//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements interfaces for performing name lookup. // //===----------------------------------------------------------------------===// #include "NameLookupImpl.h" #include "swift/AST/NameLookup.h" #include "swift/AST/ASTContext.h" #include "swift/AST/ASTScope.h" #include "swift/AST/ASTVisitor.h" #include "swift/AST/ClangModuleLoader.h" #include "swift/AST/DebuggerClient.h" #include "swift/AST/ExistentialLayout.h" #include "swift/AST/LazyResolver.h" #include "swift/AST/Initializer.h" #include "swift/AST/NameLookupRequests.h" #include "swift/AST/ReferencedNameTracker.h" #include "swift/Basic/SourceManager.h" #include "swift/Basic/Statistic.h" #include "swift/Basic/STLExtras.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "namelookup" using namespace swift; ValueDecl *LookupResultEntry::getBaseDecl() const { if (BaseDC == nullptr) return nullptr; if (auto *AFD = dyn_cast(BaseDC)) return AFD->getImplicitSelfDecl(); if (auto *PBI = dyn_cast(BaseDC)) { auto *selfDecl = PBI->getImplicitSelfDecl(); assert(selfDecl); return selfDecl; } auto *nominalDecl = BaseDC->getAsNominalTypeOrNominalTypeExtensionContext(); assert(nominalDecl); return nominalDecl; } void DebuggerClient::anchor() {} void AccessFilteringDeclConsumer::foundDecl(ValueDecl *D, DeclVisibilityKind reason) { if (D->getASTContext().LangOpts.EnableAccessControl) { if (D->isInvalid()) return; if (!D->isAccessibleFrom(DC)) return; } ChainedConsumer.foundDecl(D, reason); } template static void forAllVisibleModules(const DeclContext *DC, const Fn &fn) { DeclContext *moduleScope = DC->getModuleScopeContext(); if (auto file = dyn_cast(moduleScope)) file->forAllVisibleModules(fn); else cast(moduleScope)->forAllVisibleModules(ModuleDecl::AccessPathTy(), fn); } bool swift::removeOverriddenDecls(SmallVectorImpl &decls) { if (decls.size() < 2) return false; llvm::SmallPtrSet overridden; for (auto decl : decls) { while (auto overrides = decl->getOverriddenDecl()) { overridden.insert(overrides); // Because initializers from Objective-C base classes have greater // visibility than initializers written in Swift classes, we can // have a "break" in the set of declarations we found, where // C.init overrides B.init overrides A.init, but only C.init and // A.init are in the chain. Make sure we still remove A.init from the // set in this case. if (decl->getFullName().getBaseName() == DeclBaseName::createConstructor()) { /// FIXME: Avoid the possibility of an infinite loop by fixing the root /// cause instead (incomplete circularity detection). assert(decl != overrides && "Circular class inheritance?"); decl = overrides; continue; } break; } } // If no methods were overridden, we're done. if (overridden.empty()) return false; // Erase any overridden declarations bool anyOverridden = false; decls.erase(std::remove_if(decls.begin(), decls.end(), [&](ValueDecl *decl) -> bool { if (overridden.count(decl) > 0) { anyOverridden = true; return true; } return false; }), decls.end()); return anyOverridden; } enum class ConstructorComparison { Worse, Same, Better, }; /// Determines whether \p ctor1 is a "better" initializer than \p ctor2. static ConstructorComparison compareConstructors(ConstructorDecl *ctor1, ConstructorDecl *ctor2, const swift::ASTContext &ctx) { bool available1 = !ctor1->getAttrs().isUnavailable(ctx); bool available2 = !ctor2->getAttrs().isUnavailable(ctx); // An unavailable initializer is always worse than an available initializer. if (available1 < available2) return ConstructorComparison::Worse; if (available1 > available2) return ConstructorComparison::Better; CtorInitializerKind kind1 = ctor1->getInitKind(); CtorInitializerKind kind2 = ctor2->getInitKind(); if (kind1 > kind2) return ConstructorComparison::Worse; if (kind1 < kind2) return ConstructorComparison::Better; return ConstructorComparison::Same; } /// Given a set of declarations whose names and signatures have matched, /// figure out which of these declarations have been shadowed by others. static void recordShadowedDeclsAfterSignatureMatch( ArrayRef decls, const ModuleDecl *curModule, llvm::SmallPtrSetImpl &shadowed) { assert(decls.size() > 1 && "Nothing collided"); // Compare each declaration to every other declaration. This is // unavoidably O(n^2) in the number of declarations, but because they // all have the same signature, we expect n to remain small. ASTContext &ctx = curModule->getASTContext(); for (unsigned firstIdx : indices(decls)) { auto firstDecl = decls[firstIdx]; auto firstModule = firstDecl->getModuleContext(); auto firstSig = firstDecl->getOverloadSignature(); for (unsigned secondIdx : range(firstIdx + 1, decls.size())) { // Determine whether one module takes precedence over another. auto secondDecl = decls[secondIdx]; auto secondModule = secondDecl->getModuleContext(); // Swift 4 compatibility hack: Don't shadow properties defined in // extensions of generic types with properties defined elsewhere. // This is due to the fact that in Swift 4, we only gave custom overload // types to properties in extensions of generic types, otherwise we // used the null type. if (!ctx.isSwiftVersionAtLeast(5)) { auto secondSig = secondDecl->getOverloadSignature(); if (firstSig.IsVariable && secondSig.IsVariable) if (firstSig.InExtensionOfGenericType != secondSig.InExtensionOfGenericType) continue; } // If one declaration is in a protocol or extension thereof and the // other is not, prefer the one that is not. if ((bool)firstDecl->getDeclContext() ->getAsProtocolOrProtocolExtensionContext() != (bool)secondDecl->getDeclContext() ->getAsProtocolOrProtocolExtensionContext()) { if (firstDecl->getDeclContext() ->getAsProtocolOrProtocolExtensionContext()) { shadowed.insert(firstDecl); break; } else { shadowed.insert(secondDecl); continue; } } // If one declaration is available and the other is not, prefer the // available one. if (firstDecl->getAttrs().isUnavailable(ctx) != secondDecl->getAttrs().isUnavailable(ctx)) { if (firstDecl->getAttrs().isUnavailable(ctx)) { shadowed.insert(firstDecl); break; } else { shadowed.insert(secondDecl); continue; } } // Don't apply module-shadowing rules to members of protocol types. if (isa(firstDecl->getDeclContext()) || isa(secondDecl->getDeclContext())) continue; // Prefer declarations in the current module over those in another // module. // FIXME: This is a hack. We should query a (lazily-built, cached) // module graph to determine shadowing. if ((firstModule == curModule) != (secondModule == curModule)) { // If the first module is the current module, the second declaration // is shadowed by the first. if (firstModule == curModule) { shadowed.insert(secondDecl); continue; } // Otherwise, the first declaration is shadowed by the second. There is // no point in continuing to compare the first declaration to others. shadowed.insert(firstDecl); break; } // Prefer declarations in an overlay to similar declarations in // the Clang module it customizes. if (firstDecl->hasClangNode() != secondDecl->hasClangNode()) { auto clangLoader = ctx.getClangModuleLoader(); if (!clangLoader) continue; if (clangLoader->isInOverlayModuleForImportedModule( firstDecl->getDeclContext(), secondDecl->getDeclContext())) { shadowed.insert(secondDecl); continue; } if (clangLoader->isInOverlayModuleForImportedModule( secondDecl->getDeclContext(), firstDecl->getDeclContext())) { shadowed.insert(firstDecl); break; } } } } } /// Look through the given set of declarations (that all have the same name), /// recording those that are shadowed by another declaration in the /// \c shadowed set. static void recordShadowDeclsAfterObjCInitMatch( ArrayRef ctors, llvm::SmallPtrSetImpl &shadowed) { assert(ctors.size() > 1 && "No collisions"); ASTContext &ctx = ctors.front()->getASTContext(); // Find the "best" constructor with this signature. ConstructorDecl *bestCtor = ctors[0]; for (auto ctor : ctors.slice(1)) { auto comparison = compareConstructors(ctor, bestCtor, ctx); if (comparison == ConstructorComparison::Better) bestCtor = ctor; } // Shadow any initializers that are worse. for (auto ctor : ctors) { auto comparison = compareConstructors(ctor, bestCtor, ctx); if (comparison == ConstructorComparison::Worse) shadowed.insert(ctor); } } /// Look through the given set of declarations (that all have the same name), /// recording those that are shadowed by another declaration in the /// \c shadowed set. static void recordShadowedDecls(ArrayRef decls, const ModuleDecl *curModule, llvm::SmallPtrSetImpl &shadowed) { if (decls.size() < 2) return; auto typeResolver = decls[0]->getASTContext().getLazyResolver(); // Categorize all of the declarations based on their overload signatures. llvm::SmallDenseMap> collisions; llvm::SmallVector collisionTypes; llvm::SmallDenseMap> objCInitializerCollisions; llvm::TinyPtrVector objCInitializerCollisionNominals; for (auto decl : decls) { // Specifically keep track of Objective-C initializers, which can come from // either init methods or factory methods. if (decl->hasClangNode()) { if (auto ctor = dyn_cast(decl)) { auto nominal = ctor->getDeclContext() ->getAsNominalTypeOrNominalTypeExtensionContext(); auto &knownInits = objCInitializerCollisions[nominal]; if (knownInits.size() == 1) { objCInitializerCollisionNominals.push_back(nominal); } knownInits.push_back(ctor); } } // We need an interface type here. if (typeResolver) typeResolver->resolveDeclSignature(decl); // If the decl is currently being validated, this is likely a recursive // reference and we'll want to skip ahead so as to avoid having its type // attempt to desugar itself. if (!decl->hasValidSignature()) continue; // FIXME: the canonical type makes a poor signature, because we don't // canonicalize away default arguments. auto signature = decl->getInterfaceType()->getCanonicalType(); // FIXME: The type of a variable or subscript doesn't include // enough context to distinguish entities from different // constrained extensions, so use the overload signature's // type. This is layering a partial fix upon a total hack. if (auto asd = dyn_cast(decl)) signature = asd->getOverloadSignatureType(); // Record this declaration based on its signature. auto &known = collisions[signature]; if (known.size() == 1) { collisionTypes.push_back(signature); } known.push_back(decl); } // Check whether we have shadowing for signature collisions. for (auto signature : collisionTypes) { recordShadowedDeclsAfterSignatureMatch(collisions[signature], curModule, shadowed); } // Check whether we have shadowing for Objective-C initializer collisions. for (auto nominal : objCInitializerCollisionNominals) { recordShadowDeclsAfterObjCInitMatch(objCInitializerCollisions[nominal], shadowed); } } bool swift::removeShadowedDecls(SmallVectorImpl &decls, const ModuleDecl *curModule) { // Collect declarations with the same (full) name. llvm::SmallDenseMap> collidingDeclGroups; bool anyCollisions = false; for (auto decl : decls) { // Record this declaration based on its full name. auto &knownDecls = collidingDeclGroups[decl->getFullName()]; if (!knownDecls.empty()) anyCollisions = true; knownDecls.push_back(decl); } // If nothing collided, we're done. if (!anyCollisions) return false; // Walk through the declarations again, marking any declarations that shadow. llvm::SmallPtrSet shadowed; for (auto decl : decls) { auto known = collidingDeclGroups.find(decl->getFullName()); if (known == collidingDeclGroups.end()) { // We already handled this group. continue; } recordShadowedDecls(known->second, curModule, shadowed); collidingDeclGroups.erase(known); } // If no declarations were shadowed, we're done. if (shadowed.empty()) return false; // Remove shadowed declarations from the list of declarations. bool anyRemoved = false; decls.erase(std::remove_if(decls.begin(), decls.end(), [&](ValueDecl *vd) { if (shadowed.count(vd) > 0) { anyRemoved = true; return true; } return false; }), decls.end()); return anyRemoved; } namespace { enum class DiscriminatorMatch { NoDiscriminator, Matches, Different }; } // end anonymous namespace static DiscriminatorMatch matchDiscriminator(Identifier discriminator, const ValueDecl *value) { if (value->getFormalAccess() > AccessLevel::FilePrivate) return DiscriminatorMatch::NoDiscriminator; auto containingFile = dyn_cast(value->getDeclContext()->getModuleScopeContext()); if (!containingFile) return DiscriminatorMatch::Different; if (discriminator == containingFile->getDiscriminatorForPrivateValue(value)) return DiscriminatorMatch::Matches; return DiscriminatorMatch::Different; } static DiscriminatorMatch matchDiscriminator(Identifier discriminator, LookupResultEntry lookupResult) { return matchDiscriminator(discriminator, lookupResult.getValueDecl()); } template static void filterForDiscriminator(SmallVectorImpl &results, DebuggerClient *debugClient) { Identifier discriminator = debugClient->getPreferredPrivateDiscriminator(); if (discriminator.empty()) return; auto lastMatchIter = std::find_if(results.rbegin(), results.rend(), [discriminator](Result next) -> bool { return matchDiscriminator(discriminator, next) == DiscriminatorMatch::Matches; }); if (lastMatchIter == results.rend()) return; Result lastMatch = *lastMatchIter; auto newEnd = std::remove_if(results.begin(), lastMatchIter.base()-1, [discriminator](Result next) -> bool { return matchDiscriminator(discriminator, next) == DiscriminatorMatch::Different; }); results.erase(newEnd, results.end()); results.push_back(lastMatch); } static void recordLookupOfTopLevelName(DeclContext *topLevelContext, DeclName name, bool isCascading) { auto SF = dyn_cast(topLevelContext); if (!SF) return; auto *nameTracker = SF->getReferencedNameTracker(); if (!nameTracker) return; nameTracker->addTopLevelName(name.getBaseName(), isCascading); } /// Determine the local declaration visibility key for an \c ASTScope in which /// name lookup successfully resolved. static DeclVisibilityKind getLocalDeclVisibilityKind(const ASTScope *scope) { switch (scope->getKind()) { case ASTScopeKind::Preexpanded: case ASTScopeKind::SourceFile: case ASTScopeKind::TypeDecl: case ASTScopeKind::AbstractFunctionDecl: case ASTScopeKind::TypeOrExtensionBody: case ASTScopeKind::AbstractFunctionBody: case ASTScopeKind::DefaultArgument: case ASTScopeKind::PatternBinding: case ASTScopeKind::IfStmt: case ASTScopeKind::GuardStmt: case ASTScopeKind::RepeatWhileStmt: case ASTScopeKind::ForEachStmt: case ASTScopeKind::DoCatchStmt: case ASTScopeKind::SwitchStmt: case ASTScopeKind::Accessors: case ASTScopeKind::TopLevelCode: llvm_unreachable("no local declarations?"); case ASTScopeKind::ExtensionGenericParams: case ASTScopeKind::GenericParams: return DeclVisibilityKind::GenericParameter; case ASTScopeKind::AbstractFunctionParams: case ASTScopeKind::Closure: case ASTScopeKind::PatternInitializer: // lazy var 'self' return DeclVisibilityKind::FunctionParameter; case ASTScopeKind::AfterPatternBinding: case ASTScopeKind::ConditionalClause: case ASTScopeKind::ForEachPattern: case ASTScopeKind::BraceStmt: case ASTScopeKind::CatchStmt: case ASTScopeKind::CaseStmt: return DeclVisibilityKind::LocalVariable; } llvm_unreachable("Unhandled ASTScopeKind in switch."); } /// Retrieve the set of type declarations that are directly referenced from /// the given parsed type representation. static DirectlyReferencedTypeDecls directReferencesForTypeRepr(Evaluator &evaluator, ASTContext &ctx, TypeRepr *typeRepr, DeclContext *dc); /// Retrieve the set of type declarations that are directly referenced from /// the given type. static DirectlyReferencedTypeDecls directReferencesForType(Type type); /// Given a set of type declarations, find all of the nominal type declarations /// that they reference, looking through typealiases as appropriate. static TinyPtrVector resolveTypeDeclsToNominal(Evaluator &evaluator, ASTContext &ctx, ArrayRef typeDecls, SmallVectorImpl &modulesFound, bool &anyObject); TinyPtrVector SelfBoundsFromWhereClauseRequest::evaluate(Evaluator &evaluator, ExtensionDecl *ext) const { auto proto = ext->getAsProtocolExtensionContext(); assert(proto && "Not a protocol extension?"); ASTContext &ctx = proto->getASTContext(); TinyPtrVector result; for (const auto &req : ext->getGenericParams()->getTrailingRequirements()) { // We only care about type constraints. if (req.getKind() != RequirementReprKind::TypeConstraint) continue; // The left-hand side of the type constraint must be 'Self'. bool isSelfLHS = false; if (auto typeRepr = req.getSubjectRepr()) { if (auto identTypeRepr = dyn_cast(typeRepr)) isSelfLHS = (identTypeRepr->getIdentifier() == ctx.Id_Self); } else if (Type type = req.getSubject()) { isSelfLHS = type->isEqual(proto->getSelfInterfaceType()); } if (!isSelfLHS) continue; // Resolve the right-hand side. DirectlyReferencedTypeDecls rhsDecls; if (auto typeRepr = req.getConstraintRepr()) { rhsDecls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext); } else if (Type type = req.getConstraint()) { rhsDecls = directReferencesForType(type); } SmallVector modulesFound; bool anyObject = false; auto rhsNominals = resolveTypeDeclsToNominal(evaluator, ctx, rhsDecls, modulesFound, anyObject); result.insert(result.end(), rhsNominals.begin(), rhsNominals.end()); } return result; } UnqualifiedLookup::UnqualifiedLookup(DeclName Name, DeclContext *DC, LazyResolver *TypeResolver, SourceLoc Loc, Options options) : IndexOfFirstOuterResult(0) { ModuleDecl &M = *DC->getParentModule(); ASTContext &Ctx = M.getASTContext(); if (!TypeResolver) TypeResolver = Ctx.getLazyResolver(); const SourceManager &SM = Ctx.SourceMgr; DebuggerClient *DebugClient = M.getDebugClient(); auto isOriginallyTypeLookup = options.contains(Flags::TypeLookup); NamedDeclConsumer Consumer(Name, Results, isOriginallyTypeLookup); NLOptions baseNLOptions = NL_UnqualifiedDefault; if (options.contains(Flags::AllowProtocolMembers)) baseNLOptions |= NL_ProtocolMembers; if (isOriginallyTypeLookup) baseNLOptions |= NL_OnlyTypes; if (options.contains(Flags::IgnoreAccessControl)) baseNLOptions |= NL_IgnoreAccessControl; Optional isCascadingUse; if (options.contains(Flags::KnownPrivate)) isCascadingUse = false; SmallVector UnavailableInnerResults; auto shouldReturnBasedOnResults = [&](bool noMoreOuterResults = false) { if (Results.empty()) return false; if (IndexOfFirstOuterResult == 0) IndexOfFirstOuterResult = Results.size(); return !options.contains(Flags::IncludeOuterResults) || noMoreOuterResults; }; if (Loc.isValid() && DC->getParentSourceFile()->Kind != SourceFileKind::REPL && Ctx.LangOpts.EnableASTScopeLookup) { // Find the source file in which we are performing the lookup. SourceFile &sourceFile = *DC->getParentSourceFile(); // Find the scope from which we will initiate unqualified name lookup. const ASTScope *lookupScope = sourceFile.getScope().findInnermostEnclosingScope(Loc); // Operator lookup is always at module scope. if (Name.isOperator()) { if (!isCascadingUse.hasValue()) { DeclContext *innermostDC = lookupScope->getInnermostEnclosingDeclContext(); isCascadingUse = innermostDC->isCascadingContextForLookup( /*functionsAreNonCascading=*/true); } lookupScope = &sourceFile.getScope(); } // Walk scopes outward from the innermost scope until we find something. DeclContext *selfDC = nullptr; for (auto currentScope = lookupScope; currentScope; currentScope = currentScope->getParent()) { // Perform local lookup within this scope. auto localBindings = currentScope->getLocalBindings(); for (auto local : localBindings) { Consumer.foundDecl(local, getLocalDeclVisibilityKind(currentScope)); } // If we found anything, we're done. if (shouldReturnBasedOnResults()) return; // When we are in the body of a method, get the 'self' declaration. if (currentScope->getKind() == ASTScopeKind::AbstractFunctionBody && currentScope->getAbstractFunctionDecl()->getDeclContext() ->isTypeContext()) { selfDC = currentScope->getAbstractFunctionDecl(); continue; } // If there is a declaration context associated with this scope, we might // want to look in it. if (auto dc = currentScope->getDeclContext()) { // If we haven't determined whether we have a cascading use, do so now. if (!isCascadingUse.hasValue()) { isCascadingUse = dc->isCascadingContextForLookup(/*functionsAreNonCascading=*/false); } // Pattern binding initializers are only interesting insofar as they // affect lookup in an enclosing nominal type or extension thereof. if (auto *bindingInit = dyn_cast(dc)) { // Lazy variable initializer contexts have a 'self' parameter for // instance member lookup. if (bindingInit->getImplicitSelfDecl()) selfDC = bindingInit; continue; } // Default arguments only have 'static' access to the members of the // enclosing type, if there is one. if (isa(dc)) continue; // Functions/initializers/deinitializers are only interesting insofar as // they affect lookup in an enclosing nominal type or extension thereof. if (isa(dc)) continue; // Subscripts have no lookup of their own. if (isa(dc)) continue; // Closures have no lookup of their own. if (isa(dc)) continue; // Top-level declarations have no lookup of their own. if (isa(dc)) continue; // Typealiases have no lookup of their own. if (isa(dc)) continue; // Lookup in the source file's scope marks the end. if (isa(dc)) { // FIXME: A bit of a hack. DC = dc; break; } // We have a nominal type or an extension thereof. Perform lookup into // the nominal type. auto nominal = dc->getAsNominalTypeOrNominalTypeExtensionContext(); if (!nominal) continue; // Dig out the type we're looking into. SmallVector lookupDecls; lookupDecls.push_back(nominal); // For a protocol extension, check whether there are additional // "Self" constraints that can affect name lookup. if (isa(nominal)) { if (auto ext = dyn_cast(dc)) { for (auto bound : Ctx.evaluator(SelfBoundsFromWhereClauseRequest{ext})) lookupDecls.push_back(bound); } } NLOptions options = baseNLOptions; // Perform lookup into the type. if (isCascadingUse.getValue()) options |= NL_KnownCascadingDependency; else options |= NL_KnownNonCascadingDependency; SmallVector lookup; dc->lookupQualified(lookupDecls, Name, options, lookup); auto startIndex = Results.size(); for (auto result : lookup) { auto *baseDC = dc; if (!isa(result) && selfDC) baseDC = selfDC; Results.push_back(LookupResultEntry(baseDC, result)); } if (!Results.empty()) { // Predicate that determines whether a lookup result should // be unavailable except as a last-ditch effort. auto unavailableLookupResult = [&](const LookupResultEntry &result) { auto &effectiveVersion = Ctx.LangOpts.EffectiveLanguageVersion; return result.getValueDecl()->getAttrs() .isUnavailableInSwiftVersion(effectiveVersion); }; // If all of the results we just found are unavailable, keep looking. auto begin = Results.begin() + startIndex; if (std::all_of(begin, Results.end(), unavailableLookupResult)) { UnavailableInnerResults.append(begin, Results.end()); Results.erase(begin, Results.end()); } else { if (DebugClient) filterForDiscriminator(Results, DebugClient); if (shouldReturnBasedOnResults()) return; } } // Forget the 'self' declaration. selfDC = nullptr; } } } else { // Never perform local lookup for operators. if (Name.isOperator()) { if (!isCascadingUse.hasValue()) { isCascadingUse = DC->isCascadingContextForLookup(/*functionsAreNonCascading=*/true); } DC = DC->getModuleScopeContext(); } else { // If we are inside of a method, check to see if there are any ivars in // scope, and if so, whether this is a reference to one of them. // FIXME: We should persist this information between lookups. while (!DC->isModuleScopeContext()) { DeclContext *BaseDC = nullptr; DeclContext *MetaBaseDC = nullptr; GenericParamList *GenericParams = nullptr; // Dig out the type we're looking into. SmallVector lookupDecls; // Local function to populate the set of lookup declarations from // the given DeclContext. auto populateLookupDeclsFromContext = [&](DeclContext *dc) { auto nominal = dc->getAsNominalTypeOrNominalTypeExtensionContext(); if (!nominal) return; lookupDecls.push_back(nominal); // For a protocol extension, check whether there are additional // "Self" constraints that can affect name lookup. if (isa(nominal)) { if (auto ext = dyn_cast(dc)) { for (auto bound : Ctx.evaluator(SelfBoundsFromWhereClauseRequest{ext})) lookupDecls.push_back(bound); } } }; if (auto *PBI = dyn_cast(DC)) { auto *PBD = PBI->getBinding(); assert(PBD); // Lazy variable initializer contexts have a 'self' parameter for // instance member lookup. if (auto *selfParam = PBI->getImplicitSelfDecl()) { Consumer.foundDecl(selfParam, DeclVisibilityKind::FunctionParameter); if (shouldReturnBasedOnResults()) return; DC = DC->getParent(); populateLookupDeclsFromContext(DC); MetaBaseDC = DC; BaseDC = PBI; } // Initializers for stored properties of types perform static // lookup into the surrounding context. else if (PBD->getDeclContext()->isTypeContext()) { DC = DC->getParent(); populateLookupDeclsFromContext(DC); MetaBaseDC = DC; BaseDC = MetaBaseDC; isCascadingUse = DC->isCascadingContextForLookup(false); } // Otherwise, we have an initializer for a global or local property. // There's not much to find here, we'll keep going up to a parent // context. if (!isCascadingUse.hasValue()) isCascadingUse = DC->isCascadingContextForLookup(false); } else if (auto *AFD = dyn_cast(DC)) { // Look for local variables; normally, the parser resolves these // for us, but it can't do the right thing inside local types. // FIXME: when we can parse and typecheck the function body partially // for code completion, AFD->getBody() check can be removed. if (Loc.isValid() && AFD->getBody()) { if (!isCascadingUse.hasValue()) { isCascadingUse = !SM.rangeContainsTokenLoc(AFD->getBodySourceRange(), Loc); } namelookup::FindLocalVal localVal(SM, Loc, Consumer); localVal.visit(AFD->getBody()); if (shouldReturnBasedOnResults()) return; if (auto *P = AFD->getImplicitSelfDecl()) localVal.checkValueDecl(P, DeclVisibilityKind::FunctionParameter); localVal.checkParameterList(AFD->getParameters()); if (shouldReturnBasedOnResults()) return; } if (!isCascadingUse.hasValue() || isCascadingUse.getValue()) isCascadingUse = AFD->isCascadingContextForLookup(false); if (AFD->getDeclContext()->isTypeContext()) { populateLookupDeclsFromContext(AFD->getDeclContext()); BaseDC = AFD; MetaBaseDC = AFD->getDeclContext(); DC = DC->getParent(); // If we're not in the body of the function (for example, we // might be type checking a default argument expression and // performing name lookup from there), the base declaration // is the nominal type, not 'self'. if (!AFD->isImplicit() && Loc.isValid() && AFD->getBodySourceRange().isValid() && !SM.rangeContainsTokenLoc(AFD->getBodySourceRange(), Loc)) { BaseDC = MetaBaseDC; } } // Look in the generic parameters after checking our local declaration. GenericParams = AFD->getGenericParams(); } else if (auto *SD = dyn_cast(DC)) { GenericParams = SD->getGenericParams(); } else if (auto *ACE = dyn_cast(DC)) { // Look for local variables; normally, the parser resolves these // for us, but it can't do the right thing inside local types. if (Loc.isValid()) { if (auto *CE = dyn_cast(ACE)) { namelookup::FindLocalVal localVal(SM, Loc, Consumer); if (auto body = CE->getBody()) localVal.visit(body); if (shouldReturnBasedOnResults()) return; if (auto params = CE->getParameters()) localVal.checkParameterList(params); if (shouldReturnBasedOnResults()) return; } } if (!isCascadingUse.hasValue()) isCascadingUse = ACE->isCascadingContextForLookup(false); } else if (auto *ED = dyn_cast(DC)) { auto ExtendedNominal = ED->getExtendedNominal(); if (!ExtendedNominal) { DC = ED->getParent(); continue; } populateLookupDeclsFromContext(ED); BaseDC = ED; MetaBaseDC = ED; if (!isCascadingUse.hasValue()) isCascadingUse = ED->isCascadingContextForLookup(false); } else if (auto *ND = dyn_cast(DC)) { populateLookupDeclsFromContext(ND); BaseDC = DC; MetaBaseDC = DC; if (!isCascadingUse.hasValue()) isCascadingUse = ND->isCascadingContextForLookup(false); } else if (auto I = dyn_cast(DC)) { // In a default argument, skip immediately out of both the // initializer and the function. isCascadingUse = false; DC = I->getParent()->getParent(); continue; } else { assert(isa(DC) || isa(DC) || isa(DC)); if (!isCascadingUse.hasValue()) isCascadingUse = DC->isCascadingContextForLookup(false); } // Check the generic parameters for something with the given name. if (GenericParams) { namelookup::FindLocalVal localVal(SM, Loc, Consumer); localVal.checkGenericParams(GenericParams); if (shouldReturnBasedOnResults()) return; } if (BaseDC && !lookupDecls.empty()) { NLOptions options = baseNLOptions; if (isCascadingUse.getValue()) options |= NL_KnownCascadingDependency; else options |= NL_KnownNonCascadingDependency; SmallVector Lookup; DC->lookupQualified(lookupDecls, Name, options, Lookup); bool FoundAny = false; auto startIndex = Results.size(); for (auto Result : Lookup) { // Classify this declaration. FoundAny = true; // Types are local or metatype members. if (auto TD = dyn_cast(Result)) { if (isa(TD)) Results.push_back(LookupResultEntry(Result)); else Results.push_back(LookupResultEntry(MetaBaseDC, Result)); continue; } Results.push_back(LookupResultEntry(BaseDC, Result)); } if (FoundAny) { // Predicate that determines whether a lookup result should // be unavailable except as a last-ditch effort. auto unavailableLookupResult = [&](const LookupResultEntry &result) { auto &effectiveVersion = Ctx.LangOpts.EffectiveLanguageVersion; return result.getValueDecl()->getAttrs() .isUnavailableInSwiftVersion(effectiveVersion); }; // If all of the results we found are unavailable, keep looking. auto begin = Results.begin() + startIndex; if (std::all_of(begin, Results.end(), unavailableLookupResult)) { UnavailableInnerResults.append(begin, Results.end()); Results.erase(begin, Results.end()); } else { if (DebugClient) filterForDiscriminator(Results, DebugClient); if (shouldReturnBasedOnResults()) return; } } } // Check the generic parameters if our context is a generic type or // extension thereof. GenericParamList *dcGenericParams = nullptr; if (auto nominal = dyn_cast(DC)) dcGenericParams = nominal->getGenericParams(); else if (auto ext = dyn_cast(DC)) dcGenericParams = ext->getGenericParams(); else if (auto subscript = dyn_cast(DC)) dcGenericParams = subscript->getGenericParams(); while (dcGenericParams) { namelookup::FindLocalVal localVal(SM, Loc, Consumer); localVal.checkGenericParams(dcGenericParams); if (shouldReturnBasedOnResults()) return; if (!isa(DC)) break; dcGenericParams = dcGenericParams->getOuterParameters(); } DC = DC->getParentForLookup(); } if (!isCascadingUse.hasValue()) isCascadingUse = true; } if (auto SF = dyn_cast(DC)) { if (Loc.isValid()) { // Look for local variables in top-level code; normally, the parser // resolves these for us, but it can't do the right thing for // local types. namelookup::FindLocalVal localVal(SM, Loc, Consumer); localVal.checkSourceFile(*SF); if (shouldReturnBasedOnResults()) return; } } } // TODO: Does the debugger client care about compound names? if (Name.isSimpleName() && DebugClient && DebugClient->lookupOverrides(Name.getBaseName(), DC, Loc, isOriginallyTypeLookup, Results)) return; recordLookupOfTopLevelName(DC, Name, isCascadingUse.getValue()); // Add private imports to the extra search list. SmallVector extraImports; if (auto FU = dyn_cast(DC)) FU->getImportedModules(extraImports, ModuleDecl::ImportFilter::Private); using namespace namelookup; SmallVector CurModuleResults; auto resolutionKind = isOriginallyTypeLookup ? ResolutionKind::TypesOnly : ResolutionKind::Overloadable; lookupInModule(&M, {}, Name, CurModuleResults, NLKind::UnqualifiedLookup, resolutionKind, TypeResolver, DC, extraImports); for (auto VD : CurModuleResults) Results.push_back(LookupResultEntry(VD)); if (DebugClient) filterForDiscriminator(Results, DebugClient); // Now add any names the DebugClient knows about to the lookup. if (Name.isSimpleName() && DebugClient) DebugClient->lookupAdditions(Name.getBaseName(), DC, Loc, isOriginallyTypeLookup, Results); // If we've found something, we're done. if (shouldReturnBasedOnResults(/*noMoreOuterResults=*/true)) return; // If we still haven't found anything, but we do have some // declarations that are "unavailable in the current Swift", drop // those in. Results = std::move(UnavailableInnerResults); if (shouldReturnBasedOnResults(/*noMoreOuterResults=*/true)) return; if (!Name.isSimpleName()) return; // Look for a module with the given name. if (Name.isSimpleName(M.getName())) { Results.push_back(LookupResultEntry(&M)); if (shouldReturnBasedOnResults(/*noMoreOuterResults=*/true)) return; } ModuleDecl *desiredModule = Ctx.getLoadedModule(Name.getBaseIdentifier()); if (!desiredModule && Name == Ctx.TheBuiltinModule->getName()) desiredModule = Ctx.TheBuiltinModule; if (desiredModule) { forAllVisibleModules(DC, [&](const ModuleDecl::ImportedModule &import) -> bool { if (import.second == desiredModule) { Results.push_back(LookupResultEntry(import.second)); return false; } return true; }); } // Make sure we've recorded the inner-result-boundary. (void)shouldReturnBasedOnResults(/*noMoreOuterResults=*/true); } TypeDecl* UnqualifiedLookup::getSingleTypeResult() { if (Results.size() != 1) return nullptr; return dyn_cast(Results.back().getValueDecl()); } #pragma mark Member lookup table void LazyMemberLoader::anchor() {} void LazyConformanceLoader::anchor() {} /// Lookup table used to store members of a nominal type (and its extensions) /// for fast retrieval. class swift::MemberLookupTable { /// The last extension that was included within the member lookup table's /// results. ExtensionDecl *LastExtensionIncluded = nullptr; /// The type of the internal lookup table. typedef llvm::DenseMap> LookupTable; /// Lookup table mapping names to the set of declarations with that name. LookupTable Lookup; public: /// Create a new member lookup table. explicit MemberLookupTable(ASTContext &ctx); /// Update a lookup table with members from newly-added extensions. void updateLookupTable(NominalTypeDecl *nominal); /// \brief Add the given member to the lookup table. void addMember(Decl *members); /// \brief Add the given members to the lookup table. void addMembers(DeclRange members); /// \brief The given extension has been extended with new members; add them /// if appropriate. void addExtensionMembers(NominalTypeDecl *nominal, ExtensionDecl *ext, DeclRange members); /// Iterator into the lookup table. typedef LookupTable::iterator iterator; iterator begin() { return Lookup.begin(); } iterator end() { return Lookup.end(); } iterator find(DeclName name) { return Lookup.find(name); } // \brief Mark all Decls in this table as not-resident in a table, drop // references to them. Should only be called when this was not fully-populated // from an IterableDeclContext. void clear() { // LastExtensionIncluded would only be non-null if this was populated from // an IterableDeclContext (though it might still be null in that case). assert(LastExtensionIncluded == nullptr); for (auto const &i : Lookup) { for (auto d : i.getSecond()) { d->setAlreadyInLookupTable(false); } } Lookup.clear(); } // Only allow allocation of member lookup tables using the allocator in // ASTContext or by doing a placement new. void *operator new(size_t Bytes, ASTContext &C, unsigned Alignment = alignof(MemberLookupTable)) { return C.Allocate(Bytes, Alignment); } void *operator new(size_t Bytes, void *Mem) { assert(Mem); return Mem; } }; namespace { /// Stores the set of Objective-C methods with a given selector within the /// Objective-C method lookup table. struct StoredObjCMethods { /// The generation count at which this list was last updated. unsigned Generation = 0; /// The set of methods with the given selector. llvm::TinyPtrVector Methods; }; } // end anonymous namespace /// Class member lookup table, which is a member lookup table with a second /// table for lookup based on Objective-C selector. class ClassDecl::ObjCMethodLookupTable : public llvm::DenseMap, StoredObjCMethods> { public: // Only allow allocation of member lookup tables using the allocator in // ASTContext or by doing a placement new. void *operator new(size_t Bytes, ASTContext &C, unsigned Alignment = alignof(MemberLookupTable)) { return C.Allocate(Bytes, Alignment); } void *operator new(size_t Bytes, void *Mem) { assert(Mem); return Mem; } }; MemberLookupTable::MemberLookupTable(ASTContext &ctx) { // Register a cleanup with the ASTContext to call the lookup table // destructor. ctx.addCleanup([this]() { this->~MemberLookupTable(); }); } void MemberLookupTable::addMember(Decl *member) { // Only value declarations matter. auto vd = dyn_cast(member); if (!vd) return; // Unnamed entities cannot be found by name lookup. if (!vd->hasName()) return; // If this declaration is already in the lookup table, don't add it // again. if (vd->isAlreadyInLookupTable()) { return; } vd->setAlreadyInLookupTable(); // Add this declaration to the lookup set under its compound name and simple // name. vd->getFullName().addToLookupTable(Lookup, vd); } void MemberLookupTable::addMembers(DeclRange members) { for (auto member : members) { addMember(member); } } void MemberLookupTable::addExtensionMembers(NominalTypeDecl *nominal, ExtensionDecl *ext, DeclRange members) { // We have not processed any extensions yet, so there's nothing to do. if (!LastExtensionIncluded) return; // If this extension shows up in the list of extensions not yet included // in the lookup table, there's nothing to do. for (auto notIncluded = LastExtensionIncluded->NextExtension.getPointer(); notIncluded; notIncluded = notIncluded->NextExtension.getPointer()) { if (notIncluded == ext) return; } // Add the new members to the lookup table. addMembers(members); } void MemberLookupTable::updateLookupTable(NominalTypeDecl *nominal) { // If the last extension we included is the same as the last known extension, // we're already up-to-date. if (LastExtensionIncluded == nominal->LastExtension) return; // Add members from each of the extensions that we have not yet visited. for (auto next = LastExtensionIncluded ? LastExtensionIncluded->NextExtension.getPointer() : nominal->FirstExtension; next; (LastExtensionIncluded = next,next = next->NextExtension.getPointer())) { addMembers(next->getMembers()); } } void NominalTypeDecl::addedMember(Decl *member) { // If we have a lookup table, add the new member to it. if (LookupTable.getPointer()) { LookupTable.getPointer()->addMember(member); } } void ExtensionDecl::addedMember(Decl *member) { if (NextExtension.getInt()) { auto nominal = getExtendedNominal(); if (!nominal) return; if (nominal->LookupTable.getPointer() && nominal->LookupTable.getInt()) { // Make sure we have the complete list of extensions. // FIXME: This is completely unnecessary. We want to determine whether // our own extension has already been included in the lookup table. (void)nominal->getExtensions(); nominal->LookupTable.getPointer()->addMember(member); } } } // For lack of anywhere more sensible to put it, here's a diagram of the pieces // involved in finding members and extensions of a NominalTypeDecl. // // ┌────────────────────────────┬─┐ // │IterableDeclContext │ │ ┌─────────────────────────────┐ // │------------------- │ │ │┌───────────────┬┐ ▼ // │Decl *LastDecl ───────────┼─┼─────┘│Decl ││ ┌───────────────┬┐ // │Decl *FirstDecl ───────────┼─┼─────▶│---- ││ │Decl ││ // │ │ │ │Decl *NextDecl├┼─▶│---- ││ // │bool HasLazyMembers │ │ ├───────────────┘│ │Decl *NextDecl ││ // │IterableDeclContextKind Kind│ │ │ │ ├───────────────┘│ // │ │ │ │ValueDecl │ │ │ // ├────────────────────────────┘ │ │--------- │ │ValueDecl │ // │ │ │DeclName Name │ │--------- │ // │NominalTypeDecl │ └────────────────┘ │DeclName Name │ // │--------------- │ ▲ └────────────────┘ // │ExtensionDecl *FirstExtension─┼────────┐ │ ▲ // │ExtensionDecl *LastExtension ─┼───────┐│ │ └───┐ // │ │ ││ └──────────────────────┐│ // │MemberLookupTable *LookupTable├─┐ ││ ││ // │bool LookupTableComplete │ │ ││ ┌─────────────────┐ ││ // └──────────────────────────────┘ │ ││ │ExtensionDecl │ ││ // │ ││ │------------- │ ││ // ┌─────────────┘ │└────▶│ExtensionDecl │ ││ // │ │ │ *NextExtension ├──┐ ││ // ▼ │ └─────────────────┘ │ ││ // ┌─────────────────────────────────────┐│ ┌─────────────────┐ │ ││ // │MemberLookupTable ││ │ExtensionDecl │ │ ││ // │----------------- ││ │------------- │ │ ││ // │ExtensionDecl *LastExtensionIncluded ├┴─────▶│ExtensionDecl │◀─┘ ││ // │ │ │ *NextExtension │ ││ // │┌───────────────────────────────────┐│ └─────────────────┘ ││ // ││DenseMap LookupTable││ ││ // ││-----------------------------------││ ┌──────────────────────────┐ ││ // ││[NameA] TinyPtrVector ││ │TinyPtrVector│ ││ // ││[NameB] TinyPtrVector ││ │--------------------------│ ││ // ││[NameC] TinyPtrVector─┼┼─▶│[0] ValueDecl * ─────┼─┘│ // │└───────────────────────────────────┘│ │[1] ValueDecl * ─────┼──┘ // └─────────────────────────────────────┘ └──────────────────────────┘ // // The HasLazyMembers, Kind, and LookupTableComplete fields are packed into // PointerIntPairs so don't go grepping for them; but for purposes of // illustration they are effectively their own fields. // // MemberLookupTable is populated en-masse when the IterableDeclContext's // (IDC's) list of Decls is populated. But MemberLookupTable can also be // populated incrementally by one-name-at-a-time lookups by lookupDirect, in // which case those Decls are _not_ added to the IDC's list. They are cached in // the loader they come from, lifecycle-wise, and are added to the // MemberLookupTable to accelerate subsequent retrieval, but the IDC is not // considered populated until someone calls getMembers(). // // If the IDC list is later populated and/or an extension is added _after_ // MemberLookupTable is constructed (and possibly has entries in it), // MemberLookupTable is purged and reconstructed from IDC's list. // // In all lookup routines, the 'ignoreNewExtensions' flag means that // lookup should only use the set of extensions already observed. static bool populateLookupTableEntryFromLazyIDCLoader(ASTContext &ctx, MemberLookupTable &LookupTable, DeclName name, IterableDeclContext *IDC) { if (IDC->isLoadingLazyMembers()) { return false; } IDC->setLoadingLazyMembers(true); auto ci = ctx.getOrCreateLazyIterableContextData(IDC, /*lazyLoader=*/nullptr); if (auto res = ci->loader->loadNamedMembers(IDC, name.getBaseName(), ci->memberData)) { IDC->setLoadingLazyMembers(false); if (auto s = ctx.Stats) { ++s->getFrontendCounters().NamedLazyMemberLoadSuccessCount; } for (auto d : *res) { LookupTable.addMember(d); } return false; } else { IDC->setLoadingLazyMembers(false); if (auto s = ctx.Stats) { ++s->getFrontendCounters().NamedLazyMemberLoadFailureCount; } return true; } } static void populateLookupTableEntryFromCurrentMembersWithoutLoading( ASTContext &ctx, MemberLookupTable &LookupTable, DeclName name, IterableDeclContext *IDC) { for (auto m : IDC->getCurrentMembersWithoutLoading()) { if (auto v = dyn_cast(m)) { if (v->getFullName().matchesRef(name.getBaseName())) { LookupTable.addMember(m); } } } } static bool populateLookupTableEntryFromExtensions(ASTContext &ctx, MemberLookupTable &table, NominalTypeDecl *nominal, DeclName name, bool ignoreNewExtensions) { if (!ignoreNewExtensions) { for (auto e : nominal->getExtensions()) { if (e->wasDeserialized() || e->hasClangNode()) { if (populateLookupTableEntryFromLazyIDCLoader(ctx, table, name, e)) { return true; } } else { populateLookupTableEntryFromCurrentMembersWithoutLoading(ctx, table, name, e); } } } return false; } void NominalTypeDecl::prepareLookupTable(bool ignoreNewExtensions) { // If we haven't allocated the lookup table yet, do so now. if (!LookupTable.getPointer()) { auto &ctx = getASTContext(); LookupTable.setPointer(new (ctx) MemberLookupTable(ctx)); } if (hasLazyMembers()) { // Lazy members: if the table needs population, populate the table _only // from those members already in the IDC member list_ such as implicits or // globals-as-members, then update table entries from the extensions that // have the same names as any such initial-population members. if (!LookupTable.getInt()) { LookupTable.setInt(true); LookupTable.getPointer()->addMembers(getCurrentMembersWithoutLoading()); for (auto *m : getCurrentMembersWithoutLoading()) { if (auto v = dyn_cast(m)) { populateLookupTableEntryFromExtensions(getASTContext(), *LookupTable.getPointer(), this, v->getBaseName(), ignoreNewExtensions); } } } } else { // No lazy members: if the table needs population, populate the table // en-masse; and in either case update the extensions. if (!LookupTable.getInt()) { LookupTable.setInt(true); LookupTable.getPointer()->addMembers(getMembers()); } if (!ignoreNewExtensions) { LookupTable.getPointer()->updateLookupTable(this); } } } void NominalTypeDecl::makeMemberVisible(ValueDecl *member) { if (!LookupTable.getPointer()) { auto &ctx = getASTContext(); LookupTable.setPointer(new (ctx) MemberLookupTable(ctx)); } LookupTable.getPointer()->addMember(member); } TinyPtrVector NominalTypeDecl::lookupDirect( DeclName name, bool ignoreNewExtensions) { ASTContext &ctx = getASTContext(); FrontendStatsTracer tracer(ctx.Stats, "lookup-direct", this); if (auto s = ctx.Stats) { ++s->getFrontendCounters().NominalTypeLookupDirectCount; } // We only use NamedLazyMemberLoading when a user opts-in and we have // not yet loaded all the members into the IDC list in the first place. bool useNamedLazyMemberLoading = (ctx.LangOpts.NamedLazyMemberLoading && hasLazyMembers()); // FIXME: At present, lazy member loading conflicts with a bunch of other code // that appears to special-case initializers (clang-imported initializer // sorting, implicit initializer synthesis), so for the time being we have to // turn it off for them entirely. if (name.getBaseName() == DeclBaseName::createConstructor()) useNamedLazyMemberLoading = false; LLVM_DEBUG(llvm::dbgs() << getNameStr() << ".lookupDirect(" << name << ")" << ", lookupTable.getInt()=" << LookupTable.getInt() << ", hasLazyMembers()=" << hasLazyMembers() << ", useNamedLazyMemberLoading=" << useNamedLazyMemberLoading << "\n"); // We check the LookupTable at most twice, possibly treating a miss in the // first try as a cache-miss that we then do a cache-fill on, and retry. for (int i = 0; i < 2; ++i) { // First, if we're _not_ doing NamedLazyMemberLoading, we make sure we've // populated the IDC and brought it up to date with any extensions. This // will flip the hasLazyMembers() flag to false as well. if (!useNamedLazyMemberLoading) { // It's possible that the lookup table exists but has information in it // that is either currently out of date or soon to be out of date. // This can happen two ways: // // - We've not yet indexed the members we have (LookupTable.getInt() // is zero). // // - We've still got more lazy members left to load; this can happen // even if we _did_ index some members. // // In either of these cases, we want to reset the table to empty and // mark it as needing reconstruction. if (LookupTable.getPointer() && (hasLazyMembers() || !LookupTable.getInt())) { LookupTable.getPointer()->clear(); LookupTable.setInt(false); } (void)getMembers(); // Make sure we have the complete list of members (in this nominal and in // all extensions). if (!ignoreNewExtensions) { for (auto E : getExtensions()) (void)E->getMembers(); } } // Next, in all cases, prepare the lookup table for use, possibly // repopulating it from the IDC if the IDC member list has just grown. prepareLookupTable(ignoreNewExtensions); // Look for a declaration with this name. auto known = LookupTable.getPointer()->find(name); // We found something; return it. if (known != LookupTable.getPointer()->end()) return known->second; // If we have no more second chances, stop now. if (!useNamedLazyMemberLoading || i > 0) break; // If we get here, we had a cache-miss and _are_ using // NamedLazyMemberLoading. Try to populate a _single_ entry in the // MemberLookupTable from both this nominal and all of its extensions, and // retry. Any failure to load here flips the useNamedLazyMemberLoading to // false, and we fall back to loading all members during the retry. auto &Table = *LookupTable.getPointer(); if (populateLookupTableEntryFromLazyIDCLoader(ctx, Table, name, this) || populateLookupTableEntryFromExtensions(ctx, Table, this, name, ignoreNewExtensions)) { useNamedLazyMemberLoading = false; } } // None of our attempts found anything. return { }; } void ClassDecl::createObjCMethodLookup() { assert(!ObjCMethodLookup && "Already have an Objective-C member table"); auto &ctx = getASTContext(); ObjCMethodLookup = new (ctx) ObjCMethodLookupTable(); // Register a cleanup with the ASTContext to call the lookup table // destructor. ctx.addCleanup([this]() { this->ObjCMethodLookup->~ObjCMethodLookupTable(); }); } MutableArrayRef ClassDecl::lookupDirect(ObjCSelector selector, bool isInstance) { if (!ObjCMethodLookup) { createObjCMethodLookup(); } // If any modules have been loaded since we did the search last (or if we // hadn't searched before), look in those modules, too. auto &stored = (*ObjCMethodLookup)[{selector, isInstance}]; ASTContext &ctx = getASTContext(); if (ctx.getCurrentGeneration() > stored.Generation) { ctx.loadObjCMethods(this, selector, isInstance, stored.Generation, stored.Methods); stored.Generation = ctx.getCurrentGeneration(); } return { stored.Methods.begin(), stored.Methods.end() }; } void ClassDecl::recordObjCMethod(AbstractFunctionDecl *method) { if (!ObjCMethodLookup) { createObjCMethodLookup(); } // Record the method. bool isInstanceMethod = method->isObjCInstanceMethod(); auto selector = method->getObjCSelector(); auto &vec = (*ObjCMethodLookup)[{selector, isInstanceMethod}].Methods; // In a non-empty vector, we could have duplicates or conflicts. if (!vec.empty()) { // Check whether we have a duplicate. This only checks more than one // element in ill-formed code, so the linear search is acceptable. if (std::find(vec.begin(), vec.end(), method) != vec.end()) return; if (vec.size() == 1) { // We have a conflict. getASTContext().recordObjCMethodConflict(this, selector, isInstanceMethod); } } else { // Record the first method that has this selector. getASTContext().recordObjCMethod(method); } vec.push_back(method); } /// Configure name lookup for the given declaration context and options. /// /// This utility is used by qualified name lookup. static void configureLookup(const DeclContext *dc, NLOptions &options, ReferencedNameTracker *&tracker, bool &isLookupCascading) { auto &ctx = dc->getASTContext(); if (!ctx.LangOpts.EnableAccessControl) options |= NL_IgnoreAccessControl; // Find the dependency tracker we'll need for this lookup. tracker = nullptr; if (auto containingSourceFile = dyn_cast(dc->getModuleScopeContext())) { tracker = containingSourceFile->getReferencedNameTracker(); } auto checkLookupCascading = [dc, options]() -> Optional { switch (static_cast(options & NL_KnownDependencyMask)) { case 0: return dc->isCascadingContextForLookup( /*functionsAreNonCascading=*/false); case NL_KnownNonCascadingDependency: return false; case NL_KnownCascadingDependency: return true; case NL_KnownNoDependency: return None; default: // FIXME: Use llvm::CountPopulation_64 when that's declared constexpr. #if defined(__clang__) || defined(__GNUC__) static_assert(__builtin_popcountll(NL_KnownDependencyMask) == 2, "mask should only include four values"); #endif llvm_unreachable("mask only includes four values"); } }; // Determine whether a lookup here will cascade. isLookupCascading = false; if (tracker) { if (auto maybeLookupCascade = checkLookupCascading()) isLookupCascading = maybeLookupCascade.getValue(); else tracker = nullptr; } } /// Determine whether the given declaration is an acceptable lookup /// result when searching from the given DeclContext. static bool isAcceptableLookupResult(const DeclContext *dc, NLOptions options, ValueDecl *decl, bool onlyCompleteObjectInits) { // Filter out designated initializers, if requested. if (onlyCompleteObjectInits) { if (auto ctor = dyn_cast(decl)) { if (isa(ctor->getDeclContext()) && !ctor->isInheritable()) return false; } else { return false; } } // Ignore stub implementations. if (auto ctor = dyn_cast(decl)) { if (ctor->hasStubImplementation()) return false; } // Check access. if (!(options & NL_IgnoreAccessControl)) { return decl->isAccessibleFrom(dc); } return true; } /// Only name lookup has gathered a set of results, perform any necessary /// steps to prune the result set before returning it to the caller. static bool finishLookup(const DeclContext *dc, NLOptions options, SmallVectorImpl &decls) { // If we're supposed to remove overridden declarations, do so now. if (options & NL_RemoveOverridden) removeOverriddenDecls(decls); // If we're supposed to remove shadowed/hidden declarations, do so now. ModuleDecl *M = dc->getParentModule(); if (options & NL_RemoveNonVisible) removeShadowedDecls(decls, M); if (auto *debugClient = M->getDebugClient()) filterForDiscriminator(decls, debugClient); // We're done. Report success/failure. return !decls.empty(); } /// Inspect the given type to determine which nominal type declarations it /// directly references, to facilitate name lookup into those types. static void extractDirectlyReferencedNominalTypes( Type type, SmallVectorImpl &decls) { if (auto nominal = type->getAnyNominal()) { decls.push_back(nominal); return; } if (auto unbound = type->getAs()) { if (auto nominal = dyn_cast(unbound->getDecl())) decls.push_back(nominal); return; } if (auto archetypeTy = type->getAs()) { // Look in the protocols to which the archetype conforms (always). for (auto proto : archetypeTy->getConformsTo()) decls.push_back(proto); // Look into the superclasses of this archetype. if (auto superclass = archetypeTy->getSuperclass()) { if (auto superclassDecl = superclass->getClassOrBoundGenericClass()) decls.push_back(superclassDecl); } return; } if (auto compositionTy = type->getAs()) { auto layout = compositionTy->getExistentialLayout(); for (auto proto : layout.getProtocols()) { auto *protoDecl = proto->getDecl(); decls.push_back(protoDecl); } if (auto superclass = layout.explicitSuperclass) { auto *superclassDecl = superclass->getClassOrBoundGenericClass(); if (superclassDecl) decls.push_back(superclassDecl); } return; } llvm_unreachable("Not a type containing nominal types?"); } bool DeclContext::lookupQualified(Type type, DeclName member, NLOptions options, LazyResolver *typeResolver, SmallVectorImpl &decls) const { using namespace namelookup; assert(decls.empty() && "additive lookup not supported"); // Handle AnyObject lookup. if (type->isAnyObject()) return lookupAnyObject(member, options, decls); // Handle lookup in a module. if (auto moduleTy = type->getAs()) return lookupQualified(moduleTy->getModule(), member, options, decls); // Figure out which nominal types we will look into. SmallVector nominalTypesToLookInto; extractDirectlyReferencedNominalTypes(type, nominalTypesToLookInto); return lookupQualified(nominalTypesToLookInto, member, options, decls); } bool DeclContext::lookupQualified(ArrayRef typeDecls, DeclName member, NLOptions options, SmallVectorImpl &decls) const { using namespace namelookup; assert(decls.empty() && "additive lookup not supported"); // Configure lookup and dig out the tracker. ReferencedNameTracker *tracker = nullptr; bool isLookupCascading; configureLookup(this, options, tracker, isLookupCascading); // Tracking for the nominal types we'll visit. SmallVector stack; llvm::SmallPtrSet visited; bool sawClassDecl = false; // Add the given nominal type to the stack. auto addNominalType = [&](NominalTypeDecl *nominal) { if (!visited.insert(nominal).second) return false; if (isa(nominal)) sawClassDecl = true; stack.push_back(nominal); return true; }; // Look through the type declarations we were given, resolving ASTContext &ctx = getASTContext(); for (auto nominal : typeDecls) { addNominalType(nominal); } // Whether we only want to return complete object initializers. bool onlyCompleteObjectInits = false; // Visit all of the nominal types we know about, discovering any others // we need along the way. auto typeResolver = ctx.getLazyResolver(); bool wantProtocolMembers = (options & NL_ProtocolMembers); while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); if (tracker) tracker->addUsedMember({current, member.getBaseName()},isLookupCascading); // Make sure we've resolved implicit members, if we need them. if (typeResolver) { if (member.getBaseName() == DeclBaseName::createConstructor()) typeResolver->resolveImplicitConstructors(current); typeResolver->resolveImplicitMember(current, member); } // Look for results within the current nominal type and its extensions. bool currentIsProtocol = isa(current); for (auto decl : current->lookupDirect(member)) { // If we're performing a type lookup, don't even attempt to validate // the decl if its not a type. if ((options & NL_OnlyTypes) && !isa(decl)) continue; if (isAcceptableLookupResult(this, options, decl, onlyCompleteObjectInits)) decls.push_back(decl); } // Visit superclass. if (auto classDecl = dyn_cast(current)) { // If we're looking for initializers, only look at the superclass if the // current class permits inheritance. Even then, only find complete // object initializers. bool visitSuperclass = true; if (member.getBaseName() == DeclBaseName::createConstructor()) { if (classDecl->inheritsSuperclassInitializers(typeResolver)) onlyCompleteObjectInits = true; else visitSuperclass = false; } if (visitSuperclass) { if (auto superclassDecl = classDecl->getSuperclassDecl()) if (visited.insert(superclassDecl).second) stack.push_back(superclassDecl); } } // If we're not looking at a protocol and we're not supposed to // visit the protocols that this type conforms to, skip the next // step. if (!wantProtocolMembers && !currentIsProtocol) continue; SmallVector protocols; if (auto *protoDecl = dyn_cast(current)) { // If we haven't seen a class declaration yet, look into the protocol. if (!sawClassDecl) { if (auto superclassDecl = protoDecl->getSuperclassDecl()) { visited.insert(superclassDecl); stack.push_back(superclassDecl); } } // Collect inherited protocols. for (auto inheritedProto : protoDecl->getInheritedProtocols()) { addNominalType(inheritedProto); } } else { // Collect the protocols to which the nominal type conforms. for (auto proto : current->getAllProtocols()) { if (visited.insert(proto).second) { stack.push_back(proto); } } // For a class, we don't need to visit the protocol members of the // superclass: that's already handled. if (isa(current)) wantProtocolMembers = false; } } return finishLookup(this, options, decls); } bool DeclContext::lookupQualified(ModuleDecl *module, DeclName member, NLOptions options, SmallVectorImpl &decls) const { using namespace namelookup; assert(decls.empty() && "additive lookup not supported"); // Configure lookup and dig out the tracker. ReferencedNameTracker *tracker = nullptr; bool isLookupCascading; configureLookup(this, options, tracker, isLookupCascading); ASTContext &ctx = getASTContext(); auto topLevelScope = getModuleScopeContext(); if (module == topLevelScope->getParentModule()) { if (tracker) { recordLookupOfTopLevelName(topLevelScope, member, isLookupCascading); } lookupInModule(module, /*accessPath=*/{}, member, decls, NLKind::QualifiedLookup, ResolutionKind::Overloadable, ctx.getLazyResolver(), topLevelScope); } else { // Note: This is a lookup into another module. Unless we're compiling // multiple modules at once, or if the other module re-exports this one, // it shouldn't be possible to have a dependency from that module on // anything in this one. // Perform the lookup in all imports of this module. forAllVisibleModules(this, [&](const ModuleDecl::ImportedModule &import) -> bool { if (import.second != module) return true; lookupInModule(import.second, import.first, member, decls, NLKind::QualifiedLookup, ResolutionKind::Overloadable, ctx.getLazyResolver(), topLevelScope); // If we're able to do an unscoped lookup, we see everything. No need // to keep going. return !import.first.empty(); }); } llvm::SmallPtrSet knownDecls; decls.erase(std::remove_if(decls.begin(), decls.end(), [&](ValueDecl *vd) -> bool { // If we're performing a type lookup, skip non-types. if ((options & NL_OnlyTypes) && !isa(vd)) return true; return !knownDecls.insert(vd).second; }), decls.end()); return finishLookup(this, options, decls); } bool DeclContext::lookupAnyObject(DeclName member, NLOptions options, SmallVectorImpl &decls) const { using namespace namelookup; assert(decls.empty() && "additive lookup not supported"); // Configure lookup and dig out the tracker. ReferencedNameTracker *tracker = nullptr; bool isLookupCascading; configureLookup(this, options, tracker, isLookupCascading); // Record this lookup. if (tracker) tracker->addDynamicLookupName(member.getBaseName(), isLookupCascading); // Type-only lookup won't find anything on AnyObject. if (options & NL_OnlyTypes) return false; // Collect all of the visible declarations. SmallVector allDecls; forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) { import.second->lookupClassMember(import.first, member, allDecls); }); // For each declaration whose context is not something we've // already visited above, add it to the list of declarations. llvm::SmallPtrSet knownDecls; for (auto decl : allDecls) { // If the declaration is not @objc, it cannot be called dynamically. if (!decl->isObjC()) continue; // If the declaration has an override, name lookup will also have // found the overridden method. Skip this declaration, because we // prefer the overridden method. if (decl->getOverriddenDecl()) continue; auto dc = decl->getDeclContext(); auto nominal = dc->getAsNominalTypeOrNominalTypeExtensionContext(); assert(nominal && "Couldn't find nominal type?"); // If we didn't see this declaration before, and it's an acceptable // result, add it to the list. // declaration to the list. if (knownDecls.insert(decl).second && isAcceptableLookupResult(this, options, decl, /*onlyCompleteObjectInits=*/false)) decls.push_back(decl); } return finishLookup(this, options, decls); } void DeclContext::lookupAllObjCMethods( ObjCSelector selector, SmallVectorImpl &results) const { // Collect all of the methods with this selector. forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) { import.second->lookupObjCMethods(selector, results); }); // Filter out duplicates. llvm::SmallPtrSet visited; results.erase( std::remove_if(results.begin(), results.end(), [&](AbstractFunctionDecl *func) -> bool { return !visited.insert(func).second; }), results.end()); } /// Given a set of type declarations, find all of the nominal type declarations /// that they reference, looking through typealiases as appropriate. static TinyPtrVector resolveTypeDeclsToNominal(Evaluator &evaluator, ASTContext &ctx, ArrayRef typeDecls, SmallVectorImpl &modulesFound, bool &anyObject, llvm::SmallPtrSetImpl &typealiases) { TinyPtrVector nominalDecls; for (auto typeDecl : typeDecls) { // Nominal type declarations get copied directly. if (auto nominalDecl = dyn_cast(typeDecl)) { nominalDecls.push_back(nominalDecl); continue; } // Recursively resolve typealiases. if (auto typealias = dyn_cast(typeDecl)) { // FIXME: Ad hoc recursion breaking, so we don't look through the // same typealias multiple times. if (!typealiases.insert(typealias).second) continue; auto underlyingTypeReferences = evaluator(UnderlyingTypeDeclsReferencedRequest{typealias}); auto underlyingNominalReferences = resolveTypeDeclsToNominal(evaluator, ctx, underlyingTypeReferences, modulesFound, anyObject, typealiases); nominalDecls.insert(nominalDecls.end(), underlyingNominalReferences.begin(), underlyingNominalReferences.end()); // Recognize Swift.AnyObject directly. if (typealias->getName().is("AnyObject")) { // TypeRepr version: Builtin.AnyObject if (auto typeRepr = typealias->getUnderlyingTypeLoc().getTypeRepr()) { if (auto compound = dyn_cast(typeRepr)) { auto components = compound->getComponents(); if (components.size() == 2 && components[0]->getIdentifier().is("Builtin") && components[1]->getIdentifier().is("AnyObject")) { anyObject = true; } } } // Type version: an empty class-bound existential. if (auto type = typealias->getUnderlyingTypeLoc().getType()) { if (type->isAnyObject()) anyObject = true; } } continue; } // Keep track of modules we see. if (auto module = dyn_cast(typeDecl)) { modulesFound.push_back(module); continue; } // Make sure we didn't miss some interesting kind of type declaration. assert(isa(typeDecl)); } return nominalDecls; } static TinyPtrVector resolveTypeDeclsToNominal(Evaluator &evaluator, ASTContext &ctx, ArrayRef typeDecls, SmallVectorImpl &modulesFound, bool &anyObject) { llvm::SmallPtrSet typealiases; return resolveTypeDeclsToNominal(evaluator, ctx, typeDecls, modulesFound, anyObject, typealiases); } /// Perform unqualified name lookup for types at the given location. static DirectlyReferencedTypeDecls directReferencesForUnqualifiedTypeLookup(ASTContext &ctx, DeclName name, SourceLoc loc, DeclContext *dc) { DirectlyReferencedTypeDecls results; UnqualifiedLookup::Options options = UnqualifiedLookup::Flags::TypeLookup; UnqualifiedLookup lookup(name, dc, ctx.getLazyResolver(), loc, options); for (const auto &result : lookup.Results) { if (auto typeDecl = dyn_cast(result.getValueDecl())) results.push_back(typeDecl); } return results; } /// Perform qualified name lookup for types. static DirectlyReferencedTypeDecls directReferencesForQualifiedTypeLookup(Evaluator &evaluator, ASTContext &ctx, ArrayRef baseTypes, DeclName name, DeclContext *dc) { // Look through the base types to find something on which we can perform // qualified name lookup. SmallVector moduleBaseTypes; bool anyObject = false; auto nominalBaseTypes = resolveTypeDeclsToNominal(evaluator, ctx, baseTypes, moduleBaseTypes, anyObject); DirectlyReferencedTypeDecls result; auto addResults = [&result](ArrayRef found){ for (auto decl : found){ assert(isa(decl) && "Lookup should only have found type declarations"); result.push_back(cast(decl)); } }; { // Look through nominal types. SmallVector nominalMembers; auto options = NL_RemoveNonVisible | NL_OnlyTypes; dc->lookupQualified(nominalBaseTypes, name, options, nominalMembers); addResults(nominalMembers); } { // Look through modules. auto options = NL_RemoveNonVisible | NL_OnlyTypes; for (auto module : moduleBaseTypes) { SmallVector moduleMembers; dc->lookupQualified(module, name, options, moduleMembers); addResults(moduleMembers); } } return result; } /// Determine the types directly referenced by the given identifier type. static DirectlyReferencedTypeDecls directReferencesForIdentTypeRepr(Evaluator &evaluator, ASTContext &ctx, IdentTypeRepr *ident, DeclContext *dc) { DirectlyReferencedTypeDecls current; bool firstComponent = true; for (const auto &component : ident->getComponentRange()) { // If we already set a declaration, use it. if (auto typeDecl = component->getBoundDecl()) { current = {1, typeDecl}; continue; } // For the first component, perform unqualified name lookup. if (current.empty()) { current = directReferencesForUnqualifiedTypeLookup(ctx, component->getIdentifier(), component->getIdLoc(), dc); // If we didn't find anything, fail now. if (current.empty()) return current; firstComponent = false; continue; } // For subsequent components, perform qualified name lookup. current = directReferencesForQualifiedTypeLookup(evaluator, ctx, current, component->getIdentifier(), dc); if (current.empty()) return current; } return current; } static DirectlyReferencedTypeDecls directReferencesForTypeRepr(Evaluator &evaluator, ASTContext &ctx, TypeRepr *typeRepr, DeclContext *dc) { switch (typeRepr->getKind()) { case TypeReprKind::Array: return {1, ctx.getArrayDecl()}; case TypeReprKind::Attributed: { auto attributed = cast(typeRepr); return directReferencesForTypeRepr(evaluator, ctx, attributed->getTypeRepr(), dc); } case TypeReprKind::Composition: { DirectlyReferencedTypeDecls result; auto composition = cast(typeRepr); for (auto component : composition->getTypes()) { auto componentResult = directReferencesForTypeRepr(evaluator, ctx, component, dc); result.insert(result.end(), componentResult.begin(), componentResult.end()); } return result; } case TypeReprKind::CompoundIdent: case TypeReprKind::GenericIdent: case TypeReprKind::SimpleIdent: return directReferencesForIdentTypeRepr(evaluator, ctx, cast(typeRepr), dc); case TypeReprKind::Dictionary: return { 1, ctx.getDictionaryDecl()}; case TypeReprKind::Error: case TypeReprKind::Function: case TypeReprKind::InOut: case TypeReprKind::Metatype: case TypeReprKind::Owned: case TypeReprKind::Protocol: case TypeReprKind::Shared: case TypeReprKind::SILBox: case TypeReprKind::Tuple: return { }; case TypeReprKind::Fixed: llvm_unreachable("Cannot get fixed TypeReprs in name lookup"); case TypeReprKind::Optional: case TypeReprKind::ImplicitlyUnwrappedOptional: return { 1, ctx.getOptionalDecl() }; } } static DirectlyReferencedTypeDecls directReferencesForType(Type type) { // If it's a typealias, return that. if (auto aliasType = dyn_cast(type.getPointer())) return { 1, aliasType->getDecl() }; // If there is a generic declaration, return it. if (auto genericDecl = type->getAnyGeneric()) return { 1, genericDecl }; if (type->isExistentialType()) { DirectlyReferencedTypeDecls result; const auto &layout = type->getExistentialLayout(); // Superclass. if (auto superclassType = layout.explicitSuperclass) { if (auto superclassDecl = superclassType->getAnyGeneric()) { result.push_back(superclassDecl); } } // Protocols. for (auto protocolTy : layout.getProtocols()) result.push_back(protocolTy->getDecl()); return result; } return { }; } DirectlyReferencedTypeDecls InheritedDeclsReferencedRequest::evaluate( Evaluator &evaluator, llvm::PointerUnion decl, unsigned index) const { // Prefer syntactic information when we have it. TypeLoc &typeLoc = getTypeLoc(decl, index); if (auto typeRepr = typeLoc.getTypeRepr()) { // Figure out the context in which name lookup will occur. DeclContext *dc; if (auto typeDecl = decl.dyn_cast()) dc = typeDecl->getInnermostDeclContext(); else dc = decl.get(); return directReferencesForTypeRepr(evaluator, dc->getASTContext(), typeRepr, dc); } // Fall back to semantic types. // FIXME: In the long run, we shouldn't need this. Non-syntactic results // should be cached. if (auto type = typeLoc.getType()) { return directReferencesForType(type); } return { }; } DirectlyReferencedTypeDecls UnderlyingTypeDeclsReferencedRequest::evaluate( Evaluator &evaluator, TypeAliasDecl *typealias) const { // Prefer syntactic information when we have it. if (auto typeRepr = typealias->getUnderlyingTypeLoc().getTypeRepr()) { return directReferencesForTypeRepr(evaluator, typealias->getASTContext(), typeRepr, typealias); } // Fall back to semantic types. // FIXME: In the long run, we shouldn't need this. Non-syntactic results // should be cached. if (auto type = typealias->getUnderlyingTypeLoc().getType()) { return directReferencesForType(type); } return { }; } /// Evaluate a superclass declaration request. ClassDecl *SuperclassDeclRequest::evaluate(Evaluator &evaluator, NominalTypeDecl *subject) const { for (unsigned i : indices(subject->getInherited())) { // Find the inherited declarations referenced at this position. auto inheritedTypes = evaluator(InheritedDeclsReferencedRequest{subject, i}); // Resolve those type declarations to nominal type declarations. SmallVector modulesFound; bool anyObject = false; auto inheritedNominalTypes = resolveTypeDeclsToNominal(evaluator, subject->getASTContext(), inheritedTypes, modulesFound, anyObject); // Look for a class declaration. for (auto inheritedNominal : inheritedNominalTypes) { if (auto classDecl = dyn_cast(inheritedNominal)) return classDecl; } } return nullptr; } NominalTypeDecl *ExtendedNominalRequest::evaluate(Evaluator &evaluator, ExtensionDecl *ext) const { DirectlyReferencedTypeDecls referenced; ASTContext &ctx = ext->getASTContext(); // Prefer syntactic information when we have it. TypeLoc &typeLoc = ext->getExtendedTypeLoc(); if (auto typeRepr = typeLoc.getTypeRepr()) { referenced = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext); } else if (auto type = typeLoc.getType()) { // Fall back to semantic types. // FIXME: In the long run, we shouldn't need this. Non-syntactic results // should be cached. referenced = directReferencesForType(type); } // Resolve those type declarations to nominal type declarations. SmallVector modulesFound; bool anyObject = false; auto nominalTypes = resolveTypeDeclsToNominal(evaluator, ctx, referenced, modulesFound, anyObject); return nominalTypes.empty() ? nullptr : nominalTypes.front(); } void swift::getDirectlyInheritedNominalTypeDecls( llvm::PointerUnion decl, unsigned i, llvm::SmallVectorImpl> &result, bool &anyObject) { auto typeDecl = decl.dyn_cast(); auto extDecl = decl.dyn_cast(); ASTContext &ctx = typeDecl ? typeDecl->getASTContext() : extDecl->getASTContext(); // Find inherited declarations. auto referenced = ctx.evaluator(InheritedDeclsReferencedRequest{decl, i}); // Resolve those type declarations to nominal type declarations. SmallVector modulesFound; auto nominalTypes = resolveTypeDeclsToNominal(ctx.evaluator, ctx, referenced, modulesFound, anyObject); // Dig out the source location // FIXME: This is a hack. We need cooperation from // InheritedDeclsReferencedRequest to make this work. SourceLoc loc; if (TypeRepr *typeRepr = typeDecl ? typeDecl->getInherited()[i].getTypeRepr() : extDecl->getInherited()[i].getTypeRepr()){ loc = typeRepr->getLoc(); } // Form the result. for (auto nominal : nominalTypes) { result.push_back({loc, nominal}); } } SmallVector, 4> swift::getDirectlyInheritedNominalTypeDecls( llvm::PointerUnion decl, bool &anyObject) { auto typeDecl = decl.dyn_cast(); auto extDecl = decl.dyn_cast(); // Gather results from all of the inherited types. unsigned numInherited = typeDecl ? typeDecl->getInherited().size() : extDecl->getInherited().size(); SmallVector, 4> result; for (unsigned i : range(numInherited)) { getDirectlyInheritedNominalTypeDecls(decl, i, result, anyObject); } return result; }