//===--- PassManager.cpp - Swift Pass Manager -----------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-passmanager" #include "swift/SILOptimizer/PassManager/PassManager.h" #include "swift/Demangling/Demangle.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILModule.h" #include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h" #include "swift/SILOptimizer/Analysis/FunctionOrder.h" #include "swift/SILOptimizer/PassManager/PrettyStackTrace.h" #include "swift/SILOptimizer/PassManager/Transforms.h" #include "swift/SILOptimizer/Utils/OptimizerStatsUtils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Chrono.h" using namespace swift; llvm::cl::opt SILPrintAll( "sil-print-all", llvm::cl::init(false), llvm::cl::desc("Print SIL after each pass")); llvm::cl::opt SILPrintPassName( "sil-print-pass-name", llvm::cl::init(false), llvm::cl::desc("Print the name of each SIL pass before it runs")); llvm::cl::opt SILPrintPassTime( "sil-print-pass-time", llvm::cl::init(false), llvm::cl::desc("Print the execution time of each SIL pass")); llvm::cl::opt SILNumOptPassesToRun( "sil-opt-pass-count", llvm::cl::init(UINT_MAX), llvm::cl::desc("Stop optimizing after optimization passes")); llvm::cl::opt SILBreakOnFun( "sil-break-on-function", llvm::cl::init(""), llvm::cl::desc( "Break before running each function pass on a particular function")); llvm::cl::opt SILBreakOnPass( "sil-break-on-pass", llvm::cl::init(""), llvm::cl::desc("Break before running a particular function pass")); llvm::cl::opt SILPrintOnlyFun("sil-print-only-function", llvm::cl::init(""), llvm::cl::desc("Only print out the sil for this function")); llvm::cl::opt SILPrintOnlyFuns("sil-print-only-functions", llvm::cl::init(""), llvm::cl::desc("Only print out the sil for the functions " "whose name contains this substring")); llvm::cl::list SILPrintBefore("sil-print-before", llvm::cl::desc("Print out the sil before passes which " "contain a string from this list.")); llvm::cl::list SILPrintAfter("sil-print-after", llvm::cl::desc("Print out the sil after passes which contain " "a string from this list.")); llvm::cl::list SILPrintAround("sil-print-around", llvm::cl::desc("Print out the sil before and after passes " "which contain a string from this list")); llvm::cl::list SILDisablePass("sil-disable-pass", llvm::cl::desc("Disable passes " "which contain a string from this list")); llvm::cl::opt SILVerifyWithoutInvalidation( "sil-verify-without-invalidation", llvm::cl::init(false), llvm::cl::desc("Verify after passes even if the pass has not invalidated")); llvm::cl::opt SILDisableSkippingPasses( "sil-disable-skipping-passes", llvm::cl::init(false), llvm::cl::desc("Do not skip passes even if nothing was changed")); static llvm::ManagedStatic> DebugPassNumbers; namespace { struct DebugOnlyPassNumberOpt { void operator=(const std::string &Val) const { if (Val.empty()) return; SmallVector dbgPassNumbers; StringRef(Val).split(dbgPassNumbers, ',', -1, false); for (auto dbgPassNumber : dbgPassNumbers) { int PassNumber; if (dbgPassNumber.getAsInteger(10, PassNumber) || PassNumber < 0) llvm_unreachable("The pass number should be an integer number >= 0"); DebugPassNumbers->push_back(static_cast(PassNumber)); } } }; } // end anonymous namespace static DebugOnlyPassNumberOpt DebugOnlyPassNumberOptLoc; static llvm::cl::opt> DebugOnly("debug-only-pass-number", llvm::cl::desc("Enable a specific type of debug output (comma " "separated list pass numbers)"), llvm::cl::Hidden, llvm::cl::ZeroOrMore, llvm::cl::value_desc("pass number"), llvm::cl::location(DebugOnlyPassNumberOptLoc), llvm::cl::ValueRequired); static bool doPrintBefore(SILTransform *T, SILFunction *F) { if (!SILPrintOnlyFun.empty() && F && F->getName() != SILPrintOnlyFun) return false; if (!SILPrintOnlyFuns.empty() && F && F->getName().find(SILPrintOnlyFuns, 0) == StringRef::npos) return false; auto MatchFun = [&](const std::string &Str) -> bool { return T->getTag().find(Str) != StringRef::npos || T->getID().find(Str) != StringRef::npos; }; if (SILPrintBefore.end() != std::find_if(SILPrintBefore.begin(), SILPrintBefore.end(), MatchFun)) return true; if (SILPrintAround.end() != std::find_if(SILPrintAround.begin(), SILPrintAround.end(), MatchFun)) return true; return false; } static bool doPrintAfter(SILTransform *T, SILFunction *F, bool Default) { if (!SILPrintOnlyFun.empty() && F && F->getName() != SILPrintOnlyFun) return false; if (!SILPrintOnlyFuns.empty() && F && F->getName().find(SILPrintOnlyFuns, 0) == StringRef::npos) return false; auto MatchFun = [&](const std::string &Str) -> bool { return T->getTag().find(Str) != StringRef::npos || T->getID().find(Str) != StringRef::npos; }; if (SILPrintAfter.end() != std::find_if(SILPrintAfter.begin(), SILPrintAfter.end(), MatchFun)) return true; if (SILPrintAround.end() != std::find_if(SILPrintAround.begin(), SILPrintAround.end(), MatchFun)) return true; return Default; } static bool isDisabled(SILTransform *T) { for (const std::string &NamePattern : SILDisablePass) { if (T->getTag().find(NamePattern) != StringRef::npos || T->getID().find(NamePattern) != StringRef::npos) { return true; } } return false; } static void printModule(SILModule *Mod, bool EmitVerboseSIL) { if (SILPrintOnlyFun.empty() && SILPrintOnlyFuns.empty()) { Mod->dump(); return; } for (auto &F : *Mod) { if (!SILPrintOnlyFun.empty() && F.getName().str() == SILPrintOnlyFun) F.dump(EmitVerboseSIL); if (!SILPrintOnlyFuns.empty() && F.getName().find(SILPrintOnlyFuns, 0) != StringRef::npos) F.dump(EmitVerboseSIL); } } class DebugPrintEnabler { #ifndef NDEBUG bool OldDebugFlag; #endif public: DebugPrintEnabler(unsigned PassNumber) { #ifndef NDEBUG OldDebugFlag = llvm::DebugFlag; if (llvm::DebugFlag) return; if (DebugPassNumbers->empty()) return; // Enable debug printing if the pass number matches // one of the pass numbers provided as a command line option. for (auto DebugPassNumber : *DebugPassNumbers) { if (DebugPassNumber == PassNumber) { llvm::DebugFlag = true; return; } } #endif } ~DebugPrintEnabler() { #ifndef NDEBUG llvm::DebugFlag = OldDebugFlag; #endif } }; SILPassManager::SILPassManager(SILModule *M, llvm::StringRef Stage, bool isMandatoryPipeline) : Mod(M), StageName(Stage), isMandatoryPipeline(isMandatoryPipeline) { #define ANALYSIS(NAME) \ Analysis.push_back(create##NAME##Analysis(Mod)); #include "swift/SILOptimizer/Analysis/Analysis.def" for (SILAnalysis *A : Analysis) { A->initialize(this); M->registerDeleteNotificationHandler(A); } } SILPassManager::SILPassManager(SILModule *M, irgen::IRGenModule *IRMod, llvm::StringRef Stage, bool isMandatoryPipeline) : SILPassManager(M, Stage, isMandatoryPipeline) { this->IRMod = IRMod; } bool SILPassManager::continueTransforming() { if (isMandatoryPipeline) return true; return NumPassesRun < SILNumOptPassesToRun; } bool SILPassManager::analysesUnlocked() { for (auto *A : Analysis) if (A->isLocked()) return false; return true; } // Test the function and pass names we're given against the debug // options that force us to break prior to a given pass and/or on a // given function. static bool breakBeforeRunning(StringRef fnName, SILFunctionTransform *SFT) { if (SILBreakOnFun.empty() && SILBreakOnPass.empty()) return false; if (SILBreakOnFun.empty() && (SFT->getID() == SILBreakOnPass || SFT->getTag() == SILBreakOnPass)) return true; if (SILBreakOnPass.empty() && fnName == SILBreakOnFun) return true; return fnName == SILBreakOnFun && (SFT->getID() == SILBreakOnPass || SFT->getTag() == SILBreakOnPass); } void SILPassManager::dumpPassInfo(const char *Title, SILTransform *Tr, SILFunction *F) { llvm::dbgs() << " " << Title << " #" << NumPassesRun << ", stage " << StageName << ", pass : " << Tr->getID() << " (" << Tr->getTag() << ")"; if (F) llvm::dbgs() << ", Function: " << F->getName(); llvm::dbgs() << '\n'; } void SILPassManager::dumpPassInfo(const char *Title, unsigned TransIdx, SILFunction *F) { SILTransform *Tr = Transformations[TransIdx]; llvm::dbgs() << " " << Title << " #" << NumPassesRun << ", stage " << StageName << ", pass " << TransIdx << ": " << Tr->getID() << " (" << Tr->getTag() << ")"; if (F) llvm::dbgs() << ", Function: " << F->getName(); llvm::dbgs() << '\n'; } void SILPassManager::runPassOnFunction(unsigned TransIdx, SILFunction *F) { assert(analysesUnlocked() && "Expected all analyses to be unlocked!"); auto *SFT = cast(Transformations[TransIdx]); SFT->injectPassManager(this); SFT->injectFunction(F); PrettyStackTraceSILFunctionTransform X(SFT, NumPassesRun); DebugPrintEnabler DebugPrint(NumPassesRun); // If nothing changed since the last run of this pass, we can skip this // pass. CompletedPasses &completedPasses = CompletedPassesMap[F]; if (completedPasses.test((size_t)SFT->getPassKind()) && !SILDisableSkippingPasses) { if (SILPrintPassName) dumpPassInfo("(Skip)", TransIdx, F); return; } if (isDisabled(SFT)) { if (SILPrintPassName) dumpPassInfo("(Disabled)", TransIdx, F); return; } updateSILModuleStatsBeforeTransform(F->getModule(), SFT, *this, NumPassesRun); CurrentPassHasInvalidated = false; if (SILPrintPassName) dumpPassInfo("Run", TransIdx, F); if (doPrintBefore(SFT, F)) { dumpPassInfo("*** SIL function before ", TransIdx); F->dump(getOptions().EmitVerboseSIL); } llvm::sys::TimePoint<> StartTime = std::chrono::system_clock::now(); Mod->registerDeleteNotificationHandler(SFT); if (breakBeforeRunning(F->getName(), SFT)) LLVM_BUILTIN_DEBUGTRAP; SFT->run(); assert(analysesUnlocked() && "Expected all analyses to be unlocked!"); Mod->removeDeleteNotificationHandler(SFT); auto Delta = (std::chrono::system_clock::now() - StartTime).count(); if (SILPrintPassTime) { llvm::dbgs() << Delta << " (" << SFT->getID() << "," << F->getName() << ")\n"; } // If this pass invalidated anything, print and verify. if (doPrintAfter(SFT, F, CurrentPassHasInvalidated && SILPrintAll)) { dumpPassInfo("*** SIL function after ", TransIdx); F->dump(getOptions().EmitVerboseSIL); } updateSILModuleStatsAfterTransform(F->getModule(), SFT, *this, NumPassesRun, Delta); // Remember if this pass didn't change anything. if (!CurrentPassHasInvalidated) completedPasses.set((size_t)SFT->getPassKind()); if (getOptions().VerifyAll && (CurrentPassHasInvalidated || SILVerifyWithoutInvalidation)) { F->verify(); verifyAnalyses(F); } ++NumPassesRun; } void SILPassManager:: runFunctionPasses(unsigned FromTransIdx, unsigned ToTransIdx) { if (ToTransIdx <= FromTransIdx) return; BasicCalleeAnalysis *BCA = getAnalysis(); BottomUpFunctionOrder BottomUpOrder(*Mod, BCA); auto BottomUpFunctions = BottomUpOrder.getFunctions(); assert(FunctionWorklist.empty() && "Expected empty function worklist!"); FunctionWorklist.reserve(BottomUpFunctions.size()); for (auto I = BottomUpFunctions.rbegin(), E = BottomUpFunctions.rend(); I != E; ++I) { auto &F = **I; // Only include functions that are definitions, and which have not // been intentionally excluded from optimization. if (F.isDefinition() && (isMandatoryPipeline || F.shouldOptimize())) FunctionWorklist.push_back(*I); } DerivationLevels.clear(); // The maximum number of times the pass pipeline can be restarted for a // function. This is used to ensure we are not going into an infinite loop in // cases where (for example) we have recursive type-based specialization // happening. const unsigned MaxNumRestarts = 20; if (SILPrintPassName) llvm::dbgs() << "Start function passes at stage: " << StageName << "\n"; // Run all transforms for all functions, starting at the tail of the worklist. while (!FunctionWorklist.empty() && continueTransforming()) { unsigned TailIdx = FunctionWorklist.size() - 1; unsigned PipelineIdx = FunctionWorklist[TailIdx].PipelineIdx; SILFunction *F = FunctionWorklist[TailIdx].F; if (PipelineIdx >= (ToTransIdx - FromTransIdx)) { // All passes did already run for the function. Pop it off the worklist. FunctionWorklist.pop_back(); continue; } assert(!shouldRestartPipeline() && "Did not expect function pipeline set up to restart from beginning!"); runPassOnFunction(FromTransIdx + PipelineIdx, F); // Note: Don't get entry reference prior to runPassOnFunction(). // A pass can push a new function to the worklist which may cause a // reallocation of the buffer and that would invalidate the reference. WorklistEntry &Entry = FunctionWorklist[TailIdx]; if (shouldRestartPipeline() && Entry.NumRestarts < MaxNumRestarts) { ++Entry.NumRestarts; Entry.PipelineIdx = 0; } else { ++Entry.PipelineIdx; } clearRestartPipeline(); } } void SILPassManager::runModulePass(unsigned TransIdx) { auto *SMT = cast(Transformations[TransIdx]); if (isDisabled(SMT)) return; const SILOptions &Options = getOptions(); SMT->injectPassManager(this); SMT->injectModule(Mod); PrettyStackTraceSILModuleTransform X(SMT, NumPassesRun); DebugPrintEnabler DebugPrint(NumPassesRun); updateSILModuleStatsBeforeTransform(*Mod, SMT, *this, NumPassesRun); CurrentPassHasInvalidated = false; if (SILPrintPassName) dumpPassInfo("Run module pass", TransIdx); if (doPrintBefore(SMT, nullptr)) { dumpPassInfo("*** SIL module before", TransIdx); printModule(Mod, Options.EmitVerboseSIL); } llvm::sys::TimePoint<> StartTime = std::chrono::system_clock::now(); assert(analysesUnlocked() && "Expected all analyses to be unlocked!"); Mod->registerDeleteNotificationHandler(SMT); SMT->run(); Mod->removeDeleteNotificationHandler(SMT); assert(analysesUnlocked() && "Expected all analyses to be unlocked!"); auto Delta = (std::chrono::system_clock::now() - StartTime).count(); if (SILPrintPassTime) { llvm::dbgs() << Delta << " (" << SMT->getID() << ",Module)\n"; } // If this pass invalidated anything, print and verify. if (doPrintAfter(SMT, nullptr, CurrentPassHasInvalidated && SILPrintAll)) { dumpPassInfo("*** SIL module after", TransIdx); printModule(Mod, Options.EmitVerboseSIL); } updateSILModuleStatsAfterTransform(*Mod, SMT, *this, NumPassesRun, Delta); if (Options.VerifyAll && (CurrentPassHasInvalidated || !SILVerifyWithoutInvalidation)) { Mod->verify(); verifyAnalyses(); } } void SILPassManager::execute() { const SILOptions &Options = getOptions(); DEBUG(llvm::dbgs() << "*** Optimizing the module (" << StageName << ") *** \n"); if (SILPrintAll) { llvm::dbgs() << "*** SIL module before " << StageName << " ***\n"; printModule(Mod, Options.EmitVerboseSIL); } // Run the transforms by alternating between function transforms and // module transforms. We'll queue up all the function transforms // that we see in a row and then run the entire group of transforms // on each function in turn. Then we move on to running the next set // of consecutive module transforms. unsigned Idx = 0, NumTransforms = Transformations.size(); while (Idx < NumTransforms && continueTransforming()) { SILTransform *Tr = Transformations[Idx]; assert((isa(Tr) || isa(Tr)) && "Unexpected pass kind!"); unsigned FirstFuncTrans = Idx; while (Idx < NumTransforms && isa(Transformations[Idx])) ++Idx; runFunctionPasses(FirstFuncTrans, Idx); while (Idx < NumTransforms && isa(Transformations[Idx]) && continueTransforming()) { runModulePass(Idx); ++Idx; ++NumPassesRun; } } } /// D'tor. SILPassManager::~SILPassManager() { assert(IRGenPasses.empty() && "Must add IRGen SIL passes that were " "registered to the list of transformations"); // Free all transformations. for (auto *T : Transformations) delete T; // delete the analysis. for (auto *A : Analysis) { Mod->removeDeleteNotificationHandler(A); assert(!A->isLocked() && "Deleting a locked analysis. Did we forget to unlock ?"); delete A; } } void SILPassManager::notifyOfNewFunction(SILFunction *F, SILTransform *T) { if (doPrintAfter(T, F, SILPrintAll)) { dumpPassInfo("*** New SIL function in ", T, F); F->dump(getOptions().EmitVerboseSIL); } } void SILPassManager::addFunctionToWorklist(SILFunction *F, SILFunction *DerivedFrom) { assert(F && F->isDefinition() && (isMandatoryPipeline || F->shouldOptimize()) && "Expected optimizable function definition!"); constexpr int MaxDeriveLevels = 10; int NewLevel = 1; if (DerivedFrom) { // When SILVerifyAll is enabled, individual functions are verified after // function passes are run upon them. This means that any functions created // by a function pass will not be verified after the pass runs. Thus // specialization errors that cause the verifier to trip will be // misattributed to the first pass that makes a change to the specialized // function. This is very misleading and increases triage time. // // As a result, when SILVerifyAll is enabled, we always verify newly // specialized functions as they are added to the worklist. // // TODO: Currently, all specialized functions are added to the function // worklist in this manner. This is all well and good, but we should really // add support for verifying that all specialized functions are added via // this function to the pass manager to ensure that we perform this // verification. if (getOptions().VerifyAll) { F->verify(); } NewLevel = DerivationLevels[DerivedFrom] + 1; // Limit the number of derivations, i.e. don't allow that a pass specializes // a specialized function which is itself a specialized function, and so on. if (NewLevel >= MaxDeriveLevels) return; } int &StoredLevel = DerivationLevels[F]; // Only allow a function to be pushed on the worklist a single time // (not counting the initial population of the worklist with the bottom-up // function order). if (StoredLevel > 0) return; StoredLevel = NewLevel; FunctionWorklist.push_back(F); } void SILPassManager::restartWithCurrentFunction(SILTransform *T) { assert(isa(T) && "Can only restart the pipeline from function passes"); RestartPipeline = true; } /// \brief Reset the state of the pass manager and remove all transformation /// owned by the pass manager. Analysis passes will be kept. void SILPassManager::resetAndRemoveTransformations() { for (auto *T : Transformations) delete T; Transformations.clear(); } void SILPassManager::setStageName(llvm::StringRef NextStage) { StageName = NextStage; } StringRef SILPassManager::getStageName() const { return StageName; } const SILOptions &SILPassManager::getOptions() const { return Mod->getOptions(); } void SILPassManager::addPass(PassKind Kind) { assert(unsigned(PassKind::AllPasses_Last) >= unsigned(Kind) && "Invalid pass kind"); switch (Kind) { #define PASS(ID, TAG, NAME) \ case PassKind::ID: { \ SILTransform *T = swift::create##ID(); \ T->setPassKind(PassKind::ID); \ Transformations.push_back(T); \ break; \ } #define IRGEN_PASS(ID, TAG, NAME) \ case PassKind::ID: { \ SILTransform *T = IRGenPasses[unsigned(Kind)]; \ assert(T && "Missing IRGen pass?"); \ T->setPassKind(PassKind::ID); \ Transformations.push_back(T); \ IRGenPasses.erase(unsigned(Kind)); \ break; \ } #include "swift/SILOptimizer/PassManager/Passes.def" case PassKind::invalidPassKind: llvm_unreachable("invalid pass kind"); } } void SILPassManager::addPassForName(StringRef Name) { PassKind P = llvm::StringSwitch(Name) #define PASS(ID, TAG, NAME) .Case(#ID, PassKind::ID) #include "swift/SILOptimizer/PassManager/Passes.def" ; addPass(P); } //===----------------------------------------------------------------------===// // View Call-Graph Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG namespace { /// An explicit graph data structure for the call graph. /// Used for viewing the callgraph as dot file with llvm::ViewGraph. struct CallGraph { struct Node; struct Edge { FullApplySite FAS; Node *Child; bool Incomplete; }; struct Node { SILFunction *F; CallGraph *CG; int NumCallSites = 0; SmallVector Children; }; struct child_iterator : public std::iterator { SmallVectorImpl::iterator baseIter; child_iterator(SmallVectorImpl::iterator baseIter) : baseIter(baseIter) { } child_iterator &operator++() { baseIter++; return *this; } child_iterator operator++(int) { auto tmp = *this; baseIter++; return tmp; } Node *operator*() const { return baseIter->Child; } bool operator==(const child_iterator &RHS) const { return baseIter == RHS.baseIter; } bool operator!=(const child_iterator &RHS) const { return baseIter != RHS.baseIter; } difference_type operator-(const child_iterator &RHS) const { return baseIter - RHS.baseIter; } }; CallGraph(SILModule *M, BasicCalleeAnalysis *BCA); std::vector Nodes; /// The SILValue IDs which are printed as edge source labels. llvm::DenseMap InstToIDMap; typedef std::vector::iterator iterator; }; CallGraph::CallGraph(SILModule *M, BasicCalleeAnalysis *BCA) { Nodes.resize(M->getFunctionList().size()); llvm::DenseMap NodeMap; int idx = 0; for (SILFunction &F : *M) { Node &Nd = Nodes[idx++]; Nd.F = &F; Nd.CG = this; NodeMap[&F] = &Nd; F.numberValues(InstToIDMap); } for (Node &Nd : Nodes) { for (SILBasicBlock &BB : *Nd.F) { for (SILInstruction &I : BB) { if (FullApplySite FAS = FullApplySite::isa(&I)) { auto CList = BCA->getCalleeList(FAS); for (SILFunction *Callee : CList) { Node *CalleeNode = NodeMap[Callee]; Nd.Children.push_back({FAS, CalleeNode,CList.isIncomplete()}); } } } } } } } // end anonymous namespace namespace llvm { /// Wraps a dot node label string to multiple lines. The \p NumEdgeLabels /// gives an estimate on the minimum width of the node shape. static void wrap(std::string &Str, int NumEdgeLabels) { unsigned ColNum = 0; unsigned LastSpace = 0; unsigned MaxColumns = std::max(60, NumEdgeLabels * 8); for (unsigned i = 0; i != Str.length(); ++i) { if (ColNum == MaxColumns) { if (!LastSpace) LastSpace = i; Str.insert(LastSpace + 1, "\\l"); ColNum = i - LastSpace - 1; LastSpace = 0; } else ++ColNum; if (Str[i] == ' ' || Str[i] == '.') LastSpace = i; } } /// CallGraph GraphTraits specialization so the CallGraph can be /// iterable by generic graph iterators. template <> struct GraphTraits { typedef CallGraph::child_iterator ChildIteratorType; typedef CallGraph::Node *NodeRef; static NodeRef getEntryNode(NodeRef N) { return N; } static inline ChildIteratorType child_begin(NodeRef N) { return N->Children.begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->Children.end(); } }; template <> struct GraphTraits : public GraphTraits { typedef CallGraph *GraphType; typedef CallGraph::Node *NodeRef; static NodeRef getEntryNode(GraphType F) { return nullptr; } typedef pointer_iterator nodes_iterator; static nodes_iterator nodes_begin(GraphType CG) { return nodes_iterator(CG->Nodes.begin()); } static nodes_iterator nodes_end(GraphType CG) { return nodes_iterator(CG->Nodes.end()); } static unsigned size(GraphType CG) { return CG->Nodes.size(); } }; /// This is everything the llvm::GraphWriter needs to write the call graph in /// a dot file. template <> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} std::string getNodeLabel(const CallGraph::Node *Node, const CallGraph *Graph) { std::string Label = Node->F->getName(); wrap(Label, Node->NumCallSites); return Label; } std::string getNodeDescription(const CallGraph::Node *Node, const CallGraph *Graph) { std::string Label = Demangle:: demangleSymbolAsString(Node->F->getName()); wrap(Label, Node->NumCallSites); return Label; } static std::string getEdgeSourceLabel(const CallGraph::Node *Node, CallGraph::child_iterator I) { std::string Label; raw_string_ostream O(Label); SILInstruction *Inst = I.baseIter->FAS.getInstruction(); O << '%' << Node->CG->InstToIDMap[Inst]; return Label; } static std::string getEdgeAttributes(const CallGraph::Node *Node, CallGraph::child_iterator I, const CallGraph *Graph) { CallGraph::Edge *Edge = I.baseIter; if (Edge->Incomplete) return "color=\"red\""; return ""; } }; } // namespace llvm #endif void SILPassManager::viewCallGraph() { /// When asserts are disabled, this should be a NoOp. #ifndef NDEBUG CallGraph OCG(getModule(), getAnalysis()); llvm::ViewGraph(&OCG, "callgraph"); #endif }