//===--- SILGenBuiltin.cpp - SIL generation for builtin call sites -------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "SpecializedEmitter.h" #include "ArgumentSource.h" #include "Cleanup.h" #include "Initialization.h" #include "LValue.h" #include "RValue.h" #include "Scope.h" #include "SILGenFunction.h" #include "swift/AST/ASTContext.h" #include "swift/AST/Builtins.h" #include "swift/AST/DiagnosticsSIL.h" #include "swift/AST/GenericEnvironment.h" #include "swift/AST/Module.h" #include "swift/AST/ReferenceCounting.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILUndef.h" using namespace swift; using namespace Lowering; /// Break down an expression that's the formal argument expression to /// a builtin function, returning its individualized arguments. /// /// Because these are builtin operations, we can make some structural /// assumptions about the expression used to call them. static Optional> decomposeArguments(SILGenFunction &SGF, SILLocation loc, PreparedArguments &&args, unsigned expectedCount) { SmallVector result; auto sources = std::move(args).getSources(); if (sources.size() == expectedCount) { for (auto &&source : sources) result.push_back(std::move(source).asKnownExpr()); return result; } SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "argument to builtin should be a literal tuple"); return None; } static ManagedValue emitBuiltinRetain(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { // The value was produced at +1; we can produce an unbalanced retain simply by // disabling the cleanup. But this would violate ownership semantics. Instead, // we must allow for the cleanup and emit a new unmanaged retain value. SGF.B.createUnmanagedRetainValue(loc, args[0].getValue(), SGF.B.getDefaultAtomicity()); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } static ManagedValue emitBuiltinRelease(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { // The value was produced at +1, so to produce an unbalanced // release we need to leave the cleanup intact and then do a *second* // release. SGF.B.createUnmanagedReleaseValue(loc, args[0].getValue(), SGF.B.getDefaultAtomicity()); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } static ManagedValue emitBuiltinAutorelease(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { SGF.B.createUnmanagedAutoreleaseValue(loc, args[0].getValue(), SGF.B.getDefaultAtomicity()); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.load and Builtin.take. static ManagedValue emitBuiltinLoadOrTake(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C, IsTake_t isTake, bool isStrict, bool isInvariant) { assert(substitutions.getReplacementTypes().size() == 1 && "load should have single substitution"); assert(args.size() == 1 && "load should have a single argument"); // The substitution gives the type of the load. This is always a // first-class type; there is no way to e.g. produce a @weak load // with this builtin. auto &rvalueTL = SGF.getTypeLowering(substitutions.getReplacementTypes()[0]); SILType loadedType = rvalueTL.getLoweredType(); // Convert the pointer argument to a SIL address. SILValue addr = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), loadedType.getAddressType(), isStrict, isInvariant); // Perform the load. return SGF.emitLoad(loc, addr, rvalueTL, C, isTake); } static ManagedValue emitBuiltinLoad(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitBuiltinLoadOrTake(SGF, loc, substitutions, args, C, IsNotTake, /*isStrict*/ true, /*isInvariant*/ false); } static ManagedValue emitBuiltinLoadRaw(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitBuiltinLoadOrTake(SGF, loc, substitutions, args, C, IsNotTake, /*isStrict*/ false, /*isInvariant*/ false); } static ManagedValue emitBuiltinLoadInvariant(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitBuiltinLoadOrTake(SGF, loc, substitutions, args, C, IsNotTake, /*isStrict*/ false, /*isInvariant*/ true); } static ManagedValue emitBuiltinTake(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitBuiltinLoadOrTake(SGF, loc, substitutions, args, C, IsTake, /*isStrict*/ true, /*isInvariant*/ false); } /// Specialized emitter for Builtin.destroy. static ManagedValue emitBuiltinDestroy(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 2 && "destroy should have two arguments"); assert(substitutions.getReplacementTypes().size() == 1 && "destroy should have a single substitution"); // The substitution determines the type of the thing we're destroying. auto &ti = SGF.getTypeLowering(substitutions.getReplacementTypes()[0]); // Destroy is a no-op for trivial types. if (ti.isTrivial()) return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); SILType destroyType = ti.getLoweredType(); // Convert the pointer argument to a SIL address. SILValue addr = SGF.B.createPointerToAddress(loc, args[1].getUnmanagedValue(), destroyType.getAddressType(), /*isStrict*/ true, /*isInvariant*/ false); // Destroy the value indirectly. Canonicalization will promote to loads // and releases if appropriate. SGF.B.createDestroyAddr(loc, addr); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } static ManagedValue emitBuiltinAssign(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() >= 2 && "assign should have two arguments"); assert(substitutions.getReplacementTypes().size() == 1 && "assign should have a single substitution"); // The substitution determines the type of the thing we're destroying. CanType assignFormalType = substitutions.getReplacementTypes()[0]->getCanonicalType(); SILType assignType = SGF.getLoweredType(assignFormalType); // Convert the destination pointer argument to a SIL address. SILValue addr = SGF.B.createPointerToAddress(loc, args.back().getUnmanagedValue(), assignType.getAddressType(), /*isStrict*/ true, /*isInvariant*/ false); // Build the value to be assigned, reconstructing tuples if needed. auto src = RValue(SGF, args.slice(0, args.size() - 1), assignFormalType); std::move(src).ensurePlusOne(SGF, loc).assignInto(SGF, loc, addr); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Emit Builtin.initialize by evaluating the operand directly into /// the address. static ManagedValue emitBuiltinInit(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, PreparedArguments &&preparedArgs, SGFContext C) { auto argsOrError = decomposeArguments(SGF, loc, std::move(preparedArgs), 2); if (!argsOrError) return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); auto args = *argsOrError; CanType formalType = substitutions.getReplacementTypes()[0]->getCanonicalType(); auto &formalTL = SGF.getTypeLowering(formalType); SILValue addr = SGF.emitRValueAsSingleValue(args[1]).getUnmanagedValue(); addr = SGF.B.createPointerToAddress( loc, addr, formalTL.getLoweredType().getAddressType(), /*isStrict*/ true, /*isInvariant*/ false); TemporaryInitialization init(addr, CleanupHandle::invalid()); SGF.emitExprInto(args[0], &init); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.fixLifetime. static ManagedValue emitBuiltinFixLifetime(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { for (auto arg : args) { SGF.B.createFixLifetime(loc, arg.getValue()); } return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } static ManagedValue emitCastToReferenceType(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C, SILType objPointerType) { assert(args.size() == 1 && "cast should have a single argument"); assert(substitutions.getReplacementTypes().size() == 1 && "cast should have a type substitution"); // Bail if the source type is not a class reference of some kind. Type argTy = substitutions.getReplacementTypes()[0]; if (!argTy->mayHaveSuperclass() && !argTy->isClassExistentialType()) { SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "castToNativeObject source must be a class"); return SGF.emitUndef(objPointerType); } // Grab the argument. ManagedValue arg = args[0]; // If the argument is existential, open it. if (argTy->isClassExistentialType()) { auto openedTy = OpenedArchetypeType::get(argTy); SILType loweredOpenedTy = SGF.getLoweredLoadableType(openedTy); arg = SGF.B.createOpenExistentialRef(loc, arg, loweredOpenedTy); } // Return the cast result. return SGF.B.createUncheckedRefCast(loc, arg, objPointerType); } /// Specialized emitter for Builtin.unsafeCastToNativeObject. static ManagedValue emitBuiltinUnsafeCastToNativeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitCastToReferenceType(SGF, loc, substitutions, args, C, SILType::getNativeObjectType(SGF.F.getASTContext())); } /// Specialized emitter for Builtin.castToNativeObject. static ManagedValue emitBuiltinCastToNativeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { auto ty = args[0].getType().getASTType(); (void)ty; assert(ty->getReferenceCounting() == ReferenceCounting::Native && "Can only cast types that use native reference counting to native " "object"); return emitBuiltinUnsafeCastToNativeObject(SGF, loc, substitutions, args, C); } static ManagedValue emitCastFromReferenceType(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "cast should have a single argument"); assert(substitutions.getReplacementTypes().size() == 1 && "cast should have a single substitution"); // The substitution determines the destination type. SILType destType = SGF.getLoweredType(substitutions.getReplacementTypes()[0]); // Bail if the source type is not a class reference of some kind. if (!substitutions.getReplacementTypes()[0]->isBridgeableObjectType() || !destType.isObject()) { SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "castFromNativeObject dest must be an object type"); // Recover by propagating an undef result. return SGF.emitUndef(destType); } return SGF.B.createUncheckedRefCast(loc, args[0], destType); } /// Specialized emitter for Builtin.castFromNativeObject. static ManagedValue emitBuiltinCastFromNativeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { return emitCastFromReferenceType(SGF, loc, substitutions, args, C); } /// Specialized emitter for Builtin.bridgeToRawPointer. static ManagedValue emitBuiltinBridgeToRawPointer(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "bridge should have a single argument"); // Take the reference type argument and cast it to RawPointer. // RawPointers do not have ownership semantics, so the cleanup on the // argument remains. SILType rawPointerType = SILType::getRawPointerType(SGF.F.getASTContext()); SILValue result = SGF.B.createRefToRawPointer(loc, args[0].getValue(), rawPointerType); return ManagedValue::forUnmanaged(result); } /// Specialized emitter for Builtin.bridgeFromRawPointer. static ManagedValue emitBuiltinBridgeFromRawPointer(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 1 && "bridge should have a single substitution"); assert(args.size() == 1 && "bridge should have a single argument"); // The substitution determines the destination type. // FIXME: Archetype destination type? auto &destLowering = SGF.getTypeLowering(substitutions.getReplacementTypes()[0]); assert(destLowering.isLoadable()); SILType destType = destLowering.getLoweredType(); // Take the raw pointer argument and cast it to the destination type. SILValue result = SGF.B.createRawPointerToRef(loc, args[0].getUnmanagedValue(), destType); // The result has ownership semantics, so retain it with a cleanup. return SGF.emitManagedRetain(loc, result, destLowering); } /// Specialized emitter for Builtin.addressof. static ManagedValue emitBuiltinAddressOf(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, PreparedArguments &&preparedArgs, SGFContext C) { SILType rawPointerType = SILType::getRawPointerType(SGF.getASTContext()); auto argsOrError = decomposeArguments(SGF, loc, std::move(preparedArgs), 1); if (!argsOrError) return SGF.emitUndef(rawPointerType); auto argument = (*argsOrError)[0]; // If the argument is inout, try forming its lvalue. This builtin only works // if it's trivially physically projectable. auto inout = cast(argument->getSemanticsProvidingExpr()); auto lv = SGF.emitLValue(inout->getSubExpr(), SGFAccessKind::ReadWrite); if (!lv.isPhysical() || !lv.isLoadingPure()) { SGF.SGM.diagnose(argument->getLoc(), diag::non_physical_addressof); return SGF.emitUndef(rawPointerType); } auto addr = SGF.emitAddressOfLValue(argument, std::move(lv)) .getLValueAddress(); // Take the address argument and cast it to RawPointer. SILValue result = SGF.B.createAddressToPointer(loc, addr, rawPointerType); return ManagedValue::forUnmanaged(result); } /// Specialized emitter for Builtin.addressOfBorrow. static ManagedValue emitBuiltinAddressOfBorrow(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, PreparedArguments &&preparedArgs, SGFContext C) { SILType rawPointerType = SILType::getRawPointerType(SGF.getASTContext()); auto argsOrError = decomposeArguments(SGF, loc, std::move(preparedArgs), 1); if (!argsOrError) return SGF.emitUndef(rawPointerType); auto argument = (*argsOrError)[0]; SILValue addr; // Try to borrow the argument at +0. We only support if it's // naturally emitted borrowed in memory. auto borrow = SGF.emitRValue(argument, SGFContext::AllowGuaranteedPlusZero) .getAsSingleValue(SGF, argument); if (!borrow.isPlusZero() || !borrow.getType().isAddress()) { SGF.SGM.diagnose(argument->getLoc(), diag::non_borrowed_indirect_addressof); return SGF.emitUndef(rawPointerType); } addr = borrow.getValue(); // Take the address argument and cast it to RawPointer. SILValue result = SGF.B.createAddressToPointer(loc, addr, rawPointerType); return ManagedValue::forUnmanaged(result); } /// Specialized emitter for Builtin.gepRaw. static ManagedValue emitBuiltinGepRaw(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 2 && "gepRaw should be given two arguments"); SILValue offsetPtr = SGF.B.createIndexRawPointer(loc, args[0].getUnmanagedValue(), args[1].getUnmanagedValue()); return ManagedValue::forUnmanaged(offsetPtr); } /// Specialized emitter for Builtin.gep. static ManagedValue emitBuiltinGep(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 1 && "gep should have two substitutions"); assert(args.size() == 3 && "gep should be given three arguments"); SILType ElemTy = SGF.getLoweredType(substitutions.getReplacementTypes()[0]); SILType RawPtrType = args[0].getUnmanagedValue()->getType(); SILValue addr = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), ElemTy.getAddressType(), /*strict*/ true, /*invariant*/ false); addr = SGF.B.createIndexAddr(loc, addr, args[1].getUnmanagedValue()); addr = SGF.B.createAddressToPointer(loc, addr, RawPtrType); return ManagedValue::forUnmanaged(addr); } /// Specialized emitter for Builtin.getTailAddr. static ManagedValue emitBuiltinGetTailAddr(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 2 && "getTailAddr should have two substitutions"); assert(args.size() == 4 && "gep should be given four arguments"); SILType ElemTy = SGF.getLoweredType(substitutions.getReplacementTypes()[0]); SILType TailTy = SGF.getLoweredType(substitutions.getReplacementTypes()[1]); SILType RawPtrType = args[0].getUnmanagedValue()->getType(); SILValue addr = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), ElemTy.getAddressType(), /*strict*/ true, /*invariant*/ false); addr = SGF.B.createTailAddr(loc, addr, args[1].getUnmanagedValue(), TailTy.getAddressType()); addr = SGF.B.createAddressToPointer(loc, addr, RawPtrType); return ManagedValue::forUnmanaged(addr); } /// Specialized emitter for Builtin.beginUnpairedModifyAccess. static ManagedValue emitBuiltinBeginUnpairedModifyAccess(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 1 && "Builtin.beginUnpairedModifyAccess should have one substitution"); assert(args.size() == 3 && "beginUnpairedModifyAccess should be given three arguments"); SILType elemTy = SGF.getLoweredType(substitutions.getReplacementTypes()[0]); SILValue addr = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), elemTy.getAddressType(), /*strict*/ true, /*invariant*/ false); SILType valueBufferTy = SGF.getLoweredType(SGF.getASTContext().TheUnsafeValueBufferType); SILValue buffer = SGF.B.createPointerToAddress(loc, args[1].getUnmanagedValue(), valueBufferTy.getAddressType(), /*strict*/ true, /*invariant*/ false); SGF.B.createBeginUnpairedAccess(loc, addr, buffer, SILAccessKind::Modify, SILAccessEnforcement::Dynamic, /*noNestedConflict*/ false, /*fromBuiltin*/ true); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.performInstantaneousReadAccess static ManagedValue emitBuiltinPerformInstantaneousReadAccess( SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 1 && "Builtin.performInstantaneousReadAccess should have one substitution"); assert(args.size() == 2 && "Builtin.performInstantaneousReadAccess should be given " "two arguments"); SILType elemTy = SGF.getLoweredType(substitutions.getReplacementTypes()[0]); SILValue addr = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), elemTy.getAddressType(), /*strict*/ true, /*invariant*/ false); SILType valueBufferTy = SGF.getLoweredType(SGF.getASTContext().TheUnsafeValueBufferType); SILValue unusedBuffer = SGF.emitTemporaryAllocation(loc, valueBufferTy); // Begin an "unscoped" read access. No nested conflict is possible because // the compiler should generate the actual read for the KeyPath expression // immediately after the call to this builtin, which forms the address of // that real access. When noNestedConflict=true, no EndUnpairedAccess should // be emitted. // // Unpaired access is necessary because a BeginAccess/EndAccess pair with no // use will be trivially optimized away. SGF.B.createBeginUnpairedAccess(loc, addr, unusedBuffer, SILAccessKind::Read, SILAccessEnforcement::Dynamic, /*noNestedConflict*/ true, /*fromBuiltin*/ true); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.endUnpairedAccessModifyAccess. static ManagedValue emitBuiltinEndUnpairedAccess(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.empty() && "Builtin.endUnpairedAccess should have no substitutions"); assert(args.size() == 1 && "endUnpairedAccess should be given one argument"); SILType valueBufferTy = SGF.getLoweredType(SGF.getASTContext().TheUnsafeValueBufferType); SILValue buffer = SGF.B.createPointerToAddress(loc, args[0].getUnmanagedValue(), valueBufferTy.getAddressType(), /*strict*/ true, /*invariant*/ false); SGF.B.createEndUnpairedAccess(loc, buffer, SILAccessEnforcement::Dynamic, /*aborted*/ false, /*fromBuiltin*/ true); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.condfail. static ManagedValue emitBuiltinCondFail(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "condfail should be given one argument"); SGF.B.createCondFail(loc, args[0].getUnmanagedValue()); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } /// Specialized emitter for Builtin.castReference. static ManagedValue emitBuiltinCastReference(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "castReference should be given one argument"); assert(substitutions.getReplacementTypes().size() == 2 && "castReference should have two subs"); auto fromTy = substitutions.getReplacementTypes()[0]; auto toTy = substitutions.getReplacementTypes()[1]; auto &fromTL = SGF.getTypeLowering(fromTy); auto &toTL = SGF.getTypeLowering(toTy); assert(!fromTL.isTrivial() && !toTL.isTrivial() && "expected ref type"); // TODO: Fix this API. if (!fromTL.isAddress() || !toTL.isAddress()) { if (auto refCast = SGF.B.tryCreateUncheckedRefCast(loc, args[0], toTL.getLoweredType())) { // Create a reference cast, forwarding the cleanup. // The cast takes the source reference. return refCast; } } // We are either casting between address-only types, or cannot promote to a // cast of reference values. // // If the from/to types are invalid, then use a cast that will fail at // runtime. We cannot catch these errors with SIL verification because they // may legitimately occur during code specialization on dynamically // unreachable paths. // // TODO: For now, we leave invalid casts in address form so that the runtime // will trap. We could emit a noreturn call here instead which would provide // more information to the optimizer. SILValue srcVal = args[0].ensurePlusOne(SGF, loc).forward(SGF); SILValue fromAddr; if (!fromTL.isAddress()) { // Move the loadable value into a "source temp". Since the source and // dest are RC identical, store the reference into the source temp without // a retain. The cast will load the reference from the source temp and // store it into a dest temp effectively forwarding the cleanup. fromAddr = SGF.emitTemporaryAllocation(loc, srcVal->getType()); fromTL.emitStore(SGF.B, loc, srcVal, fromAddr, StoreOwnershipQualifier::Init); } else { // The cast loads directly from the source address. fromAddr = srcVal; } // Create a "dest temp" to hold the reference after casting it. SILValue toAddr = SGF.emitTemporaryAllocation(loc, toTL.getLoweredType()); SGF.B.createUncheckedRefCastAddr(loc, fromAddr, fromTy->getCanonicalType(), toAddr, toTy->getCanonicalType()); // Forward it along and register a cleanup. if (toTL.isAddress()) return SGF.emitManagedBufferWithCleanup(toAddr); // Load the destination value. auto result = toTL.emitLoad(SGF.B, loc, toAddr, LoadOwnershipQualifier::Take); return SGF.emitManagedRValueWithCleanup(result); } /// Specialized emitter for Builtin.reinterpretCast. static ManagedValue emitBuiltinReinterpretCast(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "reinterpretCast should be given one argument"); assert(substitutions.getReplacementTypes().size() == 2 && "reinterpretCast should have two subs"); auto &fromTL = SGF.getTypeLowering(substitutions.getReplacementTypes()[0]); auto &toTL = SGF.getTypeLowering(substitutions.getReplacementTypes()[1]); // If casting between address types, cast the address. if (fromTL.isAddress() || toTL.isAddress()) { SILValue fromAddr; // If the from value is not an address, move it to a buffer. if (!fromTL.isAddress()) { fromAddr = SGF.emitTemporaryAllocation(loc, args[0].getValue()->getType()); fromTL.emitStore(SGF.B, loc, args[0].getValue(), fromAddr, StoreOwnershipQualifier::Init); } else { fromAddr = args[0].getValue(); } auto toAddr = SGF.B.createUncheckedAddrCast(loc, fromAddr, toTL.getLoweredType().getAddressType()); // Load and retain the destination value if it's loadable. Leave the cleanup // on the original value since we don't know anything about it's type. if (!toTL.isAddress()) { return SGF.emitManagedLoadCopy(loc, toAddr, toTL); } // Leave the cleanup on the original value. if (toTL.isTrivial()) return ManagedValue::forUnmanaged(toAddr); // Initialize the +1 result buffer without taking the incoming value. The // source and destination cleanups will be independent. return SGF.B.bufferForExpr( loc, toTL.getLoweredType(), toTL, C, [&](SILValue bufferAddr) { SGF.B.createCopyAddr(loc, toAddr, bufferAddr, IsNotTake, IsInitialization); }); } // Create the appropriate bitcast based on the source and dest types. ManagedValue in = args[0]; SILType resultTy = toTL.getLoweredType(); if (resultTy.isTrivial(SGF.F)) return SGF.B.createUncheckedTrivialBitCast(loc, in, resultTy); // If we can perform a ref cast, just return. if (auto refCast = SGF.B.tryCreateUncheckedRefCast(loc, in, resultTy)) return refCast; // Otherwise leave the original cleanup and retain the cast value. SILValue out = SGF.B.createUncheckedBitwiseCast(loc, in.getValue(), resultTy); return SGF.emitManagedRetain(loc, out, toTL); } /// Specialized emitter for Builtin.castToBridgeObject. static ManagedValue emitBuiltinCastToBridgeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(args.size() == 2 && "cast should have two arguments"); assert(subs.getReplacementTypes().size() == 1 && "cast should have a type substitution"); // Take the reference type argument and cast it to BridgeObject. SILType objPointerType = SILType::getBridgeObjectType(SGF.F.getASTContext()); // Bail if the source type is not a class reference of some kind. auto sourceType = subs.getReplacementTypes()[0]; if (!sourceType->mayHaveSuperclass() && !sourceType->isClassExistentialType()) { SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "castToBridgeObject source must be a class"); return SGF.emitUndef(objPointerType); } ManagedValue ref = args[0]; SILValue bits = args[1].getUnmanagedValue(); // If the argument is existential, open it. if (sourceType->isClassExistentialType()) { auto openedTy = OpenedArchetypeType::get(sourceType); SILType loweredOpenedTy = SGF.getLoweredLoadableType(openedTy); ref = SGF.B.createOpenExistentialRef(loc, ref, loweredOpenedTy); } return SGF.B.createRefToBridgeObject(loc, ref, bits); } /// Specialized emitter for Builtin.castReferenceFromBridgeObject. static ManagedValue emitBuiltinCastReferenceFromBridgeObject( SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "cast should have one argument"); assert(subs.getReplacementTypes().size() == 1 && "cast should have a type substitution"); // The substitution determines the destination type. auto destTy = subs.getReplacementTypes()[0]; SILType destType = SGF.getLoweredType(destTy); // Bail if the source type is not a class reference of some kind. if (!destTy->isBridgeableObjectType() || !destType.isObject()) { SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "castReferenceFromBridgeObject dest must be an object type"); // Recover by propagating an undef result. return SGF.emitUndef(destType); } return SGF.B.createBridgeObjectToRef(loc, args[0], destType); } static ManagedValue emitBuiltinCastBitPatternFromBridgeObject( SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "cast should have one argument"); assert(subs.empty() && "cast should not have subs"); SILType wordType = SILType::getBuiltinWordType(SGF.getASTContext()); SILValue result = SGF.B.createBridgeObjectToWord(loc, args[0].getValue(), wordType); return ManagedValue::forUnmanaged(result); } static ManagedValue emitBuiltinClassifyBridgeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "classify should have one argument"); assert(subs.empty() && "classify should not have subs"); SILValue result = SGF.B.createClassifyBridgeObject(loc, args[0].getValue()); return ManagedValue::forUnmanaged(result); } static ManagedValue emitBuiltinValueToBridgeObject(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(args.size() == 1 && "ValueToBridgeObject should have one argument"); assert(subs.getReplacementTypes().size() == 1 && "ValueToBridgeObject should have one sub"); Type argTy = subs.getReplacementTypes()[0]; if (!argTy->is()) { SGF.SGM.diagnose(loc, diag::invalid_sil_builtin, "argument to builtin should be a builtin integer"); SILType objPointerType = SILType::getBridgeObjectType(SGF.F.getASTContext()); return SGF.emitUndef(objPointerType); } SILValue result = SGF.B.createValueToBridgeObject(loc, args[0].getValue()); return SGF.emitManagedRetain(loc, result); } // This should only accept as an operand type single-refcounted-pointer types, // class existentials, or single-payload enums (optional). Type checking must be // deferred until IRGen so Builtin.isUnique can be called from a transparent // generic wrapper (we can only type check after specialization). static ManagedValue emitBuiltinIsUnique(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(subs.getReplacementTypes().size() == 1 && "isUnique should have a single substitution"); assert(args.size() == 1 && "isUnique should have a single argument"); assert((args[0].getType().isAddress() && !args[0].hasCleanup()) && "Builtin.isUnique takes an address."); return ManagedValue::forUnmanaged( SGF.B.createIsUnique(loc, args[0].getValue())); } // This force-casts the incoming address to NativeObject assuming the caller has // performed all necessary checks. For example, this may directly cast a // single-payload enum to a NativeObject reference. static ManagedValue emitBuiltinIsUnique_native(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(subs.getReplacementTypes().size() == 1 && "isUnique_native should have one sub."); assert(args.size() == 1 && "isUnique_native should have one arg."); auto ToType = SILType::getNativeObjectType(SGF.getASTContext()).getAddressType(); auto toAddr = SGF.B.createUncheckedAddrCast(loc, args[0].getValue(), ToType); SILValue result = SGF.B.createIsUnique(loc, toAddr); return ManagedValue::forUnmanaged(result); } static ManagedValue emitBuiltinBindMemory(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(subs.getReplacementTypes().size() == 1 && "bindMemory should have a single substitution"); assert(args.size() == 3 && "bindMemory should have three argument"); // The substitution determines the element type for bound memory. CanType boundFormalType = subs.getReplacementTypes()[0]->getCanonicalType(); SILType boundType = SGF.getLoweredType(boundFormalType); SGF.B.createBindMemory(loc, args[0].getValue(), args[1].getValue(), boundType); return ManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc)); } static ManagedValue emitBuiltinAllocWithTailElems(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { unsigned NumTailTypes = subs.getReplacementTypes().size() - 1; assert(args.size() == NumTailTypes * 2 + 1 && "wrong number of substitutions for allocWithTailElems"); // The substitution determines the element type for bound memory. auto replacementTypes = subs.getReplacementTypes(); SILType RefType = SGF.getLoweredType(replacementTypes[0]-> getCanonicalType()).getObjectType(); SmallVector Counts; SmallVector ElemTypes; for (unsigned Idx = 0; Idx < NumTailTypes; ++Idx) { Counts.push_back(args[Idx * 2 + 1]); ElemTypes.push_back(SGF.getLoweredType(replacementTypes[Idx+1]-> getCanonicalType()).getObjectType()); } ManagedValue Metatype = args[0]; if (isa(Metatype)) { auto InstanceType = Metatype.getType().castTo().getInstanceType(); assert(InstanceType == RefType.getASTType() && "substituted type does not match operand metatype"); (void) InstanceType; return SGF.B.createAllocRef(loc, RefType, false, false, ElemTypes, Counts); } else { return SGF.B.createAllocRefDynamic(loc, Metatype, RefType, false, ElemTypes, Counts); } } static ManagedValue emitBuiltinProjectTailElems(SILGenFunction &SGF, SILLocation loc, SubstitutionMap subs, ArrayRef args, SGFContext C) { assert(subs.getReplacementTypes().size() == 2 && "allocWithTailElems should have two substitutions"); assert(args.size() == 2 && "allocWithTailElems should have three arguments"); // The substitution determines the element type for bound memory. SILType ElemType = SGF.getLoweredType(subs.getReplacementTypes()[1]-> getCanonicalType()).getObjectType(); SILValue result = SGF.B.createRefTailAddr(loc, args[0].getValue(), ElemType.getAddressType()); SILType rawPointerType = SILType::getRawPointerType(SGF.F.getASTContext()); result = SGF.B.createAddressToPointer(loc, result, rawPointerType); return ManagedValue::forUnmanaged(result); } /// Specialized emitter for type traits. template static ManagedValue emitBuiltinTypeTrait(SILGenFunction &SGF, SILLocation loc, SubstitutionMap substitutions, ArrayRef args, SGFContext C) { assert(substitutions.getReplacementTypes().size() == 1 && "type trait should take a single type parameter"); assert(args.size() == 1 && "type trait should take a single argument"); unsigned result; auto traitTy = substitutions.getReplacementTypes()[0]->getCanonicalType(); switch ((traitTy.getPointer()->*Trait)()) { // If the type obviously has or lacks the trait, emit a constant result. case TypeTraitResult::IsNot: result = 0; break; case TypeTraitResult::Is: result = 1; break; // If not, emit the builtin call normally. Specialization may be able to // eliminate it later, or we'll lower it away at IRGen time. case TypeTraitResult::CanBe: { auto &C = SGF.getASTContext(); auto int8Ty = BuiltinIntegerType::get(8, C)->getCanonicalType(); auto apply = SGF.B.createBuiltin(loc, C.getIdentifier(getBuiltinName(Kind)), SILType::getPrimitiveObjectType(int8Ty), substitutions, args[0].getValue()); return ManagedValue::forUnmanaged(apply); } } // Produce the result as an integer literal constant. auto val = SGF.B.createIntegerLiteral( loc, SILType::getBuiltinIntegerType(8, SGF.getASTContext()), (uintmax_t)result); return ManagedValue::forUnmanaged(val); } Optional SpecializedEmitter::forDecl(SILGenModule &SGM, SILDeclRef function) { // Only consider standalone declarations in the Builtin module. if (function.kind != SILDeclRef::Kind::Func) return None; if (!function.hasDecl()) return None; ValueDecl *decl = function.getDecl(); if (!isa(decl->getDeclContext())) return None; auto name = decl->getBaseName().getIdentifier(); const BuiltinInfo &builtin = SGM.M.getBuiltinInfo(name); switch (builtin.ID) { // All the non-SIL, non-type-trait builtins should use the // named-builtin logic, which just emits the builtin as a call to a // builtin function. This includes builtins that aren't even declared // in Builtins.def, i.e. all of the LLVM intrinsics. // // We do this in a separate pass over Builtins.def to avoid creating // a bunch of identical cases. #define BUILTIN(Id, Name, Attrs) \ case BuiltinValueKind::Id: #define BUILTIN_SIL_OPERATION(Id, Name, Overload) #define BUILTIN_SANITIZER_OPERATION(Id, Name, Attrs) #define BUILTIN_TYPE_CHECKER_OPERATION(Id, Name) #define BUILTIN_TYPE_TRAIT_OPERATION(Id, Name) #include "swift/AST/Builtins.def" case BuiltinValueKind::None: return SpecializedEmitter(name); // Do a second pass over Builtins.def, ignoring all the cases for // which we emitted something above. #define BUILTIN(Id, Name, Attrs) // Use specialized emitters for SIL builtins. #define BUILTIN_SIL_OPERATION(Id, Name, Overload) \ case BuiltinValueKind::Id: \ return SpecializedEmitter(&emitBuiltin##Id); // Sanitizer builtins should never directly be called; they should only // be inserted as instrumentation by SILGen. #define BUILTIN_SANITIZER_OPERATION(Id, Name, Attrs) \ case BuiltinValueKind::Id: \ llvm_unreachable("Sanitizer builtin called directly?"); #define BUILTIN_TYPE_CHECKER_OPERATION(Id, Name) \ case BuiltinValueKind::Id: \ llvm_unreachable( \ "Compile-time type checker operation should not make it to SIL!"); // Lower away type trait builtins when they're trivially solvable. #define BUILTIN_TYPE_TRAIT_OPERATION(Id, Name) \ case BuiltinValueKind::Id: \ return SpecializedEmitter(&emitBuiltinTypeTrait<&TypeBase::Name, \ BuiltinValueKind::Id>); #include "swift/AST/Builtins.def" } llvm_unreachable("bad builtin kind"); }