//===--- Common.h - Automatic differentiation common utils ----*- C++ -*---===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2019 - 2020 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Automatic differentiation common utilities. // //===----------------------------------------------------------------------===// #ifndef SWIFT_SILOPTIMIZER_UTILS_DIFFERENTIATION_COMMON_H #define SWIFT_SILOPTIMIZER_UTILS_DIFFERENTIATION_COMMON_H #include "swift/SIL/SILDifferentiabilityWitness.h" #include "swift/SIL/SILFunction.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/TypeSubstCloner.h" #include "swift/SILOptimizer/Analysis/DifferentiableActivityAnalysis.h" namespace swift { //===----------------------------------------------------------------------===// // Helpers //===----------------------------------------------------------------------===// namespace autodiff { /// Prints an "[AD] " prefix to `llvm::dbgs()` and returns the debug stream. /// This is being used to print short debug messages within the AD pass. raw_ostream &getADDebugStream(); /// Returns true if this is an full apply site whose callee has /// `array.uninitialized_intrinsic` semantics. bool isArrayLiteralIntrinsic(FullApplySite applySite); /// If the given value `v` corresponds to an `ApplyInst` with /// `array.uninitialized_intrinsic` semantics, returns the corresponding /// `ApplyInst`. Otherwise, returns `nullptr`. ApplyInst *getAllocateUninitializedArrayIntrinsic(SILValue v); /// Given an element address from an `array.uninitialized_intrinsic` `apply` /// instruction, returns the `apply` instruction. The element address is either /// a `pointer_to_address` or `index_addr` instruction to the `RawPointer` /// result of the instrinsic: /// /// %result = apply %array.uninitialized_intrinsic : $(Array, RawPointer) /// (%array, %ptr) = destructure_tuple %result /// %elt0 = pointer_to_address %ptr to $*T // element address /// %index_1 = integer_literal $Builtin.Word, 1 /// %elt1 = index_addr %elt0, %index_1 // element address /// ... ApplyInst *getAllocateUninitializedArrayIntrinsicElementAddress(SILValue v); /// Given a value, finds its single `destructure_tuple` user if the value is /// tuple-typed and such a user exists. DestructureTupleInst *getSingleDestructureTupleUser(SILValue value); /// Given a full apply site, apply the given callback to each of its /// "direct results". /// /// - `apply` /// Special case because `apply` returns a single (possibly tuple-typed) result /// instead of multiple results. If the `apply` has a single /// `destructure_tuple` user, treat the `destructure_tuple` results as the /// `apply` direct results. /// /// - `begin_apply` /// Apply callback to each `begin_apply` direct result. /// /// - `try_apply` /// Apply callback to each `try_apply` successor basic block argument. void forEachApplyDirectResult( FullApplySite applySite, llvm::function_ref resultCallback); /// Given a function, gathers all of its formal results (both direct and /// indirect) in an order defined by its result type. Note that "formal results" /// refer to result values in the body of the function, not at call sites. void collectAllFormalResultsInTypeOrder(SILFunction &function, SmallVectorImpl &results); /// Given a function, gathers all of its direct results in an order defined by /// its result type. Note that "formal results" refer to result values in the /// body of the function, not at call sites. void collectAllDirectResultsInTypeOrder(SILFunction &function, SmallVectorImpl &results); /// Given a function call site, gathers all of its actual results (both direct /// and indirect) in an order defined by its result type. void collectAllActualResultsInTypeOrder( ApplyInst *ai, ArrayRef extractedDirectResults, SmallVectorImpl &results); /// For an `apply` instruction with active results, compute: /// - The results of the `apply` instruction, in type order. /// - The set of minimal parameter and result indices for differentiating the /// `apply` instruction. void collectMinimalIndicesForFunctionCall( ApplyInst *ai, SILAutoDiffIndices parentIndices, const DifferentiableActivityInfo &activityInfo, SmallVectorImpl &results, SmallVectorImpl ¶mIndices, SmallVectorImpl &resultIndices); /// Returns the underlying instruction for the given SILValue, if it exists, /// peering through function conversion instructions. template Inst *peerThroughFunctionConversions(SILValue value) { if (auto *inst = dyn_cast(value)) return inst; if (auto *cvi = dyn_cast(value)) return peerThroughFunctionConversions(cvi->getOperand()); if (auto *bbi = dyn_cast(value)) return peerThroughFunctionConversions(bbi->getOperand()); if (auto *tttfi = dyn_cast(value)) return peerThroughFunctionConversions(tttfi->getOperand()); if (auto *cfi = dyn_cast(value)) return peerThroughFunctionConversions(cfi->getOperand()); if (auto *pai = dyn_cast(value)) return peerThroughFunctionConversions(pai->getCallee()); return nullptr; } //===----------------------------------------------------------------------===// // Code emission utilities //===----------------------------------------------------------------------===// /// Given a range of elements, joins these into a single value. If there's /// exactly one element, returns that element. Otherwise, creates a tuple using /// a `tuple` instruction. SILValue joinElements(ArrayRef elements, SILBuilder &builder, SILLocation loc); /// Given a value, extracts all elements to `results` from this value if it has /// a tuple type. Otherwise, add this value directly to `results`. void extractAllElements(SILValue value, SILBuilder &builder, SmallVectorImpl &results); /// Emit a zero value into the given buffer access by calling /// `AdditiveArithmetic.zero`. The given type must conform to /// `AdditiveArithmetic`. void emitZeroIntoBuffer(SILBuilder &builder, CanType type, SILValue bufferAccess, SILLocation loc); //===----------------------------------------------------------------------===// // Utilities for looking up derivatives of functions //===----------------------------------------------------------------------===// /// Returns a differentiability witness (definition or declaration) exactly /// matching the specified indices. If none are found in the given `module`, /// returns `nullptr`. /// /// \param parameterIndices must be lowered to SIL. /// \param resultIndices must be lowered to SIL. SILDifferentiabilityWitness * getExactDifferentiabilityWitness(SILModule &module, SILFunction *original, IndexSubset *parameterIndices, IndexSubset *resultIndices); /// Finds the derivative configuration (from `@differentiable` and /// `@derivative` attributes) for `original` whose parameter indices are a /// minimal superset of the specified AST parameter indices. Returns `None` if /// no such configuration is found. /// /// \param parameterIndices must be lowered to SIL. /// \param minimalASTParameterIndices is an output parameter that is set to the /// AST indices of the minimal configuration, or to `nullptr` if no such /// configuration exists. Optional findMinimalDerivativeConfiguration(AbstractFunctionDecl *original, IndexSubset *parameterIndices, IndexSubset *&minimalASTParameterIndices); /// Returns a differentiability witness for `original` whose parameter indices /// are a minimal superset of the specified parameter indices and whose result /// indices match the given result indices, out of all /// differentiability witnesses that come from AST "@differentiable" or /// "@differentiating" attributes. /// /// This function never creates new differentiability witness definitions. /// However, this function may create new differentiability witness declarations /// referring to definitions in other modules when these witnesses have not yet /// been declared in the current module. /// /// \param module is the SILModule in which to get or create the witnesses. /// \param parameterIndices must be lowered to SIL. /// \param resultIndices must be lowered to SIL. SILDifferentiabilityWitness *getOrCreateMinimalASTDifferentiabilityWitness( SILModule &module, SILFunction *original, IndexSubset *parameterIndices, IndexSubset *resultIndices); } // end namespace autodiff /// Creates arguments in the entry block based on the function type. inline void createEntryArguments(SILFunction *f) { auto *entry = f->getEntryBlock(); auto conv = f->getConventions(); auto &ctx = f->getASTContext(); auto moduleDecl = f->getModule().getSwiftModule(); assert((entry->getNumArguments() == 0 || conv.getNumSILArguments() == 0) && "Entry already has arguments?!"); auto createFunctionArgument = [&](SILType type) { // Create a dummy parameter declaration. // Necessary to prevent crash during argument explosion optimization. auto loc = f->getLocation().getSourceLoc(); auto *decl = new (ctx) ParamDecl(loc, loc, Identifier(), loc, Identifier(), moduleDecl); decl->setSpecifier(ParamDecl::Specifier::Default); entry->createFunctionArgument(type, decl); }; // f->getLoweredFunctionType()->remap for (auto indResTy : conv.getIndirectSILResultTypes()) { if (indResTy.hasArchetype()) indResTy = indResTy.mapTypeOutOfContext(); createFunctionArgument(f->mapTypeIntoContext(indResTy).getAddressType()); // createFunctionArgument(indResTy.getAddressType()); } for (auto paramTy : conv.getParameterSILTypes()) { if (paramTy.hasArchetype()) paramTy = paramTy.mapTypeOutOfContext(); createFunctionArgument(f->mapTypeIntoContext(paramTy)); // createFunctionArgument(paramTy); } } /// Helper class for visiting basic blocks in post-order post-dominance order, /// based on a worklist algorithm. class PostOrderPostDominanceOrder { SmallVector buffer; PostOrderFunctionInfo *postOrderInfo; size_t srcIdx = 0; public: /// Constructor. /// \p root The root of the post-dominator tree. /// \p postOrderInfo The post-order info of the function. /// \p capacity Should be the number of basic blocks in the dominator tree to /// reduce memory allocation. PostOrderPostDominanceOrder(DominanceInfoNode *root, PostOrderFunctionInfo *postOrderInfo, int capacity = 0) : postOrderInfo(postOrderInfo) { buffer.reserve(capacity); buffer.push_back(root); } /// Get the next block from the worklist. DominanceInfoNode *getNext() { if (srcIdx == buffer.size()) return nullptr; return buffer[srcIdx++]; } /// Pushes the dominator children of a block onto the worklist in post-order. void pushChildren(DominanceInfoNode *node) { pushChildrenIf(node, [](SILBasicBlock *) { return true; }); } /// Conditionally pushes the dominator children of a block onto the worklist /// in post-order. template void pushChildrenIf(DominanceInfoNode *node, Pred pred) { SmallVector children; for (auto *child : *node) children.push_back(child); llvm::sort(children.begin(), children.end(), [&](DominanceInfoNode *n1, DominanceInfoNode *n2) { return postOrderInfo->getPONumber(n1->getBlock()) < postOrderInfo->getPONumber(n2->getBlock()); }); for (auto *child : children) { SILBasicBlock *childBB = child->getBlock(); if (pred(childBB)) buffer.push_back(child); } } }; /// Cloner that remaps types using the target function's generic environment. class BasicTypeSubstCloner final : public TypeSubstCloner { static SubstitutionMap getSubstitutionMap(SILFunction *target) { if (auto *targetGenEnv = target->getGenericEnvironment()) return targetGenEnv->getForwardingSubstitutionMap(); return SubstitutionMap(); } public: explicit BasicTypeSubstCloner(SILFunction *original, SILFunction *target) : TypeSubstCloner(*target, *original, getSubstitutionMap(target)) {} void postProcess(SILInstruction *orig, SILInstruction *cloned) { SILClonerWithScopes::postProcess(orig, cloned); } void cloneFunction() { auto &newFunction = Builder.getFunction(); auto *entry = newFunction.createBasicBlock(); createEntryArguments(&newFunction); SmallVector entryArguments(newFunction.getArguments().begin(), newFunction.getArguments().end()); cloneFunctionBody(&Original, entry, entryArguments); } }; } // end namespace swift #endif // SWIFT_SILOPTIMIZER_MANDATORY_DIFFERENTIATION_COMMON_H