//===--- Expr.h - Swift Language Expression ASTs ----------------*- C++ -*-===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file defines the Expr class and subclasses. // //===----------------------------------------------------------------------===// #ifndef SWIFT_AST_EXPR_H #define SWIFT_AST_EXPR_H #include "swift/AST/CaptureInfo.h" #include "swift/AST/ConcreteDeclRef.h" #include "swift/AST/DeclNameLoc.h" #include "swift/AST/ProtocolConformanceRef.h" #include "swift/AST/TypeAlignments.h" #include "swift/AST/TypeLoc.h" #include "swift/AST/Availability.h" #include "llvm/Support/TrailingObjects.h" namespace llvm { struct fltSemantics; } namespace swift { enum class AccessKind : unsigned char; class ArchetypeType; class ASTContext; class AvailabilitySpec; class Type; class ValueDecl; class Decl; class Pattern; class SubscriptDecl; class Stmt; class BraceStmt; class ASTWalker; class Initializer; class VarDecl; class OpaqueValueExpr; class FuncDecl; class ConstructorDecl; class TypeDecl; class PatternBindingDecl; class ParameterList; enum class ExprKind : uint8_t { #define EXPR(Id, Parent) Id, #define EXPR_RANGE(Id, FirstId, LastId) \ First_##Id##Expr = FirstId, Last_##Id##Expr = LastId, #include "swift/AST/ExprNodes.def" }; /// Discriminates the different kinds of checked cast supported. /// /// This enumeration should not exist. Only the collection downcast kinds are /// currently significant. Please don't add new kinds. enum class CheckedCastKind : unsigned { /// The kind has not been determined yet. Unresolved, /// Valid resolved kinds start here. First_Resolved, /// The requested cast is an implicit conversion, so this is a coercion. Coercion = First_Resolved, /// A non-value-changing checked cast. ValueCast, // A downcast from an array type to another array type. ArrayDowncast, // A downcast from a dictionary type to another dictionary type. DictionaryDowncast, // A downcast from a dictionary type to another dictionary type that // requires bridging. DictionaryDowncastBridged, // A downcast from a set type to another set type. SetDowncast, // A downcast from a set type to another set type that requires bridging. SetDowncastBridged, /// A downcast from an object of class or Objective-C existential /// type to its bridged value type. BridgeFromObjectiveC, Last_CheckedCastKind = BridgeFromObjectiveC, }; enum class AccessSemantics : unsigned char { /// On a property or subscript reference, this is a direct access to /// the underlying storage. On a function reference, this is a /// non-polymorphic access to a particular implementation. DirectToStorage, /// On a property or subscript reference, this is a direct, /// non-polymorphic access to the getter/setter accessors. DirectToAccessor, /// This is an ordinary access to a declaration, using whatever /// polymorphism is expected. Ordinary, }; /// Expr - Base class for all expressions in swift. class alignas(8) Expr { Expr(const Expr&) = delete; void operator=(const Expr&) = delete; class ExprBitfields { friend class Expr; /// The subclass of Expr that this is. unsigned Kind : 8; /// How this l-value is used, if it's an l-value. unsigned LValueAccessKind : 2; /// Whether the Expr represents something directly written in source or /// it was implicitly generated by the type-checker. unsigned Implicit : 1; }; enum { NumExprBits = 11 }; static_assert(NumExprBits <= 32, "fits in an unsigned"); class LiteralExprBitfields { friend class LiteralExpr; unsigned : NumExprBits; }; enum { NumLiteralExprBits = NumExprBits + 0 }; static_assert(NumLiteralExprBits <= 32, "fits in an unsigned"); class NumberLiteralExprBitfields { friend class NumberLiteralExpr; unsigned : NumLiteralExprBits; unsigned IsNegative : 1; }; enum { NumNumberLiteralExprBits = NumLiteralExprBits + 1 }; static_assert(NumNumberLiteralExprBits <= 32, "fits in an unsigned"); class StringLiteralExprBitfields { friend class StringLiteralExpr; unsigned : NumLiteralExprBits; unsigned Encoding : 2; unsigned IsSingleUnicodeScalar : 1; unsigned IsSingleExtendedGraphemeCluster : 1; }; enum { NumStringLiteralExprBits = NumLiteralExprBits + 2 }; static_assert(NumStringLiteralExprBits <= 32, "fits in an unsigned"); class DeclRefExprBitfields { friend class DeclRefExpr; unsigned : NumExprBits; unsigned Semantics : 2; // an AccessSemantics }; enum { NumDeclRefExprBits = NumExprBits + 2 }; static_assert(NumDeclRefExprBits <= 32, "fits in an unsigned"); class MemberRefExprBitfields { friend class MemberRefExpr; unsigned : NumExprBits; unsigned Semantics : 2; // an AccessSemantics unsigned IsSuper : 1; }; enum { NumMemberRefExprBits = NumExprBits + 3 }; static_assert(NumMemberRefExprBits <= 32, "fits in an unsigned"); class TupleExprBitfields { friend class TupleExpr; unsigned : NumExprBits; /// Whether this tuple has a trailing closure. unsigned HasTrailingClosure : 1; /// Whether this tuple has any labels. unsigned HasElementNames : 1; /// Whether this tuple has label locations. unsigned HasElementNameLocations : 1; }; enum { NumTupleExprBits = NumExprBits + 3 }; static_assert(NumTupleExprBits <= 32, "fits in an unsigned"); class SubscriptExprBitfields { friend class SubscriptExpr; unsigned : NumExprBits; unsigned Semantics : 2; // an AccessSemantics unsigned IsSuper : 1; }; enum { NumSubscriptExprBits = NumExprBits + 3 }; static_assert(NumSubscriptExprBits <= 32, "fits in an unsigned"); class OverloadSetRefExprBitfields { friend class OverloadSetRefExpr; unsigned : NumExprBits; }; enum { NumOverloadSetRefExprBits = NumExprBits }; static_assert(NumOverloadSetRefExprBits <= 32, "fits in an unsigned"); class OverloadedMemberRefExprBitfields { friend class OverloadedMemberRefExpr; unsigned : NumOverloadSetRefExprBits; unsigned Semantics : 2; // an AccessSemantics }; enum { NumOverloadedMemberRefExprBits = NumOverloadSetRefExprBits + 2 }; static_assert(NumOverloadedMemberRefExprBits <= 32, "fits in an unsigned"); class BooleanLiteralExprBitfields { friend class BooleanLiteralExpr; unsigned : NumLiteralExprBits; unsigned Value : 1; }; enum { NumBooleanLiteralExprBits = NumLiteralExprBits + 1 }; static_assert(NumBooleanLiteralExprBits <= 32, "fits in an unsigned"); class MagicIdentifierLiteralExprBitfields { friend class MagicIdentifierLiteralExpr; unsigned : NumLiteralExprBits; unsigned Kind : 3; unsigned StringEncoding : 1; }; enum { NumMagicIdentifierLiteralExprBits = NumLiteralExprBits + 4 }; static_assert(NumMagicIdentifierLiteralExprBits <= 32, "fits in an unsigned"); class AbstractClosureExprBitfields { friend class AbstractClosureExpr; unsigned : NumExprBits; unsigned Discriminator : 16; enum : unsigned { InvalidDiscriminator = 0xFFFF }; }; enum { NumAbstractClosureExprBits = NumExprBits + 16 }; static_assert(NumAbstractClosureExprBits <= 32, "fits in an unsigned"); class ClosureExprBitfields { friend class ClosureExpr; unsigned : NumAbstractClosureExprBits; /// True if closure parameters were synthesized from anonymous closure /// variables. unsigned HasAnonymousClosureVars : 1; /// True if this is a closure created as a result of a void contextual /// conversion. unsigned IsVoidConversionClosure : 1; }; enum { NumClosureExprBits = NumAbstractClosureExprBits + 2 }; static_assert(NumClosureExprBits <= 32, "fits in an unsigned"); class BindOptionalExprBitfields { friend class BindOptionalExpr; unsigned : NumExprBits; unsigned Depth : 16; }; enum { NumBindOptionalExprBits = NumExprBits + 16 }; static_assert(NumBindOptionalExprBits <= 32, "fits in an unsigned"); enum { NumImplicitConversionExprBits = NumExprBits }; class TupleShuffleExprBitfields { friend class TupleShuffleExpr; unsigned : NumImplicitConversionExprBits; unsigned IsSourceScalar : 1; }; enum { NumTupleShuffleExprBits = NumImplicitConversionExprBits + 1 }; class ApplyExprBitfields { friend class ApplyExpr; unsigned : NumExprBits; unsigned ThrowsIsSet : 1; unsigned Throws : 1; }; enum { NumApplyExprBits = NumExprBits + 2 }; static_assert(NumApplyExprBits <= 32, "fits in an unsigned"); enum { NumCheckedCastKindBits = 4 }; class CheckedCastExprBitfields { friend class CheckedCastExpr; unsigned : NumExprBits; unsigned CastKind : NumCheckedCastKindBits; }; enum { NumCheckedCastExprBits = NumExprBits + 4 }; static_assert(NumCheckedCastExprBits <= 32, "fits in an unsigned"); static_assert(unsigned(CheckedCastKind::Last_CheckedCastKind) < (1 << NumCheckedCastKindBits), "unable to fit a CheckedCastKind in the given number of bits"); class CollectionUpcastConversionExprBitfields { friend class CollectionUpcastConversionExpr; unsigned : NumExprBits; unsigned BridgesToObjC : 1; }; enum { NumCollectionUpcastConversionExprBits = NumExprBits + 1 }; static_assert(NumCollectionUpcastConversionExprBits <= 32, "fits in an unsigned"); protected: union { ExprBitfields ExprBits; LiteralExprBitfields LiteralExprBits; NumberLiteralExprBitfields NumberLiteralExprBits; StringLiteralExprBitfields StringLiteralExprBits; DeclRefExprBitfields DeclRefExprBits; TupleExprBitfields TupleExprBits; MemberRefExprBitfields MemberRefExprBits; SubscriptExprBitfields SubscriptExprBits; OverloadSetRefExprBitfields OverloadSetRefExprBits; OverloadedMemberRefExprBitfields OverloadedMemberRefExprBits; BooleanLiteralExprBitfields BooleanLiteralExprBits; MagicIdentifierLiteralExprBitfields MagicIdentifierLiteralExprBits; AbstractClosureExprBitfields AbstractClosureExprBits; ClosureExprBitfields ClosureExprBits; BindOptionalExprBitfields BindOptionalExprBits; ApplyExprBitfields ApplyExprBits; CheckedCastExprBitfields CheckedCastExprBits; CollectionUpcastConversionExprBitfields CollectionUpcastConversionExprBits; TupleShuffleExprBitfields TupleShuffleExprBits; }; private: /// Ty - This is the type of the expression. Type Ty; void setLValueAccessKind(AccessKind accessKind) { ExprBits.LValueAccessKind = unsigned(accessKind) + 1; } protected: Expr(ExprKind Kind, bool Implicit, Type Ty = Type()) : Ty(Ty) { ExprBits.Kind = unsigned(Kind); ExprBits.Implicit = Implicit; ExprBits.LValueAccessKind = 0; } public: /// Return the kind of this expression. ExprKind getKind() const { return ExprKind(ExprBits.Kind); } /// \brief Retrieve the name of the given expression kind. /// /// This name should only be used for debugging dumps and other /// developer aids, and should never be part of a diagnostic or exposed /// to the user of the compiler in any way. static StringRef getKindName(ExprKind K); /// getType - Return the type of this expression. Type getType() const { return Ty; } /// setType - Sets the type of this expression. void setType(Type T) { Ty = T; } /// \brief Return the source range of the expression. SourceRange getSourceRange() const; /// getStartLoc - Return the location of the start of the expression. SourceLoc getStartLoc() const; /// \brief Retrieve the location of the end of the expression. SourceLoc getEndLoc() const; /// getLoc - Return the caret location of this expression. SourceLoc getLoc() const; #define SWIFT_FORWARD_SOURCE_LOCS_TO(SUBEXPR) \ SourceLoc getStartLoc() const { return (SUBEXPR)->getStartLoc(); } \ SourceLoc getEndLoc() const { return (SUBEXPR)->getEndLoc(); } \ SourceLoc getLoc() const { return (SUBEXPR)->getLoc(); } \ SourceRange getSourceRange() const { return (SUBEXPR)->getSourceRange(); } SourceLoc TrailingSemiLoc; /// getSemanticsProvidingExpr - Find the smallest subexpression /// which obeys the property that evaluating it is exactly /// equivalent to evaluating this expression. /// /// Looks through parentheses. Would not look through something /// like '(foo(), x:bar(), baz()).x'. Expr *getSemanticsProvidingExpr(); const Expr *getSemanticsProvidingExpr() const { return const_cast(this)->getSemanticsProvidingExpr(); } /// getValueProvidingExpr - Find the smallest subexpression which is /// responsible for generating the value of this expression. /// Evaluating the result is not necessarily equivalent to /// evaluating this expression because of potential missing /// side-effects (which may influence the returned value). Expr *getValueProvidingExpr(); const Expr *getValueProvidingExpr() const { return const_cast(this)->getValueProvidingExpr(); } /// This recursively walks the AST rooted at this expression. Expr *walk(ASTWalker &walker); Expr *walk(ASTWalker &&walker) { return walk(walker); } /// Enumerate each immediate child expression of this node, invoking the /// specific functor on it. This ignores statements and other non-expression /// children. void forEachImmediateChildExpr(const std::function &callback); /// Enumerate each expr node within this expression subtree, invoking the /// specific functor on it. This ignores statements and other non-expression /// children, and if there is a closure within the expression, this does not /// walk into the body of it (unless it is single-expression). void forEachChildExpr(const std::function &callback); /// findExistingInitializerContext - Given that this expression is /// an initializer that belongs in some sort of Initializer /// context, look through it for any existing context object. Initializer *findExistingInitializerContext(); /// Determine whether this expression refers to a type by name. /// /// This distinguishes static references to types, like Int, from metatype /// values, "someTy: Any.Type". bool isTypeReference() const; /// Determine whether this expression refers to a statically-derived metatype. /// /// This implies `isTypeReference`, but also requires that the referenced type /// is not an archetype or dependent type. bool isStaticallyDerivedMetatype() const; /// isImplicit - Determines whether this expression was implicitly-generated, /// rather than explicitly written in the AST. bool isImplicit() const { return ExprBits.Implicit; } void setImplicit(bool Implicit = true) { ExprBits.Implicit = Implicit; } /// getLValueAccessKind - Determines how this l-value expression is used. AccessKind getLValueAccessKind() const { assert(hasLValueAccessKind()); return AccessKind(ExprBits.LValueAccessKind - 1); } bool hasLValueAccessKind() const { return ExprBits.LValueAccessKind != 0; } void clearLValueAccessKind() { ExprBits.LValueAccessKind = 0; } /// Set that this l-value expression is used in the given way. /// /// This information is also correctly propagated to any l-value /// sub-expressions from which this l-value is derived. /// /// \param allowOverwrite - true if it's okay if an expression already /// has an access kind void propagateLValueAccessKind(AccessKind accessKind, bool allowOverwrite = false); /// Determine whether this expression is 'super', possibly converted to /// a base class. bool isSuperExpr() const; /// Returns true if directly appending a parameter list would be syntactically /// valid. /// /// Good examples: foo.bar, baz(). /// Bad examples: bool canAppendCallParentheses() const; /// Produce a mapping from each subexpression to its parent /// expression, with the provided expression serving as the root of /// the parent map. llvm::DenseMap getParentMap(); /// Produce a mapping from each subexpression to its depth in the root /// expression. The root expression has depth 0, its children have depth /// 1, etc. llvm::DenseMap getDepthMap(); /// Produce a mapping from each expression to its index according to a /// preorder traversal of the expressions. The parent has index 0, its first /// child has index 1, its second child has index 2 if the first child is a /// leaf node, etc. llvm::DenseMap getPreorderIndexMap(); LLVM_ATTRIBUTE_DEPRECATED( void dump() const LLVM_ATTRIBUTE_USED, "only for use within the debugger"); void dump(raw_ostream &OS) const; void print(raw_ostream &OS, unsigned Indent = 0) const; void print(ASTPrinter &Printer, const PrintOptions &Opts) const; // Only allow allocation of Exprs using the allocator in ASTContext // or by doing a placement new. void *operator new(size_t Bytes, ASTContext &C, unsigned Alignment = alignof(Expr)); // Make placement new and vanilla new/delete illegal for Exprs. void *operator new(size_t Bytes) throw() = delete; void operator delete(void *Data) throw() = delete; void *operator new(size_t Bytes, void *Mem) { assert(Mem); return Mem; } }; /// ErrorExpr - Represents a semantically erroneous subexpression in the AST, /// typically this will have an ErrorType. class ErrorExpr : public Expr { SourceRange Range; public: ErrorExpr(SourceRange Range, Type Ty = Type()) : Expr(ExprKind::Error, /*Implicit=*/true, Ty), Range(Range) {} SourceRange getSourceRange() const { return Range; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Error; } }; /// CodeCompletionExpr - Represents the code completion token in the AST, this /// can help us preserve the context of the code completion position. class CodeCompletionExpr : public Expr { SourceRange Range; public: CodeCompletionExpr(SourceRange Range, Type Ty = Type()) : Expr(ExprKind::CodeCompletion, /*Implicit=*/true, Ty), Range(Range) {} CodeCompletionExpr(CharSourceRange Range, Type Ty = Type()) : Expr(ExprKind::CodeCompletion, /*Implicit=*/true, Ty), Range(SourceRange(Range.getStart(), Range.getEnd())) {} SourceRange getSourceRange() const { return Range; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CodeCompletion; } }; /// LiteralExpr - Common base class between the literals. class LiteralExpr : public Expr { public: LiteralExpr(ExprKind Kind, bool Implicit) : Expr(Kind, Implicit) {} // Make an exact copy of this one AST node. LiteralExpr *shallowClone(ASTContext &Ctx) const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_LiteralExpr && E->getKind() <= ExprKind::Last_LiteralExpr; } }; /// \brief The 'nil' literal. /// class NilLiteralExpr : public LiteralExpr { SourceLoc Loc; public: NilLiteralExpr(SourceLoc Loc, bool Implicit = false) : LiteralExpr(ExprKind::NilLiteral, Implicit), Loc(Loc) { } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::NilLiteral; } }; /// \brief Abstract base class for numeric literals, potentially with a sign. class NumberLiteralExpr : public LiteralExpr { /// The value of the literal as an ASTContext-owned string. Underscores must /// be stripped. StringRef Val; // Use StringRef instead of APInt or APFloat, which leak. protected: SourceLoc MinusLoc; SourceLoc DigitsLoc; public: NumberLiteralExpr(ExprKind Kind, StringRef Val, SourceLoc DigitsLoc, bool Implicit) : LiteralExpr(Kind, Implicit), Val(Val), DigitsLoc(DigitsLoc) { NumberLiteralExprBits.IsNegative = false; } bool isNegative() const { return NumberLiteralExprBits.IsNegative; } void setNegative(SourceLoc Loc) { MinusLoc = Loc; NumberLiteralExprBits.IsNegative = true; } StringRef getDigitsText() const { return Val; } SourceRange getSourceRange() const { if (isNegative()) return { MinusLoc, DigitsLoc }; else return DigitsLoc; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_NumberLiteralExpr && E->getKind() <= ExprKind::Last_NumberLiteralExpr; } }; /// \brief Integer literal with a '+' or '-' sign, like '+4' or '- 2'. /// /// After semantic analysis assigns types, this is guaranteed to only have /// a BuiltinIntegerType. class IntegerLiteralExpr : public NumberLiteralExpr { public: IntegerLiteralExpr(StringRef Val, SourceLoc DigitsLoc, bool Implicit = false) : NumberLiteralExpr(ExprKind::IntegerLiteral, Val, DigitsLoc, Implicit) {} APInt getValue() const; static APInt getValue(StringRef Text, unsigned BitWidth); static bool classof(const Expr *E) { return E->getKind() == ExprKind::IntegerLiteral; } }; /// FloatLiteralExpr - Floating point literal, like '4.0'. After semantic /// analysis assigns types, this is guaranteed to only have a /// BuiltinFloatingPointType. class FloatLiteralExpr : public NumberLiteralExpr { public: FloatLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit = false) : NumberLiteralExpr(ExprKind::FloatLiteral, Val, Loc, Implicit) {} APFloat getValue() const; static APFloat getValue(StringRef Text, const llvm::fltSemantics &Semantics); static bool classof(const Expr *E) { return E->getKind() == ExprKind::FloatLiteral; } }; /// \brief A Boolean literal ('true' or 'false') /// class BooleanLiteralExpr : public LiteralExpr { SourceLoc Loc; public: BooleanLiteralExpr(bool Value, SourceLoc Loc, bool Implicit = false) : LiteralExpr(ExprKind::BooleanLiteral, Implicit), Loc(Loc) { BooleanLiteralExprBits.Value = Value; } /// Retrieve the Boolean value of this literal. bool getValue() const { return BooleanLiteralExprBits.Value; } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::BooleanLiteral; } }; /// StringLiteralExpr - String literal, like '"foo"'. After semantic /// analysis assigns types, this is guaranteed to only have a /// BuiltinRawPointerType. class StringLiteralExpr : public LiteralExpr { StringRef Val; SourceRange Range; public: /// The encoding that should be used for the string literal. enum Encoding : unsigned { /// A UTF-8 string. UTF8, /// A UTF-16 string. UTF16, /// A single UnicodeScalar, passed as an integer. OneUnicodeScalar }; StringLiteralExpr(StringRef Val, SourceRange Range, bool Implicit = false); StringRef getValue() const { return Val; } SourceRange getSourceRange() const { return Range; } /// Determine the encoding that should be used for this string literal. Encoding getEncoding() const { return static_cast(StringLiteralExprBits.Encoding); } /// Set the encoding that should be used for this string literal. void setEncoding(Encoding encoding) { StringLiteralExprBits.Encoding = static_cast(encoding); } bool isSingleUnicodeScalar() const { return StringLiteralExprBits.IsSingleUnicodeScalar; } bool isSingleExtendedGraphemeCluster() const { return StringLiteralExprBits.IsSingleExtendedGraphemeCluster; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::StringLiteral; } }; /// InterpolatedStringLiteral - An interpolated string literal. /// /// An interpolated string literal mixes expressions (which are evaluated and /// converted into string form) within a string literal. /// /// \code /// "[\(min)..\(max)]" /// \endcode class InterpolatedStringLiteralExpr : public LiteralExpr { SourceLoc Loc; MutableArrayRef Segments; Expr *SemanticExpr; public: InterpolatedStringLiteralExpr(SourceLoc Loc, MutableArrayRef Segments) : LiteralExpr(ExprKind::InterpolatedStringLiteral, /*Implicit=*/false), Loc(Loc), Segments(Segments), SemanticExpr() { } MutableArrayRef getSegments() { return Segments; } ArrayRef getSegments() const { return Segments; } /// \brief Retrieve the expression that actually evaluates the resulting /// string, typically with a series of '+' operations. Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *SE) { SemanticExpr = SE; } SourceLoc getStartLoc() const { return Segments.front()->getStartLoc(); } SourceLoc getEndLoc() const { return Segments.back()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::InterpolatedStringLiteral; } }; /// MagicIdentifierLiteralExpr - A magic identifier like #file which expands /// out to a literal at SILGen time. class MagicIdentifierLiteralExpr : public LiteralExpr { public: enum Kind : unsigned { File, Line, Column, Function, DSOHandle }; private: SourceLoc Loc; public: MagicIdentifierLiteralExpr(Kind kind, SourceLoc loc, bool implicit = false) : LiteralExpr(ExprKind::MagicIdentifierLiteral, implicit), Loc(loc) { MagicIdentifierLiteralExprBits.Kind = static_cast(kind); MagicIdentifierLiteralExprBits.StringEncoding = static_cast(StringLiteralExpr::UTF8); } Kind getKind() const { return static_cast(MagicIdentifierLiteralExprBits.Kind); } bool isFile() const { return getKind() == File; } bool isFunction() const { return getKind() == Function; } bool isLine() const { return getKind() == Line; } bool isColumn() const { return getKind() == Column; } bool isString() const { switch (getKind()) { case File: case Function: return true; case Line: case Column: case DSOHandle: return false; } llvm_unreachable("bad Kind"); } bool isDSOHandle() const { return getKind() == DSOHandle; } SourceRange getSourceRange() const { return Loc; } // For a magic identifier that produces a string literal, retrieve the // encoding for that string literal. StringLiteralExpr::Encoding getStringEncoding() const { assert(isString() && "Magic identifier literal has non-string encoding"); return static_cast( MagicIdentifierLiteralExprBits.StringEncoding); } // For a magic identifier that produces a string literal, set the encoding // for the string literal. void setStringEncoding(StringLiteralExpr::Encoding encoding) { assert(isString() && "Magic identifier literal has non-string encoding"); MagicIdentifierLiteralExprBits.StringEncoding = static_cast(encoding); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::MagicIdentifierLiteral; } }; // ObjectLiteralExpr - An expression of the form // '#colorLiteral(red: 1, blue: 0, green: 0, alpha: 1)' with a name and a list // argument. The components of the list argument are meant to be themselves // constant. class ObjectLiteralExpr : public LiteralExpr { public: /// The kind of object literal. enum LiteralKind : unsigned { #define POUND_OBJECT_LITERAL(Name, Desc, Proto) Name, #include "swift/Parse/Tokens.def" }; private: LiteralKind LitKind; Expr *Arg; Expr *SemanticExpr; SourceLoc PoundLoc; public: ObjectLiteralExpr(SourceLoc PoundLoc, LiteralKind LitKind, Expr *Arg, bool implicit = false) : LiteralExpr(ExprKind::ObjectLiteral, implicit), LitKind(LitKind), Arg(Arg), SemanticExpr(nullptr), PoundLoc(PoundLoc) {} LiteralKind getLiteralKind() const { return LitKind; } Expr *getArg() const { return Arg; } void setArg(Expr *arg) { Arg = arg; } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *expr) { SemanticExpr = expr; } SourceLoc getSourceLoc() const { return PoundLoc; } SourceRange getSourceRange() const { return SourceRange(PoundLoc, Arg->getEndLoc()); } /// Return the string form of the literal name. StringRef getLiteralKindRawName() const; StringRef getLiteralKindPlainName() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::ObjectLiteral; } }; /// DiscardAssignmentExpr - A '_' in the left-hand side of an assignment, which /// discards the corresponding tuple element on the right-hand side. class DiscardAssignmentExpr : public Expr { SourceLoc Loc; public: DiscardAssignmentExpr(SourceLoc Loc, bool Implicit) : Expr(ExprKind::DiscardAssignment, Implicit), Loc(Loc) {} SourceRange getSourceRange() const { return Loc; } SourceLoc getLoc() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DiscardAssignment; } }; /// DeclRefExpr - A reference to a value, "x". class DeclRefExpr : public Expr { /// This is used when the reference is specialized, e.g "GenCls", to /// hold information about the generic arguments. struct SpecializeInfo { ConcreteDeclRef D; ArrayRef GenericArgs; }; /// \brief The declaration pointer or SpecializeInfo pointer if it was /// explicitly specialized with <...>. llvm::PointerUnion DOrSpecialized; DeclNameLoc Loc; SpecializeInfo *getSpecInfo() const { return DOrSpecialized.dyn_cast(); } public: DeclRefExpr(ConcreteDeclRef D, DeclNameLoc Loc, bool Implicit, AccessSemantics semantics = AccessSemantics::Ordinary, Type Ty = Type()) : Expr(ExprKind::DeclRef, Implicit, Ty), DOrSpecialized(D), Loc(Loc) { DeclRefExprBits.Semantics = (unsigned) semantics; } /// Retrieve the declaration to which this expression refers. ValueDecl *getDecl() const { return getDeclRef().getDecl(); } /// Return true if this access is direct, meaning that it does not call the /// getter or setter. AccessSemantics getAccessSemantics() const { return (AccessSemantics) DeclRefExprBits.Semantics; } /// Retrieve the concrete declaration reference. ConcreteDeclRef getDeclRef() const { if (auto Spec = getSpecInfo()) return Spec->D; return DOrSpecialized.get(); } void setSpecialized(); /// \brief Determine whether this declaration reference was immediately /// specialized by <...>. bool isSpecialized() const { return getSpecInfo() != nullptr; } /// Set the generic arguments. /// /// This copies the array using ASTContext's allocator. void setGenericArgs(ArrayRef GenericArgs); /// Returns the generic arguments if it was specialized or an empty array /// otherwise. ArrayRef getGenericArgs() const { if (auto Spec = getSpecInfo()) return Spec->GenericArgs; return ArrayRef(); } SourceRange getSourceRange() const { return Loc.getSourceRange(); } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } DeclNameLoc getNameLoc() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DeclRef; } }; /// A reference to 'super'. References to members of 'super' resolve to members /// of a superclass of 'self'. class SuperRefExpr : public Expr { VarDecl *Self; SourceLoc Loc; public: SuperRefExpr(VarDecl *Self, SourceLoc Loc, bool Implicit, Type SuperTy = Type()) : Expr(ExprKind::SuperRef, Implicit, SuperTy), Self(Self), Loc(Loc) {} VarDecl *getSelf() const { return Self; } SourceLoc getSuperLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::SuperRef; } }; /// A reference to a type in expression context, spelled out as a TypeLoc. Sema /// forms this expression as a result of name binding. This always has /// MetaTypetype. class TypeExpr : public Expr { TypeLoc Info; TypeExpr(Type Ty); public: // Create a TypeExpr with location information. TypeExpr(TypeLoc Ty); // The type of a TypeExpr is always a metatype type. Return the instance // type, ErrorType if an error, or null if not set yet. Type getInstanceType() const; // Create an implicit TypeExpr, which has no location information. static TypeExpr *createImplicit(Type Ty, ASTContext &C) { return new (C) TypeExpr(Ty); } // Create an implicit TypeExpr, with location information even though it // shouldn't have one. This is presently used to work around other location // processing bugs. If you have an implicit location, use createImplicit. static TypeExpr *createImplicitHack(SourceLoc Loc, Type Ty, ASTContext &C); /// Return a TypeExpr for a TypeDecl and the specified location. static TypeExpr *createForDecl(SourceLoc Loc, TypeDecl *D, bool isImplicit); static TypeExpr *createForSpecializedDecl(SourceLoc Loc, TypeDecl *D, ArrayRef args, SourceRange angleLocs); TypeLoc &getTypeLoc() { return Info; } TypeLoc getTypeLoc() const { return Info; } TypeRepr *getTypeRepr() const { return Info.getTypeRepr(); } // NOTE: TypeExpr::getType() returns the type of the expr node, which is the // metatype of what is stored as an operand type. SourceRange getSourceRange() const { return Info.getSourceRange(); } // TODO: optimize getStartLoc() and getEndLoc() when TypeLoc allows it. static bool classof(const Expr *E) { return E->getKind() == ExprKind::Type; } }; /// A reference to another initializer from within a constructor body, /// either to a delegating initializer or to a super.init invocation. /// For a reference type, this semantically references a different constructor /// entry point, called the 'initializing constructor', from the 'allocating /// constructor' entry point referenced by a 'new' expression. class OtherConstructorDeclRefExpr : public Expr { ConcreteDeclRef Ctor; DeclNameLoc Loc; public: OtherConstructorDeclRefExpr(ConcreteDeclRef Ctor, DeclNameLoc Loc, bool Implicit, Type Ty = {}) : Expr(ExprKind::OtherConstructorDeclRef, Implicit, Ty), Ctor(Ctor), Loc(Loc) {} ConstructorDecl *getDecl() const; ConcreteDeclRef getDeclRef() const { return Ctor; } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } DeclNameLoc getConstructorLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc.getSourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OtherConstructorDeclRef; } }; /// OverloadSetRefExpr - A reference to an overloaded set of values with a /// single name. /// /// This is an abstract class that covers the various different kinds of /// overload sets. class OverloadSetRefExpr : public Expr { ArrayRef Decls; protected: OverloadSetRefExpr(ExprKind Kind, ArrayRef decls, bool Implicit, Type Ty) : Expr(Kind, Implicit, Ty), Decls(decls) {} public: ArrayRef getDecls() const { return Decls; } /// getBaseType - Determine the type of the base object provided for the /// given overload set, which is only non-null when dealing with an overloaded /// member reference. Type getBaseType() const; /// hasBaseObject - Determine whether this overloaded expression has a /// concrete base object (which is not a metatype). bool hasBaseObject() const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_OverloadSetRefExpr && E->getKind() <= ExprKind::Last_OverloadSetRefExpr; } }; /// OverloadedDeclRefExpr - A reference to an overloaded name that should /// eventually be resolved (by overload resolution) to a value reference. class OverloadedDeclRefExpr : public OverloadSetRefExpr { DeclNameLoc Loc; bool IsSpecialized = false; bool IsPotentiallyDelayedGlobalOperator = false; public: OverloadedDeclRefExpr(ArrayRef Decls, DeclNameLoc Loc, bool Implicit, Type Ty = Type()) : OverloadSetRefExpr(ExprKind::OverloadedDeclRef, Decls, Implicit, Ty), Loc(Loc) { } DeclNameLoc getNameLoc() const { return Loc; } SourceLoc getLoc() const { return Loc.getBaseNameLoc(); } SourceRange getSourceRange() const { return Loc.getSourceRange(); } void setSpecialized(bool specialized) { IsSpecialized = specialized; } /// \brief Determine whether this declaration reference was immediately /// specialized by <...>. bool isSpecialized() const { return IsSpecialized; } void setIsPotentiallyDelayedGlobalOperator() { IsPotentiallyDelayedGlobalOperator = true; } bool isPotentiallyDelayedGlobalOperator() const { return IsPotentiallyDelayedGlobalOperator; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OverloadedDeclRef; } }; /// OverloadedMemberRefExpr - A reference to an overloaded name that is a /// member, relative to some base expression, that will eventually be /// resolved to some kind of member-reference expression. class OverloadedMemberRefExpr : public OverloadSetRefExpr { Expr *SubExpr; SourceLoc DotLoc; DeclNameLoc MemberLoc; public: OverloadedMemberRefExpr(Expr *SubExpr, SourceLoc DotLoc, ArrayRef Decls, DeclNameLoc MemberLoc, bool Implicit, Type Ty = Type(), AccessSemantics semantics = AccessSemantics::Ordinary) : OverloadSetRefExpr(ExprKind::OverloadedMemberRef, Decls, Implicit, Ty), SubExpr(SubExpr), DotLoc(DotLoc), MemberLoc(MemberLoc) { OverloadedMemberRefExprBits.Semantics = unsigned(semantics); } SourceLoc getDotLoc() const { return DotLoc; } DeclNameLoc getMemberLoc() const { return MemberLoc; } Expr *getBase() const { return SubExpr; } void setBase(Expr *E) { SubExpr = E; } SourceLoc getLoc() const { return MemberLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { return DotLoc.isValid()? SubExpr->getStartLoc() : MemberLoc.getBaseNameLoc(); } SourceLoc getEndLoc() const { return MemberLoc.getSourceRange().End; } AccessSemantics getAccessSemantics() const { return AccessSemantics(OverloadedMemberRefExprBits.Semantics); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OverloadedMemberRef; } }; /// UnresolvedDeclRefExpr - This represents use of an undeclared identifier, /// which may ultimately be a use of something that hasn't been defined yet, it /// may be a use of something that got imported (which will be resolved during /// sema), or may just be a use of an unknown identifier. /// class UnresolvedDeclRefExpr : public Expr { DeclName Name; DeclNameLoc Loc; DeclRefKind RefKind; bool IsSpecialized = false; public: UnresolvedDeclRefExpr(DeclName name, DeclRefKind refKind, DeclNameLoc loc) : Expr(ExprKind::UnresolvedDeclRef, /*Implicit=*/loc.isInvalid()), Name(name), Loc(loc), RefKind(refKind) { } bool hasName() const { return static_cast(Name); } DeclName getName() const { return Name; } DeclRefKind getRefKind() const { return RefKind; } void setSpecialized(bool specialized) { IsSpecialized = specialized; } /// \brief Determine whether this declaration reference was immediately /// specialized by <...>. bool isSpecialized() const { return IsSpecialized; } DeclNameLoc getNameLoc() const { return Loc; } SourceRange getSourceRange() const { return Loc.getSourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedDeclRef; } }; /// MemberRefExpr - This represents 'a.b' where we are referring to a member /// of a type, such as a property or variable. /// /// Note that methods found via 'dot' syntax are expressed as DotSyntaxCallExpr /// nodes, because 'a.f' is actually an application of 'a' (the implicit object /// argument) to the function 'f'. class MemberRefExpr : public Expr { Expr *Base; ConcreteDeclRef Member; SourceLoc DotLoc; DeclNameLoc NameLoc; public: MemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member, DeclNameLoc loc, bool Implicit, AccessSemantics semantics = AccessSemantics::Ordinary); Expr *getBase() const { return Base; } ConcreteDeclRef getMember() const { return Member; } DeclNameLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } void setBase(Expr *E) { Base = E; } /// Return true if this member access is direct, meaning that it /// does not call the getter or setter. AccessSemantics getAccessSemantics() const { return (AccessSemantics) MemberRefExprBits.Semantics; } /// Determine whether this member reference refers to the /// superclass's property. bool isSuper() const { return MemberRefExprBits.IsSuper; } /// Set whether this member reference refers to the superclass's /// property. void setIsSuper(bool isSuper) { MemberRefExprBits.IsSuper = isSuper; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { SourceLoc BaseStartLoc = Base->getStartLoc(); if (BaseStartLoc.isInvalid() || NameLoc.isInvalid()) { return NameLoc.getBaseNameLoc(); } else { return BaseStartLoc; } } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::MemberRef; } }; /// Common base for expressions that involve dynamic lookup, which /// determines at runtime whether a particular method, property, or /// subscript is available. class DynamicLookupExpr : public Expr { protected: explicit DynamicLookupExpr(ExprKind kind) : Expr(kind, /*Implicit=*/false) { } public: static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_DynamicLookupExpr && E->getKind() <= ExprKind::Last_DynamicLookupExpr; } }; /// A reference to a member of an object that was found via dynamic lookup. /// /// A member found via dynamic lookup may not actually be available at runtime. /// Therefore, a reference to that member always returns an optional instance. /// Users can then propagate the optional (via ?) or assert that the member is /// always available (via !). For example: /// /// \code /// class C { /// func @objc foo(i : Int) -> String { ... } /// }; /// /// var x : AnyObject = /// print(x.foo!(17)) // x.foo has type ((i : Int) -> String)? /// \endcode class DynamicMemberRefExpr : public DynamicLookupExpr { Expr *Base; ConcreteDeclRef Member; SourceLoc DotLoc; DeclNameLoc NameLoc; public: DynamicMemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member, DeclNameLoc nameLoc) : DynamicLookupExpr(ExprKind::DynamicMemberRef), Base(base), Member(member), DotLoc(dotLoc), NameLoc(nameLoc) { } /// Retrieve the base of the expression. Expr *getBase() const { return Base; } /// Replace the base of the expression. void setBase(Expr *base) { Base = base; } /// Retrieve the member to which this access refers. ConcreteDeclRef getMember() const { return Member; } /// Retrieve the location of the member name. DeclNameLoc getNameLoc() const { return NameLoc; } /// Retrieve the location of the '.'. SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { SourceLoc BaseStartLoc = Base->getStartLoc(); if (BaseStartLoc.isInvalid() || NameLoc.isInvalid()) { return NameLoc.getBaseNameLoc(); } else { return BaseStartLoc; } } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicMemberRef; } }; /// A subscript on an object with dynamic lookup type. /// /// A subscript found via dynamic lookup may not actually be available /// at runtime. Therefore, the result of performing the subscript /// operation always returns an optional instance.Users can then /// propagate the optional (via ?) or assert that the member is always /// available (via !). For example: /// /// \code /// class C { /// @objc subscript (i : Int) -> String { /// get { /// ... /// } /// } /// }; /// /// var x : AnyObject = /// print(x[27]! // x[27] has type String? /// \endcode class DynamicSubscriptExpr : public DynamicLookupExpr { Expr *Base; Expr *Index; ConcreteDeclRef Member; public: DynamicSubscriptExpr(Expr *base, Expr *index, ConcreteDeclRef member) : DynamicLookupExpr(ExprKind::DynamicSubscript), Base(base), Index(index), Member(member) { } /// Retrieve the base of the expression. Expr *getBase() const { return Base; } /// Replace the base of the expression. void setBase(Expr *base) { Base = base; } /// getIndex - Retrieve the index of the subscript expression, i.e., the /// "offset" into the base value. Expr *getIndex() const { return Index; } void setIndex(Expr *E) { Index = E; } /// Retrieve the member to which this access refers. ConcreteDeclRef getMember() const { return Member; } SourceLoc getLoc() const { return Index->getStartLoc(); } SourceLoc getStartLoc() const { return Base->getStartLoc(); } SourceLoc getEndLoc() const { return Index->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicSubscript; } }; /// UnresolvedMemberExpr - This represents '.foo', an unresolved reference to a /// member, which is to be resolved with context sensitive type information into /// bar.foo. These always have unresolved type. class UnresolvedMemberExpr : public Expr { SourceLoc DotLoc; DeclNameLoc NameLoc; DeclName Name; Expr *Argument; public: UnresolvedMemberExpr(SourceLoc dotLoc, DeclNameLoc nameLoc, DeclName name, Expr *argument) : Expr(ExprKind::UnresolvedMember, /*Implicit=*/false), DotLoc(dotLoc), NameLoc(nameLoc), Name(name), Argument(argument) { } DeclName getName() const { return Name; } DeclNameLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getArgument() const { return Argument; } void setArgument(Expr *argument) { Argument = argument; } SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { return DotLoc; } SourceLoc getEndLoc() const { return (Argument ? Argument->getEndLoc() : NameLoc.getSourceRange().End); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedMember; } }; /// AnyTryExpr - An abstract superclass for 'try' and 'try!'. /// /// These are like IdentityExpr in some ways, but they're a bit too /// semantic differentiated to just always look through. class AnyTryExpr : public Expr { Expr *SubExpr; SourceLoc TryLoc; public: AnyTryExpr(ExprKind kind, SourceLoc tryLoc, Expr *sub, Type type, bool implicit) : Expr(kind, implicit, type), SubExpr(sub), TryLoc(tryLoc) {} SourceLoc getLoc() const { return SubExpr->getLoc(); } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *E) { SubExpr = E; } SourceLoc getTryLoc() const { return TryLoc; } SourceLoc getStartLoc() const { return TryLoc; } SourceLoc getEndLoc() const { return getSubExpr()->getEndLoc(); } static bool classof(const Expr *e) { return e->getKind() >= ExprKind::First_AnyTryExpr && e->getKind() <= ExprKind::Last_AnyTryExpr; } }; /// TryExpr - A 'try' surrounding an expression, marking that the /// expression contains code which might throw. /// /// getSemanticsProvidingExpr() looks through this because it doesn't /// provide the value and only very specific clients care where the /// 'try' was written. class TryExpr : public AnyTryExpr { public: TryExpr(SourceLoc tryLoc, Expr *sub, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::Try, tryLoc, sub, type, implicit) {} static bool classof(const Expr *e) { return e->getKind() == ExprKind::Try; } }; /// ForceTryExpr - A 'try!' surrounding an expression, marking that /// the expression contains code which might throw, but that the code /// should dynamically assert if it does. class ForceTryExpr : public AnyTryExpr { SourceLoc ExclaimLoc; public: ForceTryExpr(SourceLoc tryLoc, Expr *sub, SourceLoc exclaimLoc, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::ForceTry, tryLoc, sub, type, implicit), ExclaimLoc(exclaimLoc) {} SourceLoc getExclaimLoc() const { return ExclaimLoc; } static bool classof(const Expr *e) { return e->getKind() == ExprKind::ForceTry; } }; /// A 'try?' surrounding an expression, marking that the expression contains /// code which might throw, and that the result should be injected into an /// Optional. If the code does throw, \c nil is produced. class OptionalTryExpr : public AnyTryExpr { SourceLoc QuestionLoc; public: OptionalTryExpr(SourceLoc tryLoc, Expr *sub, SourceLoc questionLoc, Type type = Type(), bool implicit = false) : AnyTryExpr(ExprKind::OptionalTry, tryLoc, sub, type, implicit), QuestionLoc(questionLoc) {} SourceLoc getQuestionLoc() const { return QuestionLoc; } static bool classof(const Expr *e) { return e->getKind() == ExprKind::OptionalTry; } }; /// An expression node that does not affect the evaluation of its subexpression. class IdentityExpr : public Expr { Expr *SubExpr; public: IdentityExpr(ExprKind kind, Expr *subExpr, Type ty = Type(), bool implicit = false) : Expr(kind, implicit, ty), SubExpr(subExpr) {} SourceLoc getLoc() const { return SubExpr->getLoc(); } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *E) { SubExpr = E; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_IdentityExpr && E->getKind() <= ExprKind::Last_IdentityExpr; } }; /// The '.self' pseudo-property, which has no effect except to /// satisfy the syntactic requirement that type values appear only as part of /// a property chain. class DotSelfExpr : public IdentityExpr { SourceLoc DotLoc; SourceLoc SelfLoc; public: DotSelfExpr(Expr *subExpr, SourceLoc dot, SourceLoc self, Type ty = Type()) : IdentityExpr(ExprKind::DotSelf, subExpr, ty), DotLoc(dot), SelfLoc(self) {} SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getSelfLoc() const { return SelfLoc; } SourceLoc getStartLoc() const { return getSubExpr()->getStartLoc(); } SourceLoc getEndLoc() const { return SelfLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSelf; } }; /// A parenthesized expression like '(x+x)'. Syntactically, /// this is just a TupleExpr with exactly one element that has no label. /// Semantically, however, it serves only as grouping parentheses and /// does not form an expression of tuple type (unless the sub-expression /// has tuple type, of course). class ParenExpr : public IdentityExpr { SourceLoc LParenLoc, RParenLoc; /// \brief Whether we're wrapping a trailing closure expression. /// FIXME: Pack bit into superclass. bool HasTrailingClosure; public: ParenExpr(SourceLoc lploc, Expr *subExpr, SourceLoc rploc, bool hasTrailingClosure, Type ty = Type()) : IdentityExpr(ExprKind::Paren, subExpr, ty), LParenLoc(lploc), RParenLoc(rploc), HasTrailingClosure(hasTrailingClosure) { assert(lploc.isValid() == rploc.isValid() && "Mismatched source location information"); } SourceLoc getLParenLoc() const { return LParenLoc; } SourceLoc getRParenLoc() const { return RParenLoc; } // When the locations of the parens are invalid, ask our // subexpression for its source range instead. This isn't a // hot path and so we don't both optimizing for it. SourceLoc getStartLoc() const { return (LParenLoc.isInvalid() ? getSubExpr()->getStartLoc() : LParenLoc); } SourceLoc getEndLoc() const { // If we have a trailing closure, our end point is the end of the // trailing closure. if (RParenLoc.isInvalid() || HasTrailingClosure) return getSubExpr()->getEndLoc(); return RParenLoc; } /// \brief Whether this expression has a trailing closure as its argument. bool hasTrailingClosure() const { return HasTrailingClosure; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Paren; } }; /// TupleExpr - Parenthesized expressions like '(a: x+x)' and '(x, y, 4)'. Also /// used to represent the operands to a binary operator. Note that /// expressions like '(4)' are represented with a ParenExpr. class TupleExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; SourceLoc LParenLoc; SourceLoc RParenLoc; unsigned NumElements; size_t numTrailingObjects(OverloadToken) const { return getNumElements(); } size_t numTrailingObjects(OverloadToken) const { return hasElementNames() ? getNumElements() : 0; } size_t numTrailingObjects(OverloadToken) const { return hasElementNames() ? getNumElements() : 0; } /// Retrieve the buffer containing the element names. MutableArrayRef getElementNamesBuffer() { if (!hasElementNames()) return { }; return { getTrailingObjects(), getNumElements() }; } /// Retrieve the buffer containing the element name locations. MutableArrayRef getElementNameLocsBuffer() { if (!hasElementNameLocs()) return { }; return { getTrailingObjects(), getNumElements() }; } TupleExpr(SourceLoc LParenLoc, ArrayRef SubExprs, ArrayRef ElementNames, ArrayRef ElementNameLocs, SourceLoc RParenLoc, bool HasTrailingClosure, bool Implicit, Type Ty); public: /// Create a tuple. static TupleExpr *create(ASTContext &ctx, SourceLoc LParenLoc, ArrayRef SubExprs, ArrayRef ElementNames, ArrayRef ElementNameLocs, SourceLoc RParenLoc, bool HasTrailingClosure, bool Implicit, Type Ty = Type()); /// Create an empty tuple. static TupleExpr *createEmpty(ASTContext &ctx, SourceLoc LParenLoc, SourceLoc RParenLoc, bool Implicit); /// Create an implicit tuple with no source information. static TupleExpr *createImplicit(ASTContext &ctx, ArrayRef SubExprs, ArrayRef ElementNames); SourceLoc getLParenLoc() const { return LParenLoc; } SourceLoc getRParenLoc() const { return RParenLoc; } SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; /// \brief Whether this expression has a trailing closure as its argument. bool hasTrailingClosure() const { return TupleExprBits.HasTrailingClosure; } /// Retrieve the elements of this tuple. MutableArrayRef getElements() { return { getTrailingObjects(), getNumElements() }; } /// Retrieve the elements of this tuple. ArrayRef getElements() const { return { getTrailingObjects(), getNumElements() }; } unsigned getNumElements() const { return NumElements; } Expr *getElement(unsigned i) const { return getElements()[i]; } void setElement(unsigned i, Expr *e) { getElements()[i] = e; } /// Whether this tuple has element names. bool hasElementNames() const { return TupleExprBits.HasElementNames; } /// Retrieve the element names for a tuple. ArrayRef getElementNames() const { return const_cast(this)->getElementNamesBuffer(); } /// Retrieve the ith element name. Identifier getElementName(unsigned i) const { return hasElementNames() ? getElementNames()[i] : Identifier(); } /// Whether this tuple has element name locations. bool hasElementNameLocs() const { return TupleExprBits.HasElementNameLocations; } /// Retrieve the locations of the element names for a tuple. ArrayRef getElementNameLocs() const { return const_cast(this)->getElementNameLocsBuffer(); } /// Retrieve the location of the ith label, if known. SourceLoc getElementNameLoc(unsigned i) const { if (hasElementNameLocs()) return getElementNameLocs()[i]; return SourceLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Tuple; } }; /// \brief A collection literal expression. /// /// The subexpression is represented as a TupleExpr or ParenExpr and /// passed on to the appropriate semantics-providing conversion /// operation. class CollectionExpr : public Expr { SourceLoc LBracketLoc; SourceLoc RBracketLoc; /// ASTContext allocated element lists. Each entry is one entry of the /// collection. If this is a DictionaryLiteral, each entry is a Tuple with /// the key and value pair. MutableArrayRef Elements; Expr *SemanticExpr = nullptr; protected: CollectionExpr(ExprKind Kind, SourceLoc LBracketLoc, MutableArrayRef Elements, SourceLoc RBracketLoc, Type Ty) : Expr(Kind, /*Implicit=*/false, Ty), LBracketLoc(LBracketLoc), RBracketLoc(RBracketLoc), Elements(Elements) { } public: /// Retrieve the elements stored in the collection. ArrayRef getElements() const { return Elements; } MutableArrayRef getElements() { return Elements; } Expr *getElement(unsigned i) const { return Elements[i]; } void setElement(unsigned i, Expr *E) { Elements[i] = E; } unsigned getNumElements() const { return Elements.size(); } SourceLoc getLBracketLoc() const { return LBracketLoc; } SourceLoc getRBracketLoc() const { return RBracketLoc; } SourceRange getSourceRange() const { return SourceRange(LBracketLoc, RBracketLoc); } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *e) { SemanticExpr = e; } static bool classof(const Expr *e) { return e->getKind() >= ExprKind::First_CollectionExpr && e->getKind() <= ExprKind::Last_CollectionExpr; } }; /// \brief An array literal expression [a, b, c]. class ArrayExpr : public CollectionExpr { /// ASTContext allocated list of comma locations, there is one less entry here /// than the number of elements. MutableArrayRef CommaLocs; ArrayExpr(SourceLoc LBracketLoc, MutableArrayRef Elements, MutableArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty) : CollectionExpr(ExprKind::Array, LBracketLoc, Elements, RBracketLoc, Ty), CommaLocs(CommaLocs) {} public: static ArrayExpr *create(ASTContext &C, SourceLoc LBracketLoc, ArrayRef Elements, ArrayRef CommaLocs, SourceLoc RBracketLoc, Type Ty = Type()); /// ASTContext allocated list of comma locations, there is one less entry here /// than the number of elements. MutableArrayRef getCommaLocs() { return CommaLocs; } ArrayRef getCommaLocs() const { return CommaLocs; } static bool classof(const Expr *e) { return e->getKind() == ExprKind::Array; } }; /// \brief A dictionary literal expression [a : x, b : y, c : z]. class DictionaryExpr : public CollectionExpr { DictionaryExpr(SourceLoc LBracketLoc, MutableArrayRef Elements, SourceLoc RBracketLoc, Type Ty) : CollectionExpr(ExprKind::Dictionary, LBracketLoc, Elements, RBracketLoc, Ty) { } public: static DictionaryExpr *create(ASTContext &C, SourceLoc LBracketLoc, ArrayRef Elements, SourceLoc RBracketLoc, Type Ty = Type()); static bool classof(const Expr *e) { return e->getKind() == ExprKind::Dictionary; } }; /// Subscripting expressions like a[i] that refer to an element within a /// container. /// /// There is no built-in subscripting in the language. Rather, a fully /// type-checked and well-formed subscript expression refers to a subscript /// declaration, which provides a getter and (optionally) a setter that will /// be used to perform reads/writes. class SubscriptExpr : public Expr { ConcreteDeclRef TheDecl; Expr *Base; Expr *Index; public: SubscriptExpr(Expr *base, Expr *index, ConcreteDeclRef decl = ConcreteDeclRef(), bool implicit = false, AccessSemantics semantics = AccessSemantics::Ordinary) : Expr(ExprKind::Subscript, implicit, Type()), TheDecl(decl), Base(base), Index(index) { SubscriptExprBits.Semantics = (unsigned) semantics; SubscriptExprBits.IsSuper = false; } /// getBase - Retrieve the base of the subscript expression, i.e., the /// value being indexed. Expr *getBase() const { return Base; } void setBase(Expr *E) { Base = E; } /// getIndex - Retrieve the index of the subscript expression, i.e., the /// "offset" into the base value. Expr *getIndex() const { return Index; } void setIndex(Expr *E) { Index = E; } /// Determine whether this subscript reference should bypass the /// ordinary accessors. AccessSemantics getAccessSemantics() const { return (AccessSemantics) SubscriptExprBits.Semantics; } /// Determine whether this member reference refers to the /// superclass's property. bool isSuper() const { return SubscriptExprBits.IsSuper; } /// Set whether this member reference refers to the superclass's /// property. void setIsSuper(bool isSuper) { SubscriptExprBits.IsSuper = isSuper; } /// Determine whether subscript operation has a known underlying /// subscript declaration or not. bool hasDecl() const { return static_cast(TheDecl); } /// Retrieve the subscript declaration that this subscripting /// operation refers to. Only valid when \c hasDecl() is true. ConcreteDeclRef getDecl() const { assert(hasDecl() && "No subscript declaration known!"); return TheDecl; } SourceLoc getLoc() const { return Index->getStartLoc(); } SourceLoc getStartLoc() const { return Base->getStartLoc(); } SourceLoc getEndLoc() const { return Index->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Subscript; } }; /// A member access (foo.bar) on an expression with unresolved type. class UnresolvedDotExpr : public Expr { Expr *SubExpr; SourceLoc DotLoc; DeclNameLoc NameLoc; DeclName Name; public: UnresolvedDotExpr(Expr *subexpr, SourceLoc dotloc, DeclName name, DeclNameLoc nameloc, bool Implicit) : Expr(ExprKind::UnresolvedDot, Implicit), SubExpr(subexpr), DotLoc(dotloc), NameLoc(nameloc), Name(name) {} SourceLoc getLoc() const { return NameLoc.getBaseNameLoc(); } SourceLoc getStartLoc() const { return (DotLoc.isInvalid() ? NameLoc.getSourceRange().End : SubExpr->getStartLoc()); } SourceLoc getEndLoc() const { return NameLoc.getSourceRange().End ; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getBase() const { return SubExpr; } void setBase(Expr *e) { SubExpr = e; } DeclName getName() const { return Name; } DeclNameLoc getNameLoc() const { return NameLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedDot; } }; /// TupleElementExpr - Refer to an element of a tuple, /// e.g. "(1,field:2).field". class TupleElementExpr : public Expr { Expr *SubExpr; SourceLoc NameLoc; unsigned FieldNo; SourceLoc DotLoc; public: TupleElementExpr(Expr *SubExpr, SourceLoc DotLoc, unsigned FieldNo, SourceLoc NameLoc, Type Ty) : Expr(ExprKind::TupleElement, /*Implicit=*/false, Ty), SubExpr(SubExpr), NameLoc(NameLoc), FieldNo(FieldNo), DotLoc(DotLoc) {} SourceLoc getLoc() const { return NameLoc; } Expr *getBase() const { return SubExpr; } void setBase(Expr *e) { SubExpr = e; } unsigned getFieldNumber() const { return FieldNo; } SourceLoc getNameLoc() const { return NameLoc; } SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return getNameLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::TupleElement; } }; /// \brief Describes a monadic bind from T? to T. /// /// In a ?-chain expression, this is the part that's spelled with a /// postfix ?. /// /// A BindOptionalExpr must always appear within a /// OptionalEvaluationExpr. If the operand of the BindOptionalExpr /// evaluates to a missing value, the OptionalEvaluationExpr /// immediately completes and produces a missing value in the result /// type. /// /// The depth of the BindOptionalExpr indicates which /// OptionalEvaluationExpr is completed, in case the BindOptionalExpr /// is contained within more than one such expression. class BindOptionalExpr : public Expr { Expr *SubExpr; SourceLoc QuestionLoc; public: BindOptionalExpr(Expr *subExpr, SourceLoc questionLoc, unsigned depth, Type ty = Type()) : Expr(ExprKind::BindOptional, /*Implicit=*/ questionLoc.isInvalid(), ty), SubExpr(subExpr), QuestionLoc(questionLoc) { BindOptionalExprBits.Depth = depth; assert(BindOptionalExprBits.Depth == depth && "bitfield truncation"); } SourceRange getSourceRange() const { if (QuestionLoc.isInvalid()) return SubExpr->getSourceRange(); return SourceRange(SubExpr->getStartLoc(), QuestionLoc); } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return (QuestionLoc.isInvalid() ? SubExpr->getEndLoc() : QuestionLoc); } SourceLoc getLoc() const { if (isImplicit()) return SubExpr->getLoc(); return getQuestionLoc(); } SourceLoc getQuestionLoc() const { return QuestionLoc; } unsigned getDepth() const { return BindOptionalExprBits.Depth; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::BindOptional; } }; /// \brief Describes the outer limits of an operation containing /// monadic binds of T? to T. /// /// In a ?-chain expression, this is implicitly formed at the outer /// limits of the chain. For example, in (foo?.bar?().baz).fred, /// this is nested immediately within the parens. /// /// This expression will always have optional type. class OptionalEvaluationExpr : public Expr { Expr *SubExpr; public: OptionalEvaluationExpr(Expr *subExpr, Type ty = Type()) : Expr(ExprKind::OptionalEvaluation, /*Implicit=*/ true, ty), SubExpr(subExpr) {} SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OptionalEvaluation; } }; /// \brief An expression that forces an optional to its underlying value. /// /// \code /// func parseInt(s : String) -> Int? { ... } /// /// var maybeInt = parseInt("5") // returns an Int? /// var forcedInt = parseInt("5")! // returns an Int; fails on empty optional /// \endcode /// class ForceValueExpr : public Expr { Expr *SubExpr; SourceLoc ExclaimLoc; public: ForceValueExpr(Expr *subExpr, SourceLoc exclaimLoc) : Expr(ExprKind::ForceValue, /*Implicit=*/exclaimLoc.isInvalid(), Type()), SubExpr(subExpr), ExclaimLoc(exclaimLoc) {} SourceRange getSourceRange() const { if (ExclaimLoc.isInvalid()) return SubExpr->getSourceRange(); return SourceRange(SubExpr->getStartLoc(), ExclaimLoc); } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return (isImplicit() ? SubExpr->getEndLoc() : getExclaimLoc()); } SourceLoc getLoc() const { if (!isImplicit()) return getExclaimLoc(); return SubExpr->getLoc(); } SourceLoc getExclaimLoc() const { return ExclaimLoc; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForceValue; } }; /// \brief An expression that opens up a value of protocol or protocol /// composition type and gives a name to its dynamic type. /// /// This expression is implicitly created by the type checker when /// calling a method on a protocol. In the future, this may become an /// actual operation within the language. class OpenExistentialExpr : public Expr { Expr *ExistentialValue; OpaqueValueExpr *OpaqueValue; Expr *SubExpr; SourceLoc ExclaimLoc; public: OpenExistentialExpr(Expr *existentialValue, OpaqueValueExpr *opaqueValue, Expr *subExpr) : Expr(ExprKind::OpenExistential, /*Implicit=*/ true, subExpr->getType()), ExistentialValue(existentialValue), OpaqueValue(opaqueValue), SubExpr(subExpr) { } SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) /// Retrieve the expression that is being evaluated using the /// archetype value. /// /// This subexpression (and no other) may refer to the archetype /// type or the opaque value that stores the archetype's value. Expr *getSubExpr() const { return SubExpr; } /// Set the subexpression that is being evaluated. void setSubExpr(Expr *expr) { SubExpr = expr; } /// Retrieve the existential value that is being opened. Expr *getExistentialValue() const { return ExistentialValue; } /// Set the existential value that is being opened. void setExistentialValue(Expr *expr) { ExistentialValue = expr; } /// Retrieve the opaque value representing the value (of archetype /// type) stored in the existential. OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; } /// Retrieve the opened archetype, which can only be referenced /// within this expression's subexpression. ArchetypeType *getOpenedArchetype() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::OpenExistential; } }; /// ImplicitConversionExpr - An abstract class for expressions which /// implicitly convert the value of an expression in some way. class ImplicitConversionExpr : public Expr { Expr *SubExpr; protected: ImplicitConversionExpr(ExprKind kind, Expr *subExpr, Type ty) : Expr(kind, /*Implicit=*/true, ty), SubExpr(subExpr) {} public: SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ImplicitConversionExpr && E->getKind() <= ExprKind::Last_ImplicitConversionExpr; } }; /// The implicit conversion from a class metatype to AnyObject. class ClassMetatypeToObjectExpr : public ImplicitConversionExpr { public: ClassMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ClassMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ClassMetatypeToObject; } }; /// The implicit conversion from a class existential metatype to AnyObject. class ExistentialMetatypeToObjectExpr : public ImplicitConversionExpr { public: ExistentialMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ExistentialMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ExistentialMetatypeToObject; } }; /// The implicit conversion from a protocol value metatype to ObjC's Protocol /// class type. class ProtocolMetatypeToObjectExpr : public ImplicitConversionExpr { public: ProtocolMetatypeToObjectExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ProtocolMetatypeToObject, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ProtocolMetatypeToObject; } }; /// InjectIntoOptionalExpr - The implicit conversion from T to T?. class InjectIntoOptionalExpr : public ImplicitConversionExpr { public: InjectIntoOptionalExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::InjectIntoOptional, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::InjectIntoOptional; } }; /// Convert the address of an lvalue to a raw pointer. class LValueToPointerExpr : public ImplicitConversionExpr { Type AbstractionPattern; public: LValueToPointerExpr(Expr *subExpr, Type ty, Type abstractionTy) : ImplicitConversionExpr(ExprKind::LValueToPointer, subExpr, ty), AbstractionPattern(abstractionTy) {} /// Get the declared type of the type for which we are performing this /// conversion. This defines the abstraction level at which the lvalue should /// be emitted before taking its address. Type getAbstractionPatternType() const { return AbstractionPattern; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::LValueToPointer; } }; /// Convert the address of an inout property to a pointer. class InOutToPointerExpr : public ImplicitConversionExpr { public: InOutToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::InOutToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::InOutToPointer; } }; /// Convert the address of an array to a pointer. class ArrayToPointerExpr : public ImplicitConversionExpr { public: ArrayToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ArrayToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ArrayToPointer; } }; /// Convert the a string to a pointer referencing its encoded representation. class StringToPointerExpr : public ImplicitConversionExpr { public: StringToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::StringToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::StringToPointer; } }; /// Convert a pointer to a different kind of pointer. class PointerToPointerExpr : public ImplicitConversionExpr { public: PointerToPointerExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::PointerToPointer, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::PointerToPointer; } }; /// Convert between a foreign object and its corresponding Objective-C object. class ForeignObjectConversionExpr : public ImplicitConversionExpr { public: ForeignObjectConversionExpr(Expr *subExpr, Type ty) : ImplicitConversionExpr(ExprKind::ForeignObjectConversion, subExpr, ty) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForeignObjectConversion; } }; /// TupleShuffleExpr - This represents a permutation of a tuple value to a new /// tuple type. The expression's type is known to be a tuple type. /// /// If hasScalarSource() is true, the subexpression should be treated /// as if it were implicitly injected into a single-element tuple /// type. Otherwise, the subexpression is known to have a tuple type. class TupleShuffleExpr : public ImplicitConversionExpr { public: enum : int { /// The element mapping value indicating that a field of the destination /// tuple should be default-initialized. DefaultInitialize = -1, /// The element mapping is part of the variadic field. Variadic = -2, /// The element mapping value indicating that the field of the /// destination tuple should be default-initialized with an expression /// provided by the caller. /// FIXME: Yet another indication that TupleShuffleExpr uses the wrong /// formulation. CallerDefaultInitialize = -3 }; enum SourceIsScalar_t : bool { SourceIsTuple = false, SourceIsScalar = true }; private: /// This contains an entry for each element in the Expr type. Each element /// specifies which index from the SubExpr that the destination element gets. /// If the element value is DefaultInitialize, then the destination value /// gets the default initializer for that tuple element value. ArrayRef ElementMapping; /// If we're doing a varargs shuffle, this is the array type to build. Type VarargsArrayTy; /// If there are any default arguments, the owning function /// declaration. ConcreteDeclRef DefaultArgsOwner; /// The arguments that are packed into the variadic element. ArrayRef VariadicArgs; MutableArrayRef CallerDefaultArgs; public: TupleShuffleExpr(Expr *subExpr, ArrayRef elementMapping, SourceIsScalar_t isSourceScalar, ConcreteDeclRef defaultArgsOwner, ArrayRef VariadicArgs, MutableArrayRef CallerDefaultArgs, Type ty) : ImplicitConversionExpr(ExprKind::TupleShuffle, subExpr, ty), ElementMapping(elementMapping), VarargsArrayTy(), DefaultArgsOwner(defaultArgsOwner), VariadicArgs(VariadicArgs), CallerDefaultArgs(CallerDefaultArgs) { TupleShuffleExprBits.IsSourceScalar = isSourceScalar; } ArrayRef getElementMapping() const { return ElementMapping; } /// Is the source expression scalar? /// /// This doesn't necessarily mean it's not a tuple; it just means /// that it should be treated as if it were an element of a /// single-element tuple for the purposes of interpreting behavior. bool isSourceScalar() const { return TupleShuffleExprBits.IsSourceScalar; } /// Set the varargs array type to use. void setVarargsArrayType(Type T) { VarargsArrayTy = T; } Type getVarargsArrayType() const { assert(!VarargsArrayTy.isNull()); return VarargsArrayTy; } Type getVarargsArrayTypeOrNull() const { return VarargsArrayTy; } /// Retrieve the argument indices for the variadic arguments. ArrayRef getVariadicArgs() const { return VariadicArgs; } /// Retrieve the owner of the default arguments. ConcreteDeclRef getDefaultArgsOwner() const { return DefaultArgsOwner; } /// Retrieve the caller-defaulted arguments. ArrayRef getCallerDefaultArgs() const { return CallerDefaultArgs; } /// Retrieve the caller-defaulted arguments. MutableArrayRef getCallerDefaultArgs() { return CallerDefaultArgs; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::TupleShuffle; } }; /// LoadExpr - Turn an l-value into an r-value by performing a "load" /// operation. This operation may actually be a logical operation, /// i.e. one implemented using a call to a potentially user-defined /// function instead of a simple memory transaction. class LoadExpr : public ImplicitConversionExpr { public: LoadExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::Load, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::Load; } }; /// This is a conversion from an expression of UnresolvedType to an arbitrary /// other type, and from an arbitrary type to UnresolvedType. This node does /// not appear in valid code, only in code involving diagnostics. class UnresolvedTypeConversionExpr : public ImplicitConversionExpr { public: UnresolvedTypeConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::UnresolvedTypeConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedTypeConversion; } }; /// FunctionConversionExpr - Convert a function to another function type, /// which might involve renaming the parameters or handling substitutions /// of subtypes (in the return) or supertypes (in the input). /// /// FIXME: This should be a CapturingExpr. class FunctionConversionExpr : public ImplicitConversionExpr { public: FunctionConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::FunctionConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::FunctionConversion; } }; /// Perform a function conversion from one function that to one that has a /// covariant result type. /// /// This conversion is technically unsafe; however, semantic analysis will /// only introduce such a conversion in cases where other language features /// (i.e., Self returns) enforce static safety. Additionally, this conversion /// avoids changing the ABI of the function in question. class CovariantFunctionConversionExpr : public ImplicitConversionExpr { public: CovariantFunctionConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::CovariantFunctionConversion, subExpr, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CovariantFunctionConversion; } }; /// Perform a conversion from a superclass to a subclass for a call to /// a method with a covariant result type. /// /// This conversion is technically unsafe; however, semantic analysis will /// only introduce such a conversion in cases where other language features /// (i.e., Self returns) enforce static safety. class CovariantReturnConversionExpr : public ImplicitConversionExpr { public: CovariantReturnConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::CovariantReturnConversion, subExpr, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CovariantReturnConversion; } }; /// MetatypeConversionExpr - Convert a metatype to another metatype /// using essentially a derived-to-base conversion. class MetatypeConversionExpr : public ImplicitConversionExpr { public: MetatypeConversionExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::MetatypeConversion, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::MetatypeConversion; } }; /// CollectionUpcastConversionExpr - Convert a collection whose /// elements have some type T to the same kind of collection whose /// elements have type U, where U is a subtype of T. class CollectionUpcastConversionExpr : public ImplicitConversionExpr { public: CollectionUpcastConversionExpr(Expr *subExpr, Type type, bool bridgesToObjC) : ImplicitConversionExpr( ExprKind::CollectionUpcastConversion, subExpr, type) { CollectionUpcastConversionExprBits.BridgesToObjC = bridgesToObjC; } /// Whether this upcast bridges the source elements to Objective-C. bool bridgesToObjC() const { return CollectionUpcastConversionExprBits.BridgesToObjC; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::CollectionUpcastConversion; } }; /// ErasureExpr - Perform type erasure by converting a value to existential /// type. For example: /// /// \code /// protocol Printable {} /// struct Book {} /// /// var printable: Printable = Book() // erases type /// var printableType: Printable.Type = Book.self // erases metatype /// \endcode /// /// The type of the expression should always satisfy isAnyExistentialType(). /// /// The type of the sub-expression should always be either: /// - a non-existential type of the appropriate kind or /// - an existential type of the appropriate kind which is a subtype /// of the result type. /// /// "Appropriate kind" means e.g. a concrete/existential metatype if the /// result is an existential metatype. class ErasureExpr : public ImplicitConversionExpr { ArrayRef Conformances; public: ErasureExpr(Expr *subExpr, Type type, ArrayRef conformances) : ImplicitConversionExpr(ExprKind::Erasure, subExpr, type), Conformances(conformances) {} /// \brief Retrieve the mapping specifying how the type of the subexpression /// maps to the resulting existential type. If the resulting existential /// type involves several different protocols, there will be mappings for each /// of those protocols, in the order in which the existential type expands /// its properties. /// /// The entries in this array may be null, indicating that the conformance /// to the corresponding protocol is trivial (because the source /// type is either an archetype or an existential type that conforms to /// that corresponding protocol). ArrayRef getConformances() const { return Conformances; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Erasure; } }; /// UnresolvedSpecializeExpr - Represents an explicit specialization using /// a type parameter list (e.g. "Vector") that has not been resolved. class UnresolvedSpecializeExpr : public Expr { Expr *SubExpr; SourceLoc LAngleLoc; SourceLoc RAngleLoc; MutableArrayRef UnresolvedParams; public: UnresolvedSpecializeExpr(Expr *SubExpr, SourceLoc LAngleLoc, MutableArrayRef UnresolvedParams, SourceLoc RAngleLoc) : Expr(ExprKind::UnresolvedSpecialize, /*Implicit=*/false), SubExpr(SubExpr), LAngleLoc(LAngleLoc), RAngleLoc(RAngleLoc), UnresolvedParams(UnresolvedParams) { } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } /// \brief Retrieve the list of type parameters. These parameters have not yet /// been bound to archetypes of the entity to be specialized. ArrayRef getUnresolvedParams() const { return UnresolvedParams; } MutableArrayRef getUnresolvedParams() { return UnresolvedParams; } SourceLoc getLoc() const { return LAngleLoc; } SourceLoc getLAngleLoc() const { return LAngleLoc; } SourceLoc getRAngleLoc() const { return RAngleLoc; } SourceLoc getStartLoc() const { return SubExpr->getStartLoc(); } SourceLoc getEndLoc() const { return RAngleLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedSpecialize; } }; /// \brief Describes an implicit conversion from a subclass to one of its /// superclasses. class DerivedToBaseExpr : public ImplicitConversionExpr { public: DerivedToBaseExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::DerivedToBase, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::DerivedToBase; } }; /// \brief Describes an implicit conversion from a value of archetype type to /// its concrete superclass. class ArchetypeToSuperExpr : public ImplicitConversionExpr { public: ArchetypeToSuperExpr(Expr *subExpr, Type type) : ImplicitConversionExpr(ExprKind::ArchetypeToSuper, subExpr, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::ArchetypeToSuper; } }; /// The builtin unary '&' operator, which converts the /// given lvalue into an 'inout' argument value. class InOutExpr : public Expr { Expr *SubExpr; SourceLoc OperLoc; public: InOutExpr(SourceLoc operLoc, Expr *subExpr, Type type, bool isImplicit = false) : Expr(ExprKind::InOut, isImplicit, type), SubExpr(subExpr), OperLoc(operLoc) {} SourceLoc getStartLoc() const { return OperLoc; } SourceLoc getEndLoc() const { return SubExpr->getEndLoc(); } SourceLoc getLoc() const { return OperLoc; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *e) { SubExpr = e; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::InOut; } }; /// SequenceExpr - A list of binary operations which has not yet been /// folded into a tree. The operands all have even indices, while the /// subexpressions with odd indices are all (potentially overloaded) /// references to binary operators. class SequenceExpr final : public Expr, private llvm::TrailingObjects { friend TrailingObjects; unsigned NumElements; SequenceExpr(ArrayRef elements) : Expr(ExprKind::Sequence, /*Implicit=*/false), NumElements(elements.size()) { assert(NumElements > 0 && "zero-length sequence!"); std::uninitialized_copy(elements.begin(), elements.end(), getTrailingObjects()); } public: static SequenceExpr *create(ASTContext &ctx, ArrayRef elements); SourceLoc getStartLoc() const { return getElement(0)->getStartLoc(); } SourceLoc getEndLoc() const { return getElement(getNumElements() - 1)->getEndLoc(); } unsigned getNumElements() const { return NumElements; } MutableArrayRef getElements() { return {getTrailingObjects(), NumElements}; } ArrayRef getElements() const { return {getTrailingObjects(), NumElements}; } Expr *getElement(unsigned i) const { return getElements()[i]; } void setElement(unsigned i, Expr *e) { getElements()[i] = e; } // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::Sequence; } }; /// Instances of this structure represent elements of the capture list that can /// optionally occur in a capture expression. struct CaptureListEntry { VarDecl *Var; PatternBindingDecl *Init; CaptureListEntry(VarDecl *Var, PatternBindingDecl *Init) : Var(Var), Init(Init) { } }; /// CaptureListExpr - This expression represents the capture list on an explicit /// closure. Because the capture list is evaluated outside of the closure, this /// CaptureList wraps the ClosureExpr. The dynamic semantics are that evaluates /// the variable bindings from the capture list, then evaluates the /// subexpression (the closure itself) and returns the result. class CaptureListExpr : public Expr { ArrayRef captureList; Expr *closureBody; public: CaptureListExpr(ArrayRef captureList, Expr *closureBody) : Expr(ExprKind::CaptureList, /*Implicit=*/false, Type()), captureList(captureList), closureBody(closureBody) { } ArrayRef getCaptureList() { return captureList; } Expr *getClosureBody() { return closureBody; } const Expr *getClosureBody() const { return closureBody; } void setClosureBody(Expr *body) { closureBody = body; } /// This is a bit weird, but the capture list is lexically contained within /// the closure, so the ClosureExpr has the full source range. SWIFT_FORWARD_SOURCE_LOCS_TO(closureBody) // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::CaptureList; } }; /// \brief A base class for closure expressions. class AbstractClosureExpr : public Expr, public DeclContext { CaptureInfo Captures; /// \brief The set of parameters. ParameterList *parameterList; public: AbstractClosureExpr(ExprKind Kind, Type FnType, bool Implicit, unsigned Discriminator, DeclContext *Parent) : Expr(Kind, Implicit, FnType), DeclContext(DeclContextKind::AbstractClosureExpr, Parent), parameterList(nullptr) { AbstractClosureExprBits.Discriminator = Discriminator; } CaptureInfo &getCaptureInfo() { return Captures; } const CaptureInfo &getCaptureInfo() const { return Captures; } /// \brief Retrieve the parameters of this closure. ParameterList *getParameters() { return parameterList; } const ParameterList *getParameters() const { return parameterList; } void setParameterList(ParameterList *P); // Expose this to users. using DeclContext::setParent; /// Returns a discriminator which determines this expression's index /// in the sequence of closure expressions within the current /// function. /// /// There are separate sequences for explicit and implicit closures. /// This allows explicit closures to maintain a stable numbering /// across simple edits that introduce auto closures above them, /// which is the best we can reasonably do. /// /// (Autoclosures are likely to be eliminated immediately, even in /// unoptimized builds, so their names are fairly unimportant. It's /// much more likely that explicit closures will survive /// optimization and therefore make it into e.g. stack traces. /// Having their symbol names be stable across minor code changes is /// therefore pretty useful for debugging.) unsigned getDiscriminator() const { return AbstractClosureExprBits.Discriminator; } void setDiscriminator(unsigned discriminator) { assert(getDiscriminator() == InvalidDiscriminator); assert(discriminator != InvalidDiscriminator); AbstractClosureExprBits.Discriminator = discriminator; } enum : unsigned { InvalidDiscriminator = decltype(AbstractClosureExprBits)::InvalidDiscriminator }; ArrayRef getParameterLists() { return parameterList ? parameterList : ArrayRef(); } ArrayRef getParameterLists() const { return parameterList ? parameterList : ArrayRef(); } unsigned getNaturalArgumentCount() const { return 1; } /// \brief Retrieve the result type of this closure. Type getResultType() const; /// \brief Return whether this closure is throwing when fully applied. bool isBodyThrowing() const; /// Whether this closure consists of a single expression. bool hasSingleExpressionBody() const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_AbstractClosureExpr && E->getKind() <= ExprKind::Last_AbstractClosureExpr; } static bool classof(const DeclContext *DC) { return DC->getContextKind() == DeclContextKind::AbstractClosureExpr; } using DeclContext::operator new; using Expr::dump; }; /// SerializedAbstractClosureExpr - This represents what was originally an /// AbstractClosureExpr during serialization. It is preserved only to maintain /// the correct AST structure and remangling after deserialization. class SerializedAbstractClosureExpr : public SerializedLocalDeclContext { const Type Ty; llvm::PointerIntPair TypeAndImplicit; const unsigned Discriminator; public: SerializedAbstractClosureExpr(Type Ty, bool Implicit, unsigned Discriminator, DeclContext *Parent) : SerializedLocalDeclContext(LocalDeclContextKind::AbstractClosure, Parent), TypeAndImplicit(llvm::PointerIntPair(Ty, Implicit)), Discriminator(Discriminator) {} Type getType() const { return TypeAndImplicit.getPointer(); } unsigned getDiscriminator() const { return Discriminator; } bool isImplicit() const { return TypeAndImplicit.getInt(); } static bool classof(const DeclContext *DC) { if (auto LDC = dyn_cast(DC)) return LDC->getLocalDeclContextKind() == LocalDeclContextKind::AbstractClosure; return false; } }; /// \brief An explicit unnamed function expression, which can optionally have /// named arguments. /// /// \code /// { $0 + $1 } /// { a, b -> Int in a + b } /// { (a : Int, b : Int) -> Int in a + b } /// { [weak c] (a : Int) -> Int in a + c!.getFoo() } /// \endcode class ClosureExpr : public AbstractClosureExpr { /// The location of the "throws", if present. SourceLoc ThrowsLoc; /// \brief The location of the '->' denoting an explicit return type, /// if present. SourceLoc ArrowLoc; /// The location of the "in", if present. SourceLoc InLoc; /// \brief The explicitly-specified result type. TypeLoc ExplicitResultType; /// \brief The body of the closure, along with a bit indicating whether it /// was originally just a single expression. llvm::PointerIntPair Body; public: ClosureExpr(ParameterList *params, SourceLoc throwsLoc, SourceLoc arrowLoc, SourceLoc inLoc, TypeLoc explicitResultType, unsigned discriminator, DeclContext *parent) : AbstractClosureExpr(ExprKind::Closure, Type(), /*Implicit=*/false, discriminator, parent), ThrowsLoc(throwsLoc), ArrowLoc(arrowLoc), InLoc(inLoc), ExplicitResultType(explicitResultType), Body(nullptr) { setParameterList(params); ClosureExprBits.HasAnonymousClosureVars = false; ClosureExprBits.IsVoidConversionClosure = false; } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; BraceStmt *getBody() const { return Body.getPointer(); } void setBody(BraceStmt *S, bool isSingleExpression) { Body.setPointer(S); Body.setInt(isSingleExpression); } /// \brief Determine whether the parameters of this closure are actually /// anonymous closure variables. bool hasAnonymousClosureVars() const { return ClosureExprBits.HasAnonymousClosureVars; } /// \brief Set the parameters of this closure along with a flag indicating /// whether these parameters are actually anonymous closure variables. void setHasAnonymousClosureVars() { ClosureExprBits.HasAnonymousClosureVars = true; } /// \brief Determine if this closure was created to satisfy a contextual /// conversion to a void function type. bool isVoidConversionClosure() const { return ClosureExprBits.IsVoidConversionClosure; } /// \brief Indicate that this closure was created to satisfy a contextual /// conversion to a void function type. void setIsVoidConversionClosure() { ClosureExprBits.IsVoidConversionClosure = true; } /// \brief Determine whether this closure expression has an /// explicitly-specified result type. bool hasExplicitResultType() const { return ArrowLoc.isValid(); } /// \brief Retrieve the location of the \c '->' for closures with an /// explicit result type. SourceLoc getArrowLoc() const { assert(hasExplicitResultType() && "No arrow location"); return ArrowLoc; } /// \brief Retrieve the location of the \c in for a closure that has it. SourceLoc getInLoc() const { return InLoc; } /// \brief Retrieve the location of the 'throws' for a closure that has it. SourceLoc getThrowsLoc() const { return ThrowsLoc; } /// \brief Retrieve the explicit result type location information. TypeLoc &getExplicitResultTypeLoc() { assert(hasExplicitResultType() && "No explicit result type"); return ExplicitResultType; } void setExplicitResultType(SourceLoc arrowLoc, TypeLoc resultType) { ArrowLoc = arrowLoc; ExplicitResultType = resultType; } /// \brief Determine whether the closure has a single expression for its /// body. /// /// This will be true for closures such as, e.g., /// \code /// { $0 + 1 } /// \endcode /// /// or /// /// \code /// { x, y in x > y } /// \endcode /// /// ... even if the closure has been coerced to return Void by the type /// checker. This function does not return true for empty closures. bool hasSingleExpressionBody() const { return Body.getInt(); } /// \brief Retrieve the body for closure that has a single expression for /// its body. /// /// Only valid when \c hasSingleExpressionBody() is true. Expr *getSingleExpressionBody() const; /// \brief Set the body for a closure that has a single expression as its /// body. /// /// This routine cannot change whether a closure has a single expression as /// its body; it can only update that expression. void setSingleExpressionBody(Expr *NewBody); static bool classof(const Expr *E) { return E->getKind() == ExprKind::Closure; } static bool classof(const AbstractClosureExpr *E) { return E->getKind() == ExprKind::Closure; } static bool classof(const DeclContext *C) { return isa(C) && classof(cast(C)); } }; /// \brief This is a closure of the contained subexpression that is formed /// when a scalar expression is converted to @autoclosure function type. /// For example: /// \code /// func f(x : @autoclosure () -> Int) /// f(42) // AutoclosureExpr convert from Int to ()->Int /// \endcode class AutoClosureExpr : public AbstractClosureExpr { BraceStmt *Body; public: AutoClosureExpr(Expr *Body, Type ResultTy, unsigned Discriminator, DeclContext *Parent) : AbstractClosureExpr(ExprKind::AutoClosure, ResultTy, /*Implicit=*/true, Discriminator, Parent) { setBody(Body); } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; BraceStmt *getBody() const { return Body; } void setBody(Expr *E); // Expose this to users. using DeclContext::setParent; /// Returns the body of the autoclosure as an \c Expr. /// /// The body of an autoclosure always consists of a single expression. Expr *getSingleExpressionBody() const; // Implement isa/cast/dyncast/etc. static bool classof(const Expr *E) { return E->getKind() == ExprKind::AutoClosure; } static bool classof(const AbstractClosureExpr *E) { return E->getKind() == ExprKind::AutoClosure; } static bool classof(const DeclContext *C) { return isa(C) && classof(cast(C)); } }; /// DynamicTypeExpr - "base.dynamicType" - Produces a metatype value. /// /// The metatype value can comes from evaluating an expression and then /// getting its metatype. class DynamicTypeExpr : public Expr { Expr *Base; SourceLoc MetatypeLoc; public: explicit DynamicTypeExpr(Expr *Base, SourceLoc MetatypeLoc, Type Ty) : Expr(ExprKind::DynamicType, /*Implicit=*/false, Ty), Base(Base), MetatypeLoc(MetatypeLoc) { } Expr *getBase() const { return Base; } void setBase(Expr *base) { Base = base; } SourceLoc getLoc() const { return MetatypeLoc; } SourceLoc getMetatypeLoc() const { return MetatypeLoc; } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return (MetatypeLoc.isValid() ? MetatypeLoc : getBase()->getEndLoc()); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DynamicType; } }; /// An expression referring to an opaque object of a fixed type. /// /// Opaque value expressions occur when a particular value within the AST /// needs to be re-used without being re-evaluated or for a value that is /// a placeholder. OpaqueValueExpr nodes are introduced by some other AST /// node (say, a \c DynamicMemberRefExpr) and can only be used within the /// subexpressions of that AST node. class OpaqueValueExpr : public Expr { SourceLoc Loc; public: explicit OpaqueValueExpr(SourceLoc Loc, Type Ty) : Expr(ExprKind::OpaqueValue, /*Implicit=*/true, Ty), Loc(Loc) { } SourceRange getSourceRange() const { return Loc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::OpaqueValue; } }; /// ApplyExpr - Superclass of various function calls, which apply an argument to /// a function to get a result. class ApplyExpr : public Expr { /// The function being called. Expr *Fn; /// The argument being passed to it, and whether it's a 'super' argument. llvm::PointerIntPair ArgAndIsSuper; protected: ApplyExpr(ExprKind Kind, Expr *Fn, Expr *Arg, bool Implicit, Type Ty = Type()) : Expr(Kind, Implicit, Ty), Fn(Fn), ArgAndIsSuper(Arg, false) { assert(classof((Expr*)this) && "ApplyExpr::classof out of date"); ApplyExprBits.ThrowsIsSet = false; } public: Expr *getFn() const { return Fn; } void setFn(Expr *e) { Fn = e; } Expr *getArg() const { return ArgAndIsSuper.getPointer(); } void setArg(Expr *e) { assert((getKind() != ExprKind::Binary || isa(e)) && "BinaryExprs must have a TupleExpr as the argument"); ArgAndIsSuper = {e, ArgAndIsSuper.getInt()}; } bool isSuper() const { return ArgAndIsSuper.getInt(); } void setIsSuper(bool super) { ArgAndIsSuper = {ArgAndIsSuper.getPointer(), super}; } /// Has the type-checker set the 'throws' bit yet? /// /// In general, this should only be used for debugging purposes. bool isThrowsSet() const { return ApplyExprBits.ThrowsIsSet; } /// Does this application throw? This is only meaningful after /// complete type-checking. /// /// If true, the function expression must have a throwing function /// type. The converse is not true because of 'rethrows' functions. bool throws() const { assert(ApplyExprBits.ThrowsIsSet); return ApplyExprBits.Throws; } void setThrows(bool throws) { assert(!ApplyExprBits.ThrowsIsSet); ApplyExprBits.ThrowsIsSet = true; ApplyExprBits.Throws = throws; } ValueDecl *getCalledValue() const; static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ApplyExpr && E->getKind() <= ExprKind::Last_ApplyExpr; } }; /// CallExpr - Application of an argument to a function, which occurs /// syntactically through juxtaposition with a TupleExpr whose /// leading '(' is unspaced. class CallExpr : public ApplyExpr { public: CallExpr(Expr *fn, Expr *arg, bool Implicit, Type ty = Type()) : ApplyExpr(ExprKind::Call, fn, arg, Implicit, ty) {} SourceLoc getStartLoc() const { SourceLoc fnLoc = getFn()->getStartLoc(); return (fnLoc.isValid() ? fnLoc : getArg()->getStartLoc()); } SourceLoc getEndLoc() const { SourceLoc argLoc = getArg()->getEndLoc(); return (argLoc.isValid() ? argLoc : getFn()->getEndLoc()); } SourceLoc getLoc() const { SourceLoc FnLoc = getFn()->getLoc(); return FnLoc.isValid() ? FnLoc : getArg()->getLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Call; } }; /// PrefixUnaryExpr - Prefix unary expressions like '!y'. class PrefixUnaryExpr : public ApplyExpr { public: PrefixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type()) : ApplyExpr(ExprKind::PrefixUnary, Fn, Arg, /*Implicit=*/false, Ty) {} SourceLoc getLoc() const { return getFn()->getStartLoc(); } SourceLoc getStartLoc() const { return getFn()->getStartLoc(); } SourceLoc getEndLoc() const { return getArg()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::PrefixUnary; } }; /// PostfixUnaryExpr - Prefix unary expressions like '!y'. class PostfixUnaryExpr : public ApplyExpr { public: PostfixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type()) : ApplyExpr(ExprKind::PostfixUnary, Fn, Arg, /*Implicit=*/false, Ty) {} SourceLoc getLoc() const { return getFn()->getStartLoc(); } SourceLoc getStartLoc() const { return getArg()->getStartLoc(); } SourceLoc getEndLoc() const { return getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::PostfixUnary; } }; /// BinaryExpr - Infix binary expressions like 'x+y'. The argument is always /// an implicit tuple expression of the type expected by the function. class BinaryExpr : public ApplyExpr { public: BinaryExpr(Expr *Fn, TupleExpr *Arg, bool Implicit, Type Ty = Type()) : ApplyExpr(ExprKind::Binary, Fn, Arg, Implicit, Ty) {} SourceLoc getLoc() const { return getFn()->getLoc(); } SourceRange getSourceRange() const { return getArg()->getSourceRange(); } SourceLoc getStartLoc() const { return getArg()->getStartLoc(); } SourceLoc getEndLoc() const { return getArg()->getEndLoc(); } TupleExpr *getArg() const { return cast(ApplyExpr::getArg()); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Binary;} }; /// SelfApplyExpr - Abstract application that provides the 'self' pointer for /// a method curried as (this : Self) -> (params) -> result. /// /// The application of a curried method to 'self' semantically differs from /// normal function application because the 'self' parameter can be implicitly /// materialized from an rvalue. class SelfApplyExpr : public ApplyExpr { protected: SelfApplyExpr(ExprKind K, Expr *FnExpr, Expr *BaseExpr, Type Ty) : ApplyExpr(K, FnExpr, BaseExpr, FnExpr->isImplicit(), Ty) { } public: Expr *getBase() const { return getArg(); } void setBase(Expr *E) { setArg(E); } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_SelfApplyExpr && E->getKind() <= ExprKind::Last_SelfApplyExpr; } }; /// DotSyntaxCallExpr - Refer to a method of a type, e.g. P.x. 'x' /// is modeled as a DeclRefExpr or OverloadSetRefExpr on the method. class DotSyntaxCallExpr : public SelfApplyExpr { SourceLoc DotLoc; public: DotSyntaxCallExpr(Expr *FnExpr, SourceLoc DotLoc, Expr *BaseExpr, Type Ty = Type()) : SelfApplyExpr(ExprKind::DotSyntaxCall, FnExpr, BaseExpr, Ty), DotLoc(DotLoc) { setImplicit(DotLoc.isInvalid()); } SourceLoc getDotLoc() const { return DotLoc; } SourceLoc getLoc() const { return isImplicit() ? getBase()->getStartLoc() : getFn()->getLoc(); } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return isImplicit() ? getBase()->getEndLoc() : getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSyntaxCall; } }; /// ConstructorRefCallExpr - Refer to a constructor for a type P. The /// actual reference to function which returns the constructor is modeled /// as a DeclRefExpr. class ConstructorRefCallExpr : public SelfApplyExpr { public: ConstructorRefCallExpr(Expr *FnExpr, Expr *BaseExpr, Type Ty = Type()) : SelfApplyExpr(ExprKind::ConstructorRefCall, FnExpr, BaseExpr, Ty) {} SourceLoc getLoc() const { return getFn()->getLoc(); } SourceLoc getStartLoc() const { return getBase()->getStartLoc(); } SourceLoc getEndLoc() const { return getFn()->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ConstructorRefCall; } }; /// DotSyntaxBaseIgnoredExpr - When a.b resolves to something that does not need /// the actual value of the base (e.g. when applied to a metatype, module, or /// the base of a 'static' function) this expression node is created. The /// semantics are that its base is evaluated and discarded, then 'b' is /// evaluated and returned as the result of the expression. class DotSyntaxBaseIgnoredExpr : public Expr { Expr *LHS; SourceLoc DotLoc; Expr *RHS; public: DotSyntaxBaseIgnoredExpr(Expr *LHS, SourceLoc DotLoc, Expr *RHS) : Expr(ExprKind::DotSyntaxBaseIgnored, /*Implicit=*/false, RHS->getType()), LHS(LHS), DotLoc(DotLoc), RHS(RHS) { } Expr *getLHS() const { return LHS; } void setLHS(Expr *E) { LHS = E; } SourceLoc getDotLoc() const { return DotLoc; } Expr *getRHS() const { return RHS; } void setRHS(Expr *E) { RHS = E; } SourceLoc getStartLoc() const { return DotLoc.isValid() ? LHS->getStartLoc() : RHS->getStartLoc(); } SourceLoc getEndLoc() const { return RHS->getEndLoc(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DotSyntaxBaseIgnored; } }; /// \brief Represents an explicit cast, 'a as T' or 'a is T', where "T" is a /// type, and "a" is the expression that will be converted to the type. class ExplicitCastExpr : public Expr { Expr *SubExpr; SourceLoc AsLoc; TypeLoc CastTy; protected: ExplicitCastExpr(ExprKind kind, Expr *sub, SourceLoc AsLoc, TypeLoc castTy, Type resultTy) : Expr(kind, /*Implicit=*/false), SubExpr(sub), AsLoc(AsLoc), CastTy(castTy) {} public: Expr *getSubExpr() const { return SubExpr; } /// Get the type syntactically spelled in the cast. For some forms of checked /// cast this is different from the result type of the expression. TypeLoc &getCastTypeLoc() { return CastTy; } /// Get the type syntactically spelled in the cast. For some forms of checked /// cast this is different from the result type of the expression. TypeLoc getCastTypeLoc() const { return CastTy; } void setSubExpr(Expr *E) { SubExpr = E; } SourceLoc getLoc() const { if (AsLoc.isValid()) return AsLoc; return SubExpr->getLoc(); } SourceRange getSourceRange() const { SourceRange castTyRange = CastTy.getSourceRange(); if (castTyRange.isInvalid()) return SubExpr->getSourceRange(); auto startLoc = SubExpr ? SubExpr->getStartLoc() : AsLoc; auto endLoc = castTyRange.End; return {startLoc, endLoc}; } /// True if the node has been processed by SequenceExpr folding. bool isFolded() const { return SubExpr; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_ExplicitCastExpr && E->getKind() <= ExprKind::Last_ExplicitCastExpr; } }; /// Return a string representation of a CheckedCastKind. StringRef getCheckedCastKindName(CheckedCastKind kind); /// \brief Abstract base class for checked casts 'as' and 'is'. These represent /// casts that can dynamically fail. class CheckedCastExpr : public ExplicitCastExpr { public: CheckedCastExpr(ExprKind kind, Expr *sub, SourceLoc asLoc, TypeLoc castTy, Type resultTy) : ExplicitCastExpr(kind, sub, asLoc, castTy, resultTy) { CheckedCastExprBits.CastKind = unsigned(CheckedCastKind::Unresolved); } /// Return the semantic kind of cast performed. CheckedCastKind getCastKind() const { return CheckedCastKind(CheckedCastExprBits.CastKind); } void setCastKind(CheckedCastKind kind) { CheckedCastExprBits.CastKind = unsigned(kind); } /// True if the cast has been type-checked and its kind has been set. bool isResolved() const { return getCastKind() >= CheckedCastKind::First_Resolved; } static bool classof(const Expr *E) { return E->getKind() >= ExprKind::First_CheckedCastExpr && E->getKind() <= ExprKind::Last_CheckedCastExpr; } }; /// Represents an explicit forced checked cast, which converts /// from a value of some type to some specified subtype and fails dynamically /// if the value does not have that type. /// Spelled 'a as! T' and produces a value of type 'T'. class ForcedCheckedCastExpr : public CheckedCastExpr { SourceLoc ExclaimLoc; public: ForcedCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc exclaimLoc, TypeLoc type) : CheckedCastExpr(ExprKind::ForcedCheckedCast, sub, asLoc, type, type.getType()), ExclaimLoc(exclaimLoc) { } ForcedCheckedCastExpr(SourceLoc asLoc, SourceLoc exclaimLoc, TypeLoc type) : ForcedCheckedCastExpr(nullptr, asLoc, exclaimLoc, type) { } /// Retrieve the location of the '!' that follows 'as'. SourceLoc getExclaimLoc() const { return ExclaimLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ForcedCheckedCast; } }; /// \brief Represents an explicit conditional checked cast, which converts /// from a type to some subtype and produces an Optional value, which will be /// .Some(x) if the cast succeeds, or .None if the cast fails. /// Spelled 'a as? T' and produces a value of type 'T?'. class ConditionalCheckedCastExpr : public CheckedCastExpr { SourceLoc QuestionLoc; public: ConditionalCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc questionLoc, TypeLoc type) : CheckedCastExpr(ExprKind::ConditionalCheckedCast, sub, asLoc, type, type.getType()), QuestionLoc(questionLoc) { } ConditionalCheckedCastExpr(SourceLoc asLoc, SourceLoc questionLoc, TypeLoc type) : ConditionalCheckedCastExpr(nullptr, asLoc, questionLoc, type) {} /// Retrieve the location of the '?' that follows 'as'. SourceLoc getQuestionLoc() const { return QuestionLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ConditionalCheckedCast; } }; /// \brief Represents a runtime type check query, 'a is T', where 'T' is a type /// and 'a' is a value of some related type. Evaluates to a Bool true if 'a' is /// of the type and 'a as T' would succeed, false otherwise. /// /// FIXME: We should support type queries with a runtime metatype value too. class IsExpr : public CheckedCastExpr { public: IsExpr(Expr *sub, SourceLoc isLoc, TypeLoc type) : CheckedCastExpr(ExprKind::Is, sub, isLoc, type, Type()) {} IsExpr(SourceLoc isLoc, TypeLoc type) : IsExpr(nullptr, isLoc, type) {} static bool classof(const Expr *E) { return E->getKind() == ExprKind::Is; } }; /// \brief Represents an explicit coercion from a value to a specific type. /// /// Spelled 'a as T' and produces a value of type 'T'. class CoerceExpr : public ExplicitCastExpr { public: CoerceExpr(Expr *sub, SourceLoc asLoc, TypeLoc type) : ExplicitCastExpr(ExprKind::Coerce, sub, asLoc, type, type.getType()) { } CoerceExpr(SourceLoc asLoc, TypeLoc type) : CoerceExpr(nullptr, asLoc, type) { } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Coerce; } }; /// \brief Represents two expressions joined by the arrow operator '->', which /// may be preceded by the 'throws' keyword. Currently this only exists to be /// transformed into a FunctionTypeRepr by simplifyTypeExpr() in Sema. class ArrowExpr : public Expr { SourceLoc ThrowsLoc; SourceLoc ArrowLoc; Expr *Args; Expr *Result; public: ArrowExpr(Expr *Args, SourceLoc ThrowsLoc, SourceLoc ArrowLoc, Expr *Result) : Expr(ExprKind::Arrow, /*implicit=*/false, Type()), ThrowsLoc(ThrowsLoc), ArrowLoc(ArrowLoc), Args(Args), Result(Result) { } ArrowExpr(SourceLoc ThrowsLoc, SourceLoc ArrowLoc) : Expr(ExprKind::Arrow, /*implicit=*/false, Type()), ThrowsLoc(ThrowsLoc), ArrowLoc(ArrowLoc), Args(nullptr), Result(nullptr) { } Expr *getArgsExpr() const { return Args; } void setArgsExpr(Expr *E) { Args = E; } Expr *getResultExpr() const { return Result; } void setResultExpr(Expr *E) { Result = E; } SourceLoc getThrowsLoc() const { return ThrowsLoc; } SourceLoc getArrowLoc() const { return ArrowLoc; } bool isFolded() const { return Args != nullptr && Result != nullptr; } SourceLoc getSourceLoc() const { return ArrowLoc; } SourceLoc getStartLoc() const { return isFolded() ? Args->getStartLoc() : ThrowsLoc.isValid() ? ThrowsLoc : ArrowLoc; } SourceLoc getEndLoc() const { return isFolded() ? Result->getEndLoc() : ArrowLoc; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Arrow; } }; /// \brief Represents the rebinding of 'self' in a constructor that calls out /// to another constructor. The result of the subexpression is assigned to /// 'self', and the expression returns void. /// /// When a super.init or delegating initializer is invoked, 'self' is /// reassigned to the result of the initializer (after being downcast in the /// case of super.init). /// /// This is needed for reference types with ObjC interop, where /// reassigning 'self' is a supported feature, and for value type delegating /// constructors, where the delegatee constructor is responsible for /// initializing 'self' in-place before the delegator's logic executes. class RebindSelfInConstructorExpr : public Expr { Expr *SubExpr; VarDecl *Self; public: RebindSelfInConstructorExpr(Expr *SubExpr, VarDecl *Self); SWIFT_FORWARD_SOURCE_LOCS_TO(SubExpr) VarDecl *getSelf() const { return Self; } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *Sub) { SubExpr = Sub; } OtherConstructorDeclRefExpr *getCalledConstructor(bool &isChainToSuper) const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::RebindSelfInConstructor; } }; /// \brief The conditional expression 'x ? y : z'. class IfExpr : public Expr { Expr *CondExpr, *ThenExpr, *ElseExpr; SourceLoc QuestionLoc, ColonLoc; public: IfExpr(Expr *CondExpr, SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc, Expr *ElseExpr, Type Ty = Type()) : Expr(ExprKind::If, /*Implicit=*/false, Ty), CondExpr(CondExpr), ThenExpr(ThenExpr), ElseExpr(ElseExpr), QuestionLoc(QuestionLoc), ColonLoc(ColonLoc) {} IfExpr(SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc) : IfExpr(nullptr, QuestionLoc, ThenExpr, ColonLoc, nullptr) {} SourceLoc getLoc() const { return QuestionLoc; } SourceLoc getStartLoc() const { return (isFolded() ? CondExpr->getStartLoc() : QuestionLoc); } SourceLoc getEndLoc() const { return (isFolded() ? ElseExpr->getEndLoc() : ColonLoc); } SourceLoc getQuestionLoc() const { return QuestionLoc; } SourceLoc getColonLoc() const { return ColonLoc; } Expr *getCondExpr() const { return CondExpr; } void setCondExpr(Expr *E) { CondExpr = E; } Expr *getThenExpr() const { return ThenExpr; } void setThenExpr(Expr *E) { ThenExpr = E; } Expr *getElseExpr() const { return ElseExpr; } void setElseExpr(Expr *E) { ElseExpr = E; } /// True if the node has been processed by binary expression folding. bool isFolded() const { return CondExpr && ElseExpr; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::If; } }; /// AssignExpr - A value assignment, like "x = y". class AssignExpr : public Expr { Expr *Dest; Expr *Src; SourceLoc EqualLoc; public: AssignExpr(Expr *Dest, SourceLoc EqualLoc, Expr *Src, bool Implicit) : Expr(ExprKind::Assign, Implicit), Dest(Dest), Src(Src), EqualLoc(EqualLoc) {} AssignExpr(SourceLoc EqualLoc) : AssignExpr(nullptr, EqualLoc, nullptr, /*Implicit=*/false) {} Expr *getDest() const { return Dest; } void setDest(Expr *e) { Dest = e; } Expr *getSrc() const { return Src; } void setSrc(Expr *e) { Src = e; } SourceLoc getEqualLoc() const { return EqualLoc; } SourceLoc getLoc() const { return EqualLoc; } SourceLoc getStartLoc() const { if (!isFolded()) return EqualLoc; return (Dest->isImplicit() ? Src->getStartLoc() : Dest->getStartLoc()); } SourceLoc getEndLoc() const { if (!isFolded()) return EqualLoc; return Src->getEndLoc(); } /// True if the node has been processed by binary expression folding. bool isFolded() const { return Dest && Src; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::Assign; } }; /// \brief An expression that describes the use of a default value, which may /// come from the default argument of a function type or member initializer. /// /// This expression is synthesized by type checking and cannot be written /// directly by the user. class DefaultValueExpr : public Expr { Expr *subExpr; public: explicit DefaultValueExpr(Expr *subExpr) : Expr(ExprKind::DefaultValue, /*Implicit=*/true, subExpr->getType()), subExpr(subExpr) { } Expr *getSubExpr() const { return subExpr; } void setSubExpr(Expr *sub) { subExpr = sub; } SourceRange getSourceRange() const { return SourceRange(); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::DefaultValue; } }; /// \brief A pattern production that has been parsed but hasn't been resolved /// into a complete pattern. Name binding converts these into standalone pattern /// nodes or raises an error if a pattern production appears in an invalid /// position. class UnresolvedPatternExpr : public Expr { Pattern *subPattern; public: explicit UnresolvedPatternExpr(Pattern *subPattern) : Expr(ExprKind::UnresolvedPattern, /*Implicit=*/false), subPattern(subPattern) { } const Pattern *getSubPattern() const { return subPattern; } Pattern *getSubPattern() { return subPattern; } void setSubPattern(Pattern *p) { subPattern = p; } SourceRange getSourceRange() const; SourceLoc getStartLoc() const; SourceLoc getEndLoc() const; SourceLoc getLoc() const; static bool classof(const Expr *E) { return E->getKind() == ExprKind::UnresolvedPattern; } }; /// An editor placeholder (<#such as this#>) that occurred in an expression /// context. If the placeholder is a typed one (see \c EditorPlaceholderData) /// its type string will be typechecked and will be associated with this expr. class EditorPlaceholderExpr : public Expr { Identifier Placeholder; SourceLoc Loc; TypeLoc PlaceholderTy; TypeRepr *ExpansionTyR; Expr *SemanticExpr; public: EditorPlaceholderExpr(Identifier Placeholder, SourceLoc Loc, TypeLoc PlaceholderTy, TypeRepr *ExpansionTyR) : Expr(ExprKind::EditorPlaceholder, /*Implicit=*/false), Placeholder(Placeholder), Loc(Loc), PlaceholderTy(PlaceholderTy), ExpansionTyR(ExpansionTyR), SemanticExpr(nullptr) { } Identifier getPlaceholder() const { return Placeholder; } SourceRange getSourceRange() const { return Loc; } TypeLoc &getTypeLoc() { return PlaceholderTy; } TypeLoc getTypeLoc() const { return PlaceholderTy; } /// The TypeRepr to be considered for placeholder expansion. TypeRepr *getTypeForExpansion() const { return ExpansionTyR; } static bool classof(const Expr *E) { return E->getKind() == ExprKind::EditorPlaceholder; } Expr *getSemanticExpr() const { return SemanticExpr; } void setSemanticExpr(Expr *SE) { SemanticExpr = SE; } }; /// Produces the Objective-C selector of the referenced method. /// /// \code /// #selector(UIView.insertSubview(_:aboveSubview:)) /// \endcode class ObjCSelectorExpr : public Expr { SourceLoc KeywordLoc; SourceLoc LParenLoc; Expr *SubExpr; SourceLoc RParenLoc; AbstractFunctionDecl *Method = nullptr; public: ObjCSelectorExpr(SourceLoc keywordLoc, SourceLoc lParenLoc, Expr *subExpr, SourceLoc rParenLoc) : Expr(ExprKind::ObjCSelector, /*Implicit=*/false), KeywordLoc(keywordLoc), LParenLoc(lParenLoc), SubExpr(subExpr), RParenLoc(rParenLoc) { } Expr *getSubExpr() const { return SubExpr; } void setSubExpr(Expr *expr) { SubExpr = expr; } /// Retrieve the Objective-C method to which this expression refers. AbstractFunctionDecl *getMethod() const { return Method; } /// Set the Objective-C method to which this expression refers. void setMethod(AbstractFunctionDecl *method) { Method = method; } SourceLoc getLoc() const { return KeywordLoc; } SourceRange getSourceRange() const { return SourceRange(KeywordLoc, RParenLoc); } static bool classof(const Expr *E) { return E->getKind() == ExprKind::ObjCSelector; } }; #undef SWIFT_FORWARD_SOURCE_LOCS_TO } // end namespace swift #endif