//===--- Errors.cpp - Error reporting utilities ---------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Utilities for reporting errors to stderr, system console, and crash logs. // //===----------------------------------------------------------------------===// #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #pragma comment(lib, "User32.Lib") #include #endif #include #include #include #include #include #if defined(_WIN32) #include #endif #include #include "ImageInspection.h" #include "swift/Demangling/Demangle.h" #include "swift/Runtime/Atomic.h" #include "swift/Runtime/Debug.h" #include "swift/Runtime/Portability.h" #include "swift/Runtime/Win32.h" #include "swift/Threading/Errors.h" #include "swift/Threading/Mutex.h" #include "llvm/ADT/StringRef.h" #if defined(_MSC_VER) #include #else #include #endif #if __has_include() #include #endif #if SWIFT_STDLIB_HAS_ASL #include #elif defined(__ANDROID__) #include #endif #if defined(__ELF__) #include #endif #include #ifdef SWIFT_HAVE_CRASHREPORTERCLIENT #include #else static std::atomic kFatalErrorMessage; #endif // SWIFT_HAVE_CRASHREPORTERCLIENT #include "BacktracePrivate.h" #include namespace FatalErrorFlags { enum: uint32_t { ReportBacktrace = 1 << 0 }; } // end namespace FatalErrorFlags using namespace swift; #if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING && SWIFT_STDLIB_HAS_DLADDR static bool getSymbolNameAddr(llvm::StringRef libraryName, const SymbolInfo &syminfo, std::string &symbolName, uintptr_t &addrOut) { // If we failed to find a symbol and thus dlinfo->dli_sname is nullptr, we // need to use the hex address. bool hasUnavailableAddress = syminfo.getSymbolName() == nullptr; if (hasUnavailableAddress) { return false; } // Ok, now we know that we have some sort of "real" name. Set the outAddr. addrOut = uintptr_t(syminfo.getSymbolAddress()); // First lets try to demangle using cxxabi. If this fails, we will try to // demangle with swift. We are taking advantage of __cxa_demangle actually // providing failure status instead of just returning the original string like // swift demangle. #if defined(_WIN32) const char *szSymbolName = syminfo.getSymbolName(); // UnDecorateSymbolName() will not fail for Swift symbols, so detect them // up-front and let Swift handle them. if (!Demangle::isMangledName(szSymbolName)) { char szUndName[1024]; DWORD dwResult; dwResult = _swift_win32_withDbgHelpLibrary([&] (HANDLE hProcess) -> DWORD { if (!hProcess) { return 0; } DWORD dwFlags = UNDNAME_COMPLETE; #if !defined(_WIN64) dwFlags |= UNDNAME_32_BIT_DECODE; #endif return UnDecorateSymbolName(szSymbolName, szUndName, sizeof(szUndName), dwFlags); }); if (dwResult) { symbolName += szUndName; return true; } } #else int status; char *demangled = abi::__cxa_demangle(syminfo.getSymbolName(), 0, 0, &status); if (status == 0) { assert(demangled != nullptr && "If __cxa_demangle succeeds, demangled should never be nullptr"); symbolName += demangled; free(demangled); return true; } assert(demangled == nullptr && "If __cxa_demangle fails, demangled should be a nullptr"); #endif // Otherwise, try to demangle with swift. If swift fails to demangle, it will // just pass through the original output. symbolName = demangleSymbolAsString( syminfo.getSymbolName(), strlen(syminfo.getSymbolName()), Demangle::DemangleOptions::SimplifiedUIDemangleOptions()); return true; } #endif void swift::dumpStackTraceEntry(unsigned index, void *framePC, bool shortOutput) { #if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING && SWIFT_STDLIB_HAS_DLADDR auto syminfo = SymbolInfo::lookup(framePC); if (!syminfo.has_value()) { constexpr const char *format = "%-4u %-34s 0x%0.16tx\n"; fprintf(stderr, format, index, "", reinterpret_cast(framePC)); return; } // If SymbolInfo:lookup succeeded then fileName is non-null. Thus, we find the // library name here. Avoid using StringRef::rsplit because its definition // is not provided in the header so that it requires linking with // libSupport.a. llvm::StringRef libraryName{syminfo->getFilename()}; #ifdef _WIN32 libraryName = libraryName.substr(libraryName.rfind('\\')).substr(1); #else libraryName = libraryName.substr(libraryName.rfind('/')).substr(1); #endif // Next we get the symbol name that we are going to use in our backtrace. std::string symbolName; // We initialize symbolAddr to framePC so that if we succeed in finding the // symbol, we get the offset in the function and if we fail to find the symbol // we just get HexAddr + 0. uintptr_t symbolAddr = uintptr_t(framePC); bool foundSymbol = getSymbolNameAddr(libraryName, syminfo.value(), symbolName, symbolAddr); ptrdiff_t offset = 0; if (foundSymbol) { offset = ptrdiff_t(uintptr_t(framePC) - symbolAddr); } else { auto baseAddress = syminfo->getBaseAddress(); offset = ptrdiff_t(uintptr_t(framePC) - uintptr_t(baseAddress)); symbolAddr = uintptr_t(framePC); symbolName = ""; } const char *libraryNameStr = libraryName.data(); if (!libraryNameStr) libraryNameStr = ""; // We do not use %p here for our pointers since the format is implementation // defined. This makes it logically impossible to check the output. Forcing // hexadecimal solves this issue. // If the symbol is not available, we print out + offset // from the base address of where the image containing framePC is mapped. // This gives enough info to reconstruct identical debugging target after // this process terminates. if (shortOutput) { fprintf(stderr, "%s`%s + %td", libraryNameStr, symbolName.c_str(), offset); } else { constexpr const char *format = "%-4u %-34s 0x%0.16" PRIxPTR " %s + %td\n"; fprintf(stderr, format, index, libraryNameStr, symbolAddr, symbolName.c_str(), offset); } #else if (shortOutput) { fprintf(stderr, ""); } else { constexpr const char *format = "%-4u 0x%0.16tx\n"; fprintf(stderr, format, index, reinterpret_cast(framePC)); } #endif } #if defined(__ELF__) struct UnwindState { void **current; void **end; }; static _Unwind_Reason_Code SwiftUnwindFrame(struct _Unwind_Context *context, void *arg) { struct UnwindState *state = static_cast(arg); if (state->current == state->end) { return _URC_END_OF_STACK; } uintptr_t pc; #if defined(__arm__) // ARM r15 is PC. UNW_REG_PC is *not* the same value, and using that will // result in abnormal behaviour. _Unwind_VRS_Get(context, _UVRSC_CORE, 15, _UVRSD_UINT32, &pc); // Clear the ISA bit during the reporting. pc &= ~(uintptr_t)0x1; #else pc = _Unwind_GetIP(context); #endif if (pc) { *state->current++ = reinterpret_cast(pc); } return _URC_NO_REASON; } #endif SWIFT_ALWAYS_INLINE static bool withCurrentBacktraceImpl(std::function call) { #if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING constexpr unsigned maxSupportedStackDepth = 128; void *addrs[maxSupportedStackDepth]; #if defined(_WIN32) int symbolCount = CaptureStackBackTrace(0, maxSupportedStackDepth, addrs, NULL); #elif defined(__ELF__) struct UnwindState state = {&addrs[0], &addrs[maxSupportedStackDepth]}; _Unwind_Backtrace(SwiftUnwindFrame, &state); int symbolCount = state.current - addrs; #else int symbolCount = backtrace(addrs, maxSupportedStackDepth); #endif call(addrs, symbolCount); return true; #else return false; #endif } SWIFT_NOINLINE bool swift::withCurrentBacktrace(std::function call) { return withCurrentBacktraceImpl(call); } SWIFT_NOINLINE void swift::printCurrentBacktrace(unsigned framesToSkip) { bool success = withCurrentBacktraceImpl([&](void **addrs, int symbolCount) { for (int i = framesToSkip; i < symbolCount; ++i) { dumpStackTraceEntry(i - framesToSkip, addrs[i]); } }); if (!success) fprintf(stderr, "\n"); } // Report a message to any forthcoming crash log. static void reportOnCrash(uint32_t flags, const char *message) { #ifdef SWIFT_HAVE_CRASHREPORTERCLIENT char *oldMessage = nullptr; char *newMessage = nullptr; oldMessage = std::atomic_load_explicit( (volatile std::atomic *)&gCRAnnotations.message, SWIFT_MEMORY_ORDER_CONSUME); do { if (newMessage) { free(newMessage); newMessage = nullptr; } if (oldMessage) { swift_asprintf(&newMessage, "%s%s", oldMessage, message); } else { newMessage = strdup(message); } } while (!std::atomic_compare_exchange_strong_explicit( (volatile std::atomic *)&gCRAnnotations.message, &oldMessage, newMessage, std::memory_order_release, SWIFT_MEMORY_ORDER_CONSUME)); #else const char *previous = nullptr; char *current = nullptr; previous = std::atomic_load_explicit(&kFatalErrorMessage, SWIFT_MEMORY_ORDER_CONSUME); do { ::free(current); current = nullptr; if (previous) swift_asprintf(¤t, "%s%s", current, message); else #if defined(_WIN32) current = ::_strdup(message); #else current = ::strdup(message); #endif } while (!std::atomic_compare_exchange_strong_explicit(&kFatalErrorMessage, &previous, static_cast(current), std::memory_order_release, SWIFT_MEMORY_ORDER_CONSUME)); #endif // SWIFT_HAVE_CRASHREPORTERCLIENT } // Report a message to system console and stderr. static void reportNow(uint32_t flags, const char *message) { #if defined(_WIN32) #define STDERR_FILENO 2 _write(STDERR_FILENO, message, strlen(message)); #else fputs(message, stderr); fflush(stderr); #endif #if SWIFT_STDLIB_HAS_ASL #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecated-declarations" asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", message); #pragma clang diagnostic pop #elif defined(__ANDROID__) __android_log_print(ANDROID_LOG_FATAL, "SwiftRuntime", "%s", message); #endif #if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING if (flags & FatalErrorFlags::ReportBacktrace) { fputs("Current stack trace:\n", stderr); printCurrentBacktrace(); } #endif } SWIFT_NOINLINE SWIFT_RUNTIME_EXPORT void _swift_runtime_on_report(uintptr_t flags, const char *message, RuntimeErrorDetails *details) { // Do nothing. This function is meant to be used by the debugger. // The following is necessary to avoid calls from being optimized out. asm volatile("" // Do nothing. : // Output list, empty. : "r" (flags), "r" (message), "r" (details) // Input list. : // Clobber list, empty. ); } void swift::_swift_reportToDebugger(uintptr_t flags, const char *message, RuntimeErrorDetails *details) { _swift_runtime_on_report(flags, message, details); } bool swift::_swift_reportFatalErrorsToDebugger = true; bool swift::_swift_shouldReportFatalErrorsToDebugger() { return _swift_reportFatalErrorsToDebugger; } /// Report a fatal error to system console, stderr, and crash logs. /// Does not crash by itself. void swift::swift_reportError(uint32_t flags, const char *message) { #if defined(__APPLE__) && NDEBUG flags &= ~FatalErrorFlags::ReportBacktrace; #elif SWIFT_ENABLE_BACKTRACING // Disable fatalError backtraces if the backtracer is enabled if (runtime::backtrace::_swift_backtrace_isEnabled()) { flags &= ~FatalErrorFlags::ReportBacktrace; } #endif reportNow(flags, message); reportOnCrash(flags, message); } // Report a fatal error to system console, stderr, and crash logs, then abort. SWIFT_NORETURN void swift::fatalErrorv(uint32_t flags, const char *format, va_list args) { char *log; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wuninitialized" swift_vasprintf(&log, format, args); #pragma GCC diagnostic pop swift_reportError(flags, log); abort(); } // Report a fatal error to system console, stderr, and crash logs, then abort. SWIFT_NORETURN void swift::fatalError(uint32_t flags, const char *format, ...) { va_list args; va_start(args, format); fatalErrorv(flags, format, args); } // Report a warning to system console and stderr. void swift::warningv(uint32_t flags, const char *format, va_list args) { char *log; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wuninitialized" swift_vasprintf(&log, format, args); #pragma GCC diagnostic pop reportNow(flags, log); free(log); } // Report a warning to system console and stderr. void swift::warning(uint32_t flags, const char *format, ...) { va_list args; va_start(args, format); warningv(flags, format, args); } /// Report a warning to the system console and stderr. This is exported, /// unlike the swift::warning() function above. void swift::swift_reportWarning(uint32_t flags, const char *message) { warning(flags, "%s", message); } #if !defined(SWIFT_HAVE_CRASHREPORTERCLIENT) std::atomic *swift::swift_getFatalErrorMessageBuffer() { return &kFatalErrorMessage; } #endif // Crash when a deleted method is called by accident. SWIFT_RUNTIME_EXPORT SWIFT_NORETURN void swift_deletedMethodError() { swift::fatalError(/* flags = */ 0, "Fatal error: Call of deleted method\n"); } // Crash due to a retain count overflow. // FIXME: can't pass the object's address from InlineRefCounts without hacks void swift::swift_abortRetainOverflow() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: Object was retained too many times\n"); } // Crash due to an unowned retain count overflow. // FIXME: can't pass the object's address from InlineRefCounts without hacks void swift::swift_abortUnownedRetainOverflow() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: Object's unowned reference was retained too " "many times\n"); } // Crash due to a weak retain count overflow. // FIXME: can't pass the object's address from InlineRefCounts without hacks void swift::swift_abortWeakRetainOverflow() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: Object's weak reference was retained too " "many times\n"); } // Crash due to retain of a dead unowned reference. // FIXME: can't pass the object's address from InlineRefCounts without hacks void swift::swift_abortRetainUnowned(const void *object) { if (object) { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: Attempted to read an unowned reference but " "object %p was already deallocated\n", object); } else { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: Attempted to read an unowned reference but " "the object was already deallocated\n"); } } /// Halt due to enabling an already enabled dynamic replacement(). void swift::swift_abortDynamicReplacementEnabling() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: trying to enable a dynamic replacement " "that is already enabled\n"); } /// Halt due to disabling an already disabled dynamic replacement(). void swift::swift_abortDynamicReplacementDisabling() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: trying to disable a dynamic replacement " "that is already disabled\n"); } /// Halt due to a failure to allocate memory. void swift::swift_abortAllocationFailure(size_t size, size_t alignMask) { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Fatal error: failed to allocate %zu bytes of memory with " "alignment %zu\n", size, alignMask + 1); } /// Halt due to trying to use unicode data on platforms that don't have it. void swift::swift_abortDisabledUnicodeSupport() { swift::fatalError(FatalErrorFlags::ReportBacktrace, "Unicode normalization data is disabled on this " "platform\n"); } #if defined(_WIN32) // On Windows, exceptions may be swallowed in some cases and the // process may not terminate as expected on crashes. For example, // illegal instructions used by llvm.trap. Disable the exception // swallowing so that the error handling works as expected. __attribute__((__constructor__)) static void ConfigureExceptionPolicy() { BOOL Suppress = FALSE; SetUserObjectInformationA(GetCurrentProcess(), UOI_TIMERPROC_EXCEPTION_SUPPRESSION, &Suppress, sizeof(Suppress)); } #endif