//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// Returns the minimum element in `elements`. Requires: /// `elements` is non-empty. O(countElements(elements)) public func minElement< R : SequenceType where R.Generator.Element : Comparable>(elements: R) -> R.Generator.Element { var g = elements.generate() var result = g.next()! for e in GeneratorSequence(g) { if e < result { result = e } } return result } /// Returns the maximum element in `elements`. Requires: /// `elements` is non-empty. O(countElements(elements)) public func maxElement< R : SequenceType where R.Generator.Element : Comparable>(elements: R) -> R.Generator.Element { var g = elements.generate() var result = g.next()! for e in GeneratorSequence(g) { if e > result { result = e } } return result } // Returns the first index where `value` appears in `domain` or `nil` if // `domain` doesn't contain `value`. O(countElements(domain)) public func find< C: CollectionType where C.Generator.Element : Equatable >(domain: C, value: C.Generator.Element) -> C.Index? { for i in indices(domain) { if domain[i] == value { return i } } return nil } func _insertionSort< C: MutableCollectionType where C.Index: BidirectionalIndexType >( inout elements: C, range: Range, inout less: (C.Generator.Element, C.Generator.Element)->Bool ) { if !range.isEmpty { let start = range.startIndex // Keep track of the end of the initial sequence of sorted // elements. var sortedEnd = start // One element is trivially already-sorted, thus pre-increment // Continue until the sorted elements cover the whole sequence while (++sortedEnd != range.endIndex) { // get the first unsorted element var x: C.Generator.Element = elements[sortedEnd] // Look backwards for x's position in the sorted sequence, // moving elements forward to make room. var i = sortedEnd do { let predecessor: C.Generator.Element = elements[i.predecessor()] // if x doesn't belong before y, we've found its position if !less(x, predecessor) { break } // Move y forward elements[i] = predecessor } while --i != start if i != sortedEnd { // Plop x into position elements[i] = x } } } } /// Re-order the given `range` of `elements` and return a pivot index /// *p*. Postcondition: for all *i* in `range.startIndex..<`\ *p*, /// and *j* in *p*\ `..`__ /// over `elements`. public func partition< C: MutableCollectionType where C.Index: RandomAccessIndexType >( inout elements: C, range: Range, var less: (C.Generator.Element, C.Generator.Element)->Bool ) -> C.Index { return _partition(&elements, range, &less) } func _partition< C: MutableCollectionType where C.Index: RandomAccessIndexType >( inout elements: C, range: Range, inout less: (C.Generator.Element, C.Generator.Element)->Bool ) -> C.Index { var lo = range.startIndex var hi = range.endIndex if lo == hi { return lo } // The first element is the pivot. let pivot = elements[range.startIndex] // Loop invariants: // * lo < hi // * elements[i] < pivot, for i in range.startIndex+1..lo // * pivot <= elements[i] for i in hi..range.endIndex Loop: while true { FindLo: do { while ++lo != hi { if !less(elements[lo], pivot) { break FindLo } } break Loop } while false FindHi: do { while --hi != lo { if less(elements[hi], pivot) { break FindHi } } break Loop } while false swap(&elements[lo], &elements[hi]) } // swap the pivot into place swap(&elements[--lo], &elements[range.startIndex]) return lo } func _quickSort< C: MutableCollectionType where C.Index: RandomAccessIndexType >( inout elements: C, range: Range, less: (C.Generator.Element, C.Generator.Element)->Bool ) { var comp = less _quickSortImpl(&elements, range, &comp) } func _quickSortImpl< C: MutableCollectionType where C.Index: RandomAccessIndexType >( inout elements: C, range: Range, inout less: (C.Generator.Element, C.Generator.Element)->Bool ) { // Insertion sort is better at handling smaller regions. let cnt = count(range) if cnt < 20 { _insertionSort(&elements, range, &less) return } // Partition and sort. let part_idx : C.Index = _partition(&elements, range, &less) _quickSortImpl(&elements, range.startIndex.. { static func compare(x: T, _ y: T) -> Bool { return x < y } } /// Sort `collection` in-place according to `isOrderedBefore`. Requires: /// `isOrderedBefore` induces a `strict weak ordering /// `__ /// over the elements. public func sort< C: MutableCollectionType where C.Index: RandomAccessIndexType >( inout collection: C, isOrderedBefore: (C.Generator.Element, C.Generator.Element) -> Bool ) { _quickSort(&collection, indices(collection), isOrderedBefore) } /// Sort `collection` in-place. Requires: /// `<` induces a `strict weak ordering /// `__ /// over the elements. public func sort< C: MutableCollectionType where C.Index: RandomAccessIndexType, C.Generator.Element: Comparable >( inout collection: C ) { _quickSort(&collection, indices(collection)) } /// Sort `array` in-place according to `isOrderedBefore`. Requires: /// `isOrderedBefore` induces a `strict weak ordering /// `__ /// over the elements. public func sort(inout array: [T], isOrderedBefore: (T, T) -> Bool) { return array.withUnsafeMutableBufferPointer { a in sort(&a, isOrderedBefore) return } } // The functions below are a copy of the functions above except that // they don't accept a predicate and they are hardcoded to use the less-than // comparator. /// Sort `array` in-place. Requires: /// `<` induces a `strict weak ordering /// `__ /// over the elements. public func sort(inout array: [T]) { return array.withUnsafeMutableBufferPointer { a in sort(&a) return } } /// Return an `Array` containing the elements of `source` sorted /// according to `isOrderedBefore`. Requires: `isOrderedBefore` induces a `strict /// weak ordering /// `__ /// over the elements. public func sorted< C: MutableCollectionType where C.Index: RandomAccessIndexType >( source: C, isOrderedBefore: (C.Generator.Element, C.Generator.Element) -> Bool ) -> C { var result = source sort(&result, isOrderedBefore) return result } /// Return an `Array` containing the elements of `source`, sorted. /// Requires: `<` induces a `strict weak ordering /// `__ /// over the elements. public func sorted< C: MutableCollectionType where C.Generator.Element: Comparable, C.Index: RandomAccessIndexType >(source: C) -> C { var result = source sort(&result) return result } /// Return an `Array` containing the elements of `source` sorted /// according to `isOrderedBefore`. Requires: `isOrderedBefore` induces a `strict /// weak ordering /// `__ /// over the elements. public func sorted< S: SequenceType >( source: S, isOrderedBefore: (S.Generator.Element, S.Generator.Element) -> Bool ) -> [S.Generator.Element] { var result = Array(source) sort(&result, isOrderedBefore) return result } /// Return an `Array` containing the elements of `source`, sorted. /// Requires: `<` induces a `strict weak ordering /// `__ /// over the elements. public func sorted< S: SequenceType where S.Generator.Element: Comparable >( source: S ) -> [S.Generator.Element] { var result = Array(source) sort(&result) return result } func _insertionSort< C: MutableCollectionType where C.Index: RandomAccessIndexType, C.Generator.Element: Comparable>( inout elements: C, range: Range) { if !range.isEmpty { let start = range.startIndex // Keep track of the end of the initial sequence of sorted // elements. var sortedEnd = start // One element is trivially already-sorted, thus pre-increment // Continue until the sorted elements cover the whole sequence while (++sortedEnd != range.endIndex) { // get the first unsorted element var x: C.Generator.Element = elements[sortedEnd] // Look backwards for x's position in the sorted sequence, // moving elements forward to make room. var i = sortedEnd do { let predecessor: C.Generator.Element = elements[i.predecessor()] // if x doesn't belong before y, we've found its position if !Less.compare(x, predecessor) { break } // Move y forward elements[i] = predecessor } while --i != start if i != sortedEnd { // Plop x into position elements[i] = x } } } } /// Re-order the given `range` of `elements` and return a pivot index /// *p*. Postcondition: for all *i* in `range.startIndex..<`\ *p*, /// and *j* in *p*\ `..( inout elements: C, range: Range) -> C.Index { var lo = range.startIndex var hi = range.endIndex if lo == hi { return lo } // The first element is the pivot. let pivot = elements[range.startIndex] // Loop invariants: // * lo < hi // * elements[i] < pivot, for i in range.startIndex+1..lo // * pivot <= elements[i] for i in hi..range.endIndex Loop: while true { FindLo: do { while ++lo != hi { if !(elements[lo] < pivot) { break FindLo } } break Loop } while false FindHi: do { while --hi != lo { if (elements[hi] < pivot) { break FindHi } } break Loop } while false swap(&elements[lo], &elements[hi]) } // swap the pivot into place swap(&elements[--lo], &elements[range.startIndex]) return lo } func _quickSort< C: MutableCollectionType where C.Generator.Element: Comparable, C.Index: RandomAccessIndexType >( inout elements: C, range: Range) { _quickSortImpl(&elements, range) } func _quickSortImpl< C: MutableCollectionType where C.Generator.Element: Comparable, C.Index: RandomAccessIndexType >( inout elements: C, range: Range ) { // Insertion sort is better at handling smaller regions. let cnt = count(range) if cnt < 20 { _insertionSort(&elements, range) return } // Partition and sort. let part_idx : C.Index = partition(&elements, range) _quickSortImpl(&elements, range.startIndex..(inout a : T, inout b : T) { // Semantically equivalent to (a, b) = (b, a). // Microoptimized to avoid retain/release traffic. let p1 = Builtin.addressof(&a) let p2 = Builtin.addressof(&b) // Take from P1. let tmp : T = Builtin.take(p1) // Transfer P2 into P1. Builtin.initialize(Builtin.take(p2) as T, p1) // Initialize P2. Builtin.initialize(tmp, p2) } /// Return the lesser of `x` and `y` public func min(x: T, y: T) -> T { var r = x if y < x { r = y } return r } /// Return the least argument passed public func min(x: T, y: T, z: T, rest: T...) -> T { var r = x if y < x { r = y } if z < r { r = z } for t in rest { if t < r { r = t } } return r } /// Return the greater of `x` and `y` public func max(x: T, y: T) -> T { var r = y if y < x { r = x } return r } /// Return the greatest argument passed public func max(x: T, y: T, z: T, rest: T...) -> T { var r = y if y < x { r = x } if r < z { r = z } for t in rest { if t >= r { r = t } } return r } /// Return the result of slicing `elements` into sub-sequences that /// don't contain elements satisfying the predicate `isSeparator`. /// /// :param: maxSplit the maximum number of slices to return, minus 1. /// If `maxSplit + 1` slices would otherwise be returned, the /// algorithm stops splitting and returns a suffix of `elements` /// /// :param: allowEmptySlices if true, an empty slice is produced in /// the result for each pair of consecutive public func split( elements: S, isSeparator: (S.Generator.Element)->R, maxSplit: Int = Int.max, allowEmptySlices: Bool = false ) -> [S.SubSlice] { var result = Array() // FIXME: could be simplified pending // (ternary operator not resolving some/none) var startIndex: Optional = allowEmptySlices ? .Some(elements.startIndex) : .None var splits = 0 for j in indices(elements) { if isSeparator(elements[j]) { if startIndex != nil { var i = startIndex! result.append(elements[i..= maxSplit { break } if !allowEmptySlices { startIndex = .None } } } else { if startIndex == nil { startIndex = .Some(j) } } } switch startIndex { case .Some(var i): result.append(elements[i..(s: S0, prefix: S1) -> Bool { var prefixGenerator = prefix.generate() for e0 in s { var e1 = prefixGenerator.next() if e1 == nil { return true } if e0 != e1! { return false } } return prefixGenerator.next() != nil ? false : true } /// Return true iff `s` begins with elements equivalent to those of /// `prefix`, using `isEquivalent` as the equivalence test. Requires: /// `isEquivalent` is an `equivalence relation /// `__ public func startsWith< S0: SequenceType, S1: SequenceType where S0.Generator.Element == S1.Generator.Element >(s: S0, prefix: S1, isEquivalent: (S1.Generator.Element, S1.Generator.Element) -> Bool) -> Bool { var prefixGenerator = prefix.generate() for e0 in s { var e1 = prefixGenerator.next() if e1 == nil { return true } if !isEquivalent(e0, e1!) { return false } } return prefixGenerator.next() != nil ? false : true } public struct EnumerateGenerator< Base: GeneratorType > : GeneratorType, SequenceType { public typealias Element = (index: Int, element: Base.Element) var base: Base var count: Int init(_ base: Base) { self.base = base count = 0 } public mutating func next() -> Element? { var b = base.next() if b == nil { return .None } return .Some((index: count++, element: b!)) } // Every GeneratorType is also a single-pass SequenceType public typealias Generator = EnumerateGenerator public func generate() -> Generator { return self } } public func enumerate( seq: Seq ) -> EnumerateGenerator { return EnumerateGenerator(seq.generate()) } /// Return true iff `a1` and `a2` contain the same elements. public func equal< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element, S1.Generator.Element : Equatable >(a1: S1, a2: S2) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1 = g1.next() var e2 = g2.next() if (e1 != nil) && (e2 != nil) { if e1! != e2! { return false } } else { return (e1 == nil) == (e2 == nil) } } } /// Return true iff `a1` and `a2` contain equivalent elements, using /// `isEquivalent` as the equivalence test. Requires: `isEquivalent` /// is an `equivalence relation /// `__ public func equal< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element >(a1: S1, a2: S2, isEquivalent: (S1.Generator.Element, S1.Generator.Element) -> Bool) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1 = g1.next() var e2 = g2.next() if (e1 != nil) && (e2 != nil) { if !isEquivalent(e1!, e2!) { return false } } else { return (e1 == nil) == (e2 == nil) } } } /// Return true iff a1 precedes a2 in a lexicographical ("dictionary") /// ordering, using "<" as the comparison between elements. public func lexicographicalCompare< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element, S1.Generator.Element : Comparable>( a1: S1, a2: S2) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1_ = g1.next() var e2_ = g2.next() if let e1 = e1_ { if let e2 = e2_ { if e1 < e2 { return true } if e2 < e1 { return false } continue // equivalent } return false } return e2_ != nil } } /// Return true iff `a1` precedes `a2` in a lexicographical ("dictionary") /// ordering, using `less` as the comparison between elements. public func lexicographicalCompare< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element >( a1: S1, a2: S2, less: (S1.Generator.Element,S1.Generator.Element)->Bool ) -> Bool { var g1 = a1.generate() var g2 = a2.generate() while true { var e1_ = g1.next() var e2_ = g2.next() if let e1 = e1_ { if let e2 = e2_ { if less(e1, e2) { return true } if less(e2, e1) { return false } continue // equivalent } return false } switch e2_ { case .Some(_): return true case .None: return false } } } /// Return `true` iff an element in `seq` satisfies `predicate`. public func contains< S: SequenceType, L: BooleanType >(seq: S, predicate: (S.Generator.Element)->L) -> Bool { for a in seq { if predicate(a) { return true } } return false } /// Return `true` iff `x` is in `seq`. public func contains< S: SequenceType where S.Generator.Element: Equatable >(seq: S, x: S.Generator.Element) -> Bool { return contains(seq, { $0 == x }) } /// Return the result of repeatedly calling `combine` with an /// accumulated value initialized to `initial` and each element of /// `sequence`, in turn. public func reduce( sequence: S, initial: U, combine: (U, S.Generator.Element)->U ) -> U { var result = initial for element in sequence { result = combine(result, element) } return result }