) { swift::swift_abortDynamicReplacementEnabling(); } } #endif // Unlink the previous entry if we are not chaining. if (!shouldChain() && chainRoot->next) { auto *previous = chainRoot->next; chainRoot->next = previous->next; //chainRoot->implementationFunction = previous->implementationFunction; swift_ptrauth_copy_code_or_data( reinterpret_cast(&chainRoot->implementationFunction), reinterpret_cast(&previous->implementationFunction), replacedFunctionKey->getExtraDiscriminator(), !replacedFunctionKey->isAsync(), /*allowNull*/ false); } // First populate the current replacement's chain entry. auto *currentEntry = const_cast(chainEntry.get()); // currentEntry->implementationFunction = chainRoot->implementationFunction; swift_ptrauth_copy_code_or_data( reinterpret_cast(¤tEntry->implementationFunction), reinterpret_cast(&chainRoot->implementationFunction), replacedFunctionKey->getExtraDiscriminator(), !replacedFunctionKey->isAsync(), /*allowNull*/ false); currentEntry->next = chainRoot->next; // Link the replacement entry. chainRoot->next = chainEntry.get(); // chainRoot->implementationFunction = replacementFunction.get(); swift_ptrauth_init_code_or_data( reinterpret_cast(&chainRoot->implementationFunction), reinterpret_cast(replacementFunction.get()), replacedFunctionKey->getExtraDiscriminator(), !replacedFunctionKey->isAsync()); } void DynamicReplacementDescriptor::disableReplacement() const { const auto *chainRoot = replacedFunctionKey->root.get(); auto *thisEntry = const_cast(chainEntry.get()); // Find the entry previous to this one. auto *prev = chainRoot; while (prev && prev->next != thisEntry) prev = prev->next; if (!prev) { swift::swift_abortDynamicReplacementDisabling(); return; } // Unlink this entry. auto *previous = const_cast(prev); previous->next = thisEntry->next; // previous->implementationFunction = thisEntry->implementationFunction; swift_ptrauth_copy_code_or_data( reinterpret_cast(&previous->implementationFunction), reinterpret_cast(&thisEntry->implementationFunction), replacedFunctionKey->getExtraDiscriminator(), !replacedFunctionKey->isAsync(), /*allowNull*/ false); } /// An automatic dymamic replacement entry. namespace { class AutomaticDynamicReplacementEntry { RelativeDirectPointer replacementScope; uint32_t flags; public: void enable() const { replacementScope->enable(); } uint32_t getFlags() { return flags; } }; /// A list of automatic dynamic replacement scopes. class AutomaticDynamicReplacements : private swift::ABI::TrailingObjects { uint32_t flags; uint32_t numScopes; using TrailingObjects = swift::ABI::TrailingObjects; friend TrailingObjects; llvm::ArrayRef getReplacementEntries() const { return { this->template getTrailingObjects(), numScopes}; } public: void enableReplacements() const { for (auto &replacementEntry : getReplacementEntries()) replacementEntry.enable(); } uint32_t getNumScopes() const { return numScopes; } }; /// A map from original to replaced opaque type descriptor of a some type. class DynamicReplacementSomeDescriptor { RelativeIndirectablePointer< const OpaqueTypeDescriptor, false, int32_t, TargetSignedPointer> originalOpaqueTypeDesc; RelativeDirectPointer replacementOpaqueTypeDesc; public: void enable(const Mutex &lock) const { opaqueTypeMappings.get().insert(originalOpaqueTypeDesc.get(), replacementOpaqueTypeDesc.get(), lock); } }; /// A list of dynamic replacements of some types. class AutomaticDynamicReplacementsSome : private swift::ABI::TrailingObjects { uint32_t flags; uint32_t numEntries; using TrailingObjects = swift::ABI::TrailingObjects; friend TrailingObjects; llvm::ArrayRef getReplacementEntries() const { return { this->template getTrailingObjects(), numEntries}; } public: void enableReplacements(const Mutex &lock) const { for (auto &replacementEntry : getReplacementEntries()) replacementEntry.enable(lock); } uint32_t getNumEntries() const { return numEntries; } }; } // anonymous namespace void swift::addImageDynamicReplacementBlockCallback( const void *baseAddress, const void *replacements, uintptr_t replacementsSize, const void *replacementsSome, uintptr_t replacementsSomeSize) { auto *automaticReplacements = reinterpret_cast(replacements); const AutomaticDynamicReplacementsSome *someReplacements = nullptr; if (replacementsSomeSize) { someReplacements = reinterpret_cast( replacementsSome); } auto sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) + (automaticReplacements->getNumScopes() * sizeof(AutomaticDynamicReplacementEntry)); auto sizeOfCurrentSomeEntry = replacementsSomeSize == 0 ? 0 : sizeof(AutomaticDynamicReplacementsSome) + (someReplacements->getNumEntries() * sizeof(DynamicReplacementSomeDescriptor)); auto &lock = DynamicReplacementLock.get(); lock.withLock([&] { auto endOfAutomaticReplacements = ((const char *)automaticReplacements) + replacementsSize; while (((const char *)automaticReplacements) < endOfAutomaticReplacements) { automaticReplacements->enableReplacements(); automaticReplacements = reinterpret_cast( ((const char *)automaticReplacements) + sizeOfCurrentEntry); if ((const char*)automaticReplacements < endOfAutomaticReplacements) sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) + (automaticReplacements->getNumScopes() * sizeof(AutomaticDynamicReplacementEntry)); } if (!replacementsSomeSize) return; auto endOfSomeReplacements = ((const char *)someReplacements) + replacementsSomeSize; while (((const char *)someReplacements) < endOfSomeReplacements) { someReplacements->enableReplacements(lock); someReplacements = reinterpret_cast( ((const char *)someReplacements) + sizeOfCurrentSomeEntry); if ((const char*) someReplacements < endOfSomeReplacements) sizeOfCurrentSomeEntry = sizeof(AutomaticDynamicReplacementsSome) + (someReplacements->getNumEntries() * sizeof(DynamicReplacementSomeDescriptor)); } }); } void swift::swift_enableDynamicReplacementScope( const DynamicReplacementScope *scope) { scope = swift_auth_data_non_address( scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope); DynamicReplacementLock.get().withLock([=] { scope->enable(); }); } void swift::swift_disableDynamicReplacementScope( const DynamicReplacementScope *scope) { scope = swift_auth_data_non_address( scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope); DynamicReplacementLock.get().withLock([=] { scope->disable(); }); } #define OVERRIDE_METADATALOOKUP COMPATIBILITY_OVERRIDE #include COMPATIBILITY_OVERRIDE_INCLUDE_PATH