//===--- GenMeta.cpp - IR generation for metadata constructs --------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements IR generation for type metadata constructs. // //===----------------------------------------------------------------------===// #include "swift/ABI/MetadataValues.h" #include "swift/AST/ASTContext.h" #include "swift/AST/ASTMangler.h" #include "swift/AST/CanTypeVisitor.h" #include "swift/AST/Decl.h" #include "swift/AST/Attr.h" #include "swift/AST/IRGenOptions.h" #include "swift/AST/SubstitutionMap.h" #include "swift/AST/Types.h" #include "swift/ClangImporter/ClangModule.h" #include "swift/IRGen/Linking.h" #include "swift/SIL/FormalLinkage.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/TypeLowering.h" #include "swift/Strings.h" #include "llvm/ADT/SmallString.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Module.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "Address.h" #include "Callee.h" #include "ClassMetadataVisitor.h" #include "ConstantBuilder.h" #include "EnumMetadataVisitor.h" #include "FixedTypeInfo.h" #include "ForeignClassMetadataVisitor.h" #include "GenArchetype.h" #include "GenClass.h" #include "GenDecl.h" #include "GenPoly.h" #include "GenStruct.h" #include "GenValueWitness.h" #include "HeapTypeInfo.h" #include "IRGenDebugInfo.h" #include "IRGenMangler.h" #include "IRGenModule.h" #include "MetadataLayout.h" #include "MetadataRequest.h" #include "ProtocolInfo.h" #include "ScalarTypeInfo.h" #include "StructLayout.h" #include "StructMetadataVisitor.h" #include "GenMeta.h" using namespace swift; using namespace irgen; static Address emitAddressOfMetadataSlotAtIndex(IRGenFunction &IGF, llvm::Value *metadata, int index, llvm::Type *objectTy) { // Require the metadata to be some type that we recognize as a // metadata pointer. assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy); return IGF.emitAddressAtOffset(metadata, Offset(index * IGF.IGM.getPointerSize()), objectTy, IGF.IGM.getPointerAlignment()); } /// Emit a load from the given metadata at a constant index. static llvm::LoadInst *emitLoadFromMetadataAtIndex(IRGenFunction &IGF, llvm::Value *metadata, int index, llvm::Type *objectTy, const llvm::Twine &suffix = "") { Address slot = emitAddressOfMetadataSlotAtIndex(IGF, metadata, index, objectTy); // Load. return IGF.Builder.CreateLoad(slot, metadata->getName() + suffix); } static Address createPointerSizedGEP(IRGenFunction &IGF, Address base, Size offset) { return IGF.Builder.CreateConstArrayGEP(base, IGF.IGM.getOffsetInWords(offset), offset); } void IRGenModule::setTrueConstGlobal(llvm::GlobalVariable *var) { switch (TargetInfo.OutputObjectFormat) { case llvm::Triple::UnknownObjectFormat: llvm_unreachable("unknown object format"); case llvm::Triple::MachO: var->setSection("__TEXT,__const"); break; case llvm::Triple::ELF: var->setSection(".rodata"); break; case llvm::Triple::COFF: var->setSection(".rdata"); break; case llvm::Triple::Wasm: llvm_unreachable("web assembly object format is not supported."); break; } } /*****************************************************************************/ /** Nominal Type Descriptor Emission *****************************************/ /*****************************************************************************/ template static Flags getMethodDescriptorFlags(ValueDecl *fn) { if (isa(fn)) return Flags(Flags::Kind::Init); // 'init' is considered static auto kind = [&] { auto accessor = dyn_cast(fn); if (!accessor) return Flags::Kind::Method; switch (accessor->getAccessorKind()) { case AccessorKind::IsGetter: return Flags::Kind::Getter; case AccessorKind::IsSetter: return Flags::Kind::Setter; case AccessorKind::IsMaterializeForSet: return Flags::Kind::MaterializeForSet; case AccessorKind::IsWillSet: case AccessorKind::IsDidSet: case AccessorKind::IsAddressor: case AccessorKind::IsMutableAddressor: llvm_unreachable("these accessors never appear in protocols or v-tables"); } llvm_unreachable("bad kind"); }(); return Flags(kind).withIsInstance(!fn->isStatic()); } namespace { template class ContextDescriptorBuilderBase { protected: Impl &asImpl() { return *static_cast(this); } IRGenModule &IGM; private: ConstantInitBuilder InitBuilder; protected: ConstantStructBuilder B; Optional GenericParamCount, GenericRequirementCount, GenericKeyArgumentCount, GenericExtraArgumentCount; unsigned NumGenericKeyArguments = 0; unsigned NumGenericExtraArguments = 0; ContextDescriptorBuilderBase(IRGenModule &IGM) : IGM(IGM), InitBuilder(IGM), B(InitBuilder.beginStruct()) { B.setPacked(true); } public: void layout() { asImpl().addFlags(); asImpl().addParent(); } void addFlags() { B.addInt32( ContextDescriptorFlags(asImpl().getContextKind(), asImpl().getGenericSignature() != nullptr, asImpl().isUniqueDescriptor(), asImpl().getVersion(), asImpl().getKindSpecificFlags()) .getIntValue()); } void addParent() { ConstantReference parent = asImpl().getParent(); if (parent.getValue()) { B.addRelativeAddress(parent); } else { B.addInt32(0); // null offset } } void addGenericSignature() { if (!asImpl().getGenericSignature()) return; asImpl().addGenericParametersHeader(); asImpl().addGenericParameters(); asImpl().addGenericRequirements(); asImpl().finishGenericParameters(); } void addGenericParametersHeader() { // Drop placeholders for the counts. We'll fill these in when we emit // the related sections. GenericParamCount = B.addPlaceholderWithSize(IGM.Int16Ty); GenericRequirementCount = B.addPlaceholderWithSize(IGM.Int16Ty); GenericKeyArgumentCount = B.addPlaceholderWithSize(IGM.Int16Ty); GenericExtraArgumentCount = B.addPlaceholderWithSize(IGM.Int16Ty); } void addGenericParameters() { GenericSignature *sig = asImpl().getGenericSignature(); assert(sig); auto canSig = sig->getCanonicalSignature(); for (auto param : canSig->getGenericParams()) { // Currently, there are only type parameters. The parameter is a key // argument if it hasn't been grounded by a same-type constraint. asImpl().addGenericParameter(GenericParamKind::Type, /*key argument*/ !canSig->isConcreteType(param), /*extra argument*/ false); } // Pad the structure up to four bytes for the following requirements. unsigned padding = (unsigned) -canSig->getGenericParams().size() & 3; for (unsigned i = 0; i < padding; ++i) B.addInt(IGM.Int8Ty, 0); // Fill in the parameter count. assert(canSig->getGenericParams().size() <= UINT16_MAX && "way too generic"); B.fillPlaceholderWithInt(*GenericParamCount, IGM.Int16Ty, canSig->getGenericParams().size()); } void addGenericParameter(GenericParamKind kind, bool isKeyArgument, bool isExtraArgument) { if (isKeyArgument) ++NumGenericKeyArguments; if (isExtraArgument) ++NumGenericExtraArguments; B.addInt(IGM.Int8Ty, GenericParamDescriptor(kind, isKeyArgument, isExtraArgument) .getIntValue()); } void addGenericRequirements() { auto metadata = irgen::addGenericRequirements(IGM, B, asImpl().getGenericSignature(), asImpl().getGenericSignature()->getRequirements()); // Fill in the final requirement count. assert(metadata.NumRequirements <= UINT16_MAX && "way too generic"); B.fillPlaceholderWithInt(*GenericRequirementCount, IGM.Int16Ty, metadata.NumRequirements); NumGenericKeyArguments += metadata.NumGenericKeyArguments; NumGenericExtraArguments += metadata.NumGenericExtraArguments; } void finishGenericParameters() { assert(NumGenericKeyArguments <= UINT16_MAX && NumGenericExtraArguments <= UINT16_MAX && "way too generic"); B.fillPlaceholderWithInt(*GenericKeyArgumentCount, IGM.Int16Ty, NumGenericKeyArguments); B.fillPlaceholderWithInt(*GenericExtraArgumentCount, IGM.Int16Ty, NumGenericExtraArguments); } uint8_t getVersion() { return 0; } uint16_t getKindSpecificFlags() { return 0; } // Subclasses should provide: // // bool isUniqueDescriptor(); // llvm::Constant *getParent(); // ContextDescriptorKind getContextKind(); // GenericSignature *getGenericSignature(); // void emit(); }; class ModuleContextDescriptorBuilder : public ContextDescriptorBuilderBase { using super = ContextDescriptorBuilderBase; ModuleDecl *M; public: ModuleContextDescriptorBuilder(IRGenModule &IGM, ModuleDecl *M) : super(IGM), M(M) {} void layout() { super::layout(); addName(); } void addName() { B.addRelativeAddress(IGM.getAddrOfGlobalString(M->getName().str(), /*willBeRelativelyAddressed*/ true)); } bool isUniqueDescriptor() { return false; } ConstantReference getParent() { return {nullptr, ConstantReference::Direct}; } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Module; } GenericSignature *getGenericSignature() { return nullptr; } void emit() { asImpl().layout(); auto addr = IGM.getAddrOfModuleContextDescriptor(M, B.finishAndCreateFuture()); auto var = cast(addr); var->setConstant(true); IGM.setTrueConstGlobal(var); } }; class ExtensionContextDescriptorBuilder : public ContextDescriptorBuilderBase { using super = ContextDescriptorBuilderBase; ExtensionDecl *E; public: ExtensionContextDescriptorBuilder(IRGenModule &IGM, ExtensionDecl *E) : super(IGM), E(E) {} void layout() { super::layout(); addExtendedContext(); addGenericSignature(); } void addExtendedContext() { auto string = getTypeRef(IGM, E->getSelfInterfaceType()->getCanonicalType()); B.addRelativeAddress(string); } ConstantReference getParent() { return {IGM.getAddrOfModuleContextDescriptor(E->getParentModule()), ConstantReference::Direct}; } bool isUniqueDescriptor() { // Extensions generated by the Clang importer will be emitted into any // binary that uses the Clang module. Otherwise, we can guarantee that // an extension (and any of its possible sub-contexts) belong to one // translation unit. return !isa(E->getModuleScopeContext()); } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Extension; } GenericSignature *getGenericSignature() { return E->getGenericSignature(); } void emit() { asImpl().layout(); auto addr = IGM.getAddrOfExtensionContextDescriptor(E, B.finishAndCreateFuture()); auto var = cast(addr); var->setConstant(true); IGM.setTrueConstGlobal(var); } }; class AnonymousContextDescriptorBuilder : public ContextDescriptorBuilderBase { using super = ContextDescriptorBuilderBase; DeclContext *DC; public: AnonymousContextDescriptorBuilder(IRGenModule &IGM, DeclContext *DC) : super(IGM), DC(DC) { } void layout() { super::layout(); } ConstantReference getParent() { return {IGM.getAddrOfModuleContextDescriptor(DC->getParentModule()), ConstantReference::Direct}; } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Anonymous; } GenericSignature *getGenericSignature() { return nullptr; } bool isUniqueDescriptor() { return true; } void emit() { asImpl().layout(); auto addr = IGM.getAddrOfAnonymousContextDescriptor(DC, B.finishAndCreateFuture()); auto var = cast(addr); var->setConstant(true); IGM.setTrueConstGlobal(var); } }; template class TypeContextDescriptorBuilderBase : public ContextDescriptorBuilderBase { using super = ContextDescriptorBuilderBase; protected: NominalTypeDecl *Type; RequireMetadata_t HasMetadata; using super::IGM; using super::B; using super::asImpl; public: using super::addGenericSignature; TypeContextDescriptorBuilderBase(IRGenModule &IGM, NominalTypeDecl *Type, RequireMetadata_t requireMetadata) : super(IGM), Type(Type), HasMetadata(requireMetadata) {} void layout() { super::layout(); asImpl().addName(); asImpl().addAccessFunction(); // ABI TODO: layout info should be superseded by remote mirror metadata asImpl().addLayoutInfo(); asImpl().addGenericSignature(); } void addName() { StringRef name; // Try to use the Clang name if there is one. if (auto namedClangDecl = Mangle::ASTMangler::getClangDeclForMangling(Type)) { name = namedClangDecl->getName(); } else { name = Type->getName().str(); } auto nameStr = IGM.getAddrOfGlobalString(name, /*willBeRelativelyAddressed*/ true); B.addRelativeAddress(nameStr); } void addAccessFunction() { // Don't emit the access function if we're only lazily emitting the // context descriptor. if (!HasMetadata) { B.addInt32(0); return; } llvm::Constant *accessFn = getRequiredTypeMetadataAccessFunction(IGM, Type, NotForDefinition); B.addRelativeAddressOrNull(accessFn); } ConstantReference getParent() { return IGM.getAddrOfParentContextDescriptor(Type); } GenericSignature *getGenericSignature() { return Type->getGenericSignature(); } /// Fill in the fields of a TypeGenericContextDescriptorHeader. void addGenericParametersHeader() { asImpl().addMetadataInstantiationCache(); asImpl().addMetadataInstantiationPattern(); super::addGenericParametersHeader(); } void addMetadataInstantiationPattern() { if (!HasMetadata) { B.addInt32(0); return; } auto pattern = IGM.getAddrOfTypeMetadataPattern(Type); B.addRelativeAddress(pattern); } void addMetadataInstantiationCache() { if (!HasMetadata) { B.addInt32(0); return; } auto cache = IGM.getAddrOfTypeMetadataInstantiationCache(Type, NotForDefinition); B.addRelativeAddress(cache); } bool isUniqueDescriptor() { return !isa(Type->getModuleScopeContext()); } llvm::Constant *emit() { asImpl().layout(); auto addr = IGM.getAddrOfTypeContextDescriptor(Type, HasMetadata, B.finishAndCreateFuture()); auto var = cast(addr); var->setConstant(true); IGM.setTrueConstGlobal(var); return var; } /// Flags to indicate Clang-imported declarations so we mangle them /// consistently at runtime. void getClangImportedFlags(TypeContextDescriptorFlags &flags) const { auto clangDecl = Mangle::ASTMangler::getClangDeclForMangling(Type); if (!clangDecl) return; if (isa(clangDecl)) { flags.setIsCTag(true); return; } if (isa(clangDecl) || isa(clangDecl)) { flags.setIsCTypedef(true); return; } return; } // Subclasses should provide: // ContextDescriptorKind getContextKind(); // void addLayoutInfo(); // ABI TODO: should be superseded }; /// Build a doubly-null-terminated list of field names. /// /// ABI TODO: This should be unnecessary when the fields that use it are /// superseded. template unsigned getFieldNameString(const ValueDeclRange &fields, llvm::SmallVectorImpl &out) { unsigned numFields = 0; { llvm::raw_svector_ostream os(out); for (ValueDecl *prop : fields) { os << prop->getBaseName() << '\0'; ++numFields; } // The final null terminator is provided by getAddrOfGlobalString. } return numFields; } /// Build the field type vector accessor for a nominal type. This is a /// function that lazily instantiates the type metadata for all of the /// types of the stored properties of an instance of a nominal type. /// /// ABI TODO: This should be unnecessary when the fields that use it are /// superseded. static void addFieldTypes(IRGenModule &IGM, ArrayRef fieldTypes) { IGM.addFieldTypes(fieldTypes); } /// Build a field type accessor for stored properties. /// /// ABI TODO: This should be unnecessary when the fields that use it are /// superseded. static void addFieldTypes(IRGenModule &IGM, NominalTypeDecl *type, NominalTypeDecl::StoredPropertyRange storedProperties) { SmallVector types; for (VarDecl *prop : storedProperties) { auto propertyType = type->mapTypeIntoContext(prop->getInterfaceType()) ->getCanonicalType(); types.push_back(propertyType); } addFieldTypes(IGM, types); } /// Build a case type accessor for enum payloads. /// /// ABI TODO: This should be unnecessary when the fields that use it are /// superseded. static void addFieldTypes(IRGenModule &IGM, ArrayRef enumElements) { SmallVector types; for (auto &elt : enumElements) { auto caseType = elt.decl->getParentEnum()->mapTypeIntoContext( elt.decl->getArgumentInterfaceType()) ->getCanonicalType(); types.push_back(caseType); } addFieldTypes(IGM, types); } class StructContextDescriptorBuilder : public TypeContextDescriptorBuilderBase { using super = TypeContextDescriptorBuilderBase; StructDecl *getType() { return cast(Type); } Size FieldVectorOffset; public: StructContextDescriptorBuilder(IRGenModule &IGM, StructDecl *Type, RequireMetadata_t requireMetadata) : super(IGM, Type, requireMetadata) { auto &layout = IGM.getMetadataLayout(getType()); FieldVectorOffset = layout.getFieldOffsetVectorOffset().getStatic(); } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Struct; } void addLayoutInfo() { auto properties = getType()->getStoredProperties(); // uint32_t NumFields; B.addInt32(std::distance(properties.begin(), properties.end())); // uint32_t FieldOffsetVectorOffset; B.addInt32(FieldVectorOffset / IGM.getPointerSize()); addFieldTypes(IGM, getType(), properties); } uint16_t getKindSpecificFlags() { TypeContextDescriptorFlags flags; flags.setIsReflectable(true); // struct always reflectable getClangImportedFlags(flags); return flags.getOpaqueValue(); } }; class EnumContextDescriptorBuilder : public TypeContextDescriptorBuilderBase { using super = TypeContextDescriptorBuilderBase; EnumDecl *getType() { return cast(Type); } Size PayloadSizeOffset; const EnumImplStrategy &Strategy; public: EnumContextDescriptorBuilder(IRGenModule &IGM, EnumDecl *Type, RequireMetadata_t requireMetadata) : super(IGM, Type, requireMetadata), Strategy(getEnumImplStrategy(IGM, getType()->getDeclaredTypeInContext()->getCanonicalType())) { auto &layout = IGM.getMetadataLayout(getType()); if (layout.hasPayloadSizeOffset()) PayloadSizeOffset = layout.getPayloadSizeOffset().getStatic(); } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Enum; } void addLayoutInfo() { // # payload cases in the low 24 bits, payload size offset in the high 8. unsigned numPayloads = Strategy.getElementsWithPayload().size(); assert(numPayloads < (1<<24) && "too many payload elements for runtime"); assert(PayloadSizeOffset % IGM.getPointerAlignment() == Size(0) && "payload size not word-aligned"); unsigned PayloadSizeOffsetInWords = PayloadSizeOffset / IGM.getPointerSize(); assert(PayloadSizeOffsetInWords < 0x100 && "payload size offset too far from address point for runtime"); // uint32_t NumPayloadCasesAndPayloadSizeOffset; B.addInt32(numPayloads | (PayloadSizeOffsetInWords << 24)); // uint32_t NumEmptyCases; B.addInt32(Strategy.getElementsWithNoPayload().size()); addFieldTypes(IGM, Strategy.getElementsWithPayload()); } uint16_t getKindSpecificFlags() { TypeContextDescriptorFlags flags; flags.setIsReflectable(Strategy.isReflectable()); getClangImportedFlags(flags); return flags.getOpaqueValue(); } }; class ClassContextDescriptorBuilder : public TypeContextDescriptorBuilderBase, public SILVTableVisitor { using super = TypeContextDescriptorBuilderBase; ClassDecl *getType() { return cast(Type); } // Non-null unless the type is foreign. ClassMetadataLayout *MetadataLayout = nullptr; Optional SuperClassRef; SILVTable *VTable = nullptr; unsigned VTableSize = 0; public: ClassContextDescriptorBuilder(IRGenModule &IGM, ClassDecl *Type, RequireMetadata_t requireMetadata) : super(IGM, Type, requireMetadata) { if (getType()->isForeign()) return; MetadataLayout = &IGM.getClassMetadataLayout(Type); if (auto superclassDecl = getType()->getSuperclassDecl()) { SuperClassRef = IGM.getTypeEntityReference(superclassDecl); } VTableSize = MetadataLayout->getVTableSize(); if (VTableSize) { VTable = IGM.getSILModule().lookUpVTable(getType()); } } void layout() { super::layout(); addVTable(); } ContextDescriptorKind getContextKind() { return ContextDescriptorKind::Class; } uint16_t getKindSpecificFlags() { TypeContextDescriptorFlags flags; // Classes are always reflectable. flags.setIsReflectable(true); if (!getType()->isForeign()) { if (MetadataLayout->areImmediateMembersNegative()) flags.class_setAreImmediateMembersNegative(true); if (VTableSize != 0) flags.class_setHasVTable(true); if (MetadataLayout->hasResilientSuperclass()) flags.class_setHasResilientSuperclass(true); } if (SuperClassRef) { flags.class_setSuperclassReferenceKind(SuperClassRef->getKind()); } getClangImportedFlags(flags); return flags.getOpaqueValue(); } Size getFieldVectorOffset() { if (!MetadataLayout) return Size(0); return (MetadataLayout->hasResilientSuperclass() ? MetadataLayout->getRelativeFieldOffsetVectorOffset() : MetadataLayout->getStaticFieldOffsetVectorOffset()); } void addVTable() { if (VTableSize == 0) return; auto offset = MetadataLayout->hasResilientSuperclass() ? MetadataLayout->getRelativeVTableOffset() : MetadataLayout->getStaticVTableOffset(); B.addInt32(offset / IGM.getPointerSize()); B.addInt32(VTableSize); addVTableEntries(getType()); } void addMethod(SILDeclRef fn) { assert(VTable && "no vtable?!"); auto descriptor = B.beginStruct(IGM.MethodDescriptorStructTy); // Classify the method. using Flags = MethodDescriptorFlags; auto flags = getMethodDescriptorFlags(fn.getDecl()); // Remember if the declaration was dynamic. if (fn.getDecl()->isDynamic()) flags = flags.withIsDynamic(true); // TODO: final? open? auto *dc = fn.getDecl()->getDeclContext(); assert(!isa(dc)); if (fn.getDecl()->getDeclContext() == getType()) { if (auto entry = VTable->getEntry(IGM.getSILModule(), fn)) { assert(entry->TheKind == SILVTable::Entry::Kind::Normal); auto *implFn = IGM.getAddrOfSILFunction(entry->Implementation, NotForDefinition); descriptor.addRelativeAddress(implFn); } else { // The method is removed by dead method elimination. // It should be never called. We add a pointer to an error function. descriptor.addRelativeAddressOrNull(nullptr); } } descriptor.addInt(IGM.Int32Ty, flags.getIntValue()); descriptor.finishAndAddTo(B); } void addMethodOverride(SILDeclRef baseRef, SILDeclRef declRef) {} void addPlaceholder(MissingMemberDecl *MMD) { llvm_unreachable("cannot generate metadata with placeholders in it"); } void addLayoutInfo() { auto properties = getType()->getStoredProperties(); // RelativeDirectPointer SuperClass; if (SuperClassRef) { B.addRelativeAddress(SuperClassRef->getValue()); } else { B.addInt32(0); } // union { // uint32_t MetadataNegativeSizeInWords; // RelativeDirectPointer // ResilientMetadataBounds; // }; if (!MetadataLayout) { // FIXME: do something meaningful for foreign classes? B.addInt32(0); } else if (!MetadataLayout->hasResilientSuperclass()) { B.addInt32(MetadataLayout->getSize().AddressPoint / IGM.getPointerSize()); } else { B.addRelativeAddress( IGM.getAddrOfClassMetadataBounds(getType(), NotForDefinition)); } // union { // uint32_t MetadataPositiveSizeInWords; // }; if (!MetadataLayout) { // FIXME: do something meaningful for foreign classes? B.addInt32(0); } else if (!MetadataLayout->hasResilientSuperclass()) { B.addInt32(MetadataLayout->getSize().getOffsetToEnd() / IGM.getPointerSize()); } else { B.addInt32(0); // currently unused } // uint32_t NumImmediateMembers; auto numImmediateMembers = (MetadataLayout ? MetadataLayout->getNumImmediateMembers() : 0); B.addInt32(numImmediateMembers); // uint32_t NumFields; B.addInt32(std::distance(properties.begin(), properties.end())); // uint32_t FieldOffsetVectorOffset; B.addInt32(getFieldVectorOffset() / IGM.getPointerSize()); addFieldTypes(IGM, getType(), properties); } }; } // end anonymous namespace static void eraseExistingTypeContextDescriptor(IRGenModule &IGM, NominalTypeDecl *type) { // We may have emitted a partial type context descriptor with some empty // fields, and then later discovered we're emitting complete metadata. // Remove existing definitions of the type context so that we can regenerate // a complete descriptor. auto entity = IGM.getAddrOfTypeContextDescriptor(type, DontRequireMetadata); entity = entity->stripPointerCasts(); auto existingContext = dyn_cast(entity); if (existingContext && !existingContext->isDeclaration()) { existingContext->setInitializer(nullptr); } } void irgen::emitLazyTypeContextDescriptor(IRGenModule &IGM, NominalTypeDecl *type, RequireMetadata_t requireMetadata) { eraseExistingTypeContextDescriptor(IGM, type); if (auto sd = dyn_cast(type)) { StructContextDescriptorBuilder(IGM, sd, requireMetadata).emit(); } else if (auto ed = dyn_cast(type)) { EnumContextDescriptorBuilder(IGM, ed, requireMetadata).emit(); } else if (auto cd = dyn_cast(type)) { ClassContextDescriptorBuilder(IGM, cd, requireMetadata).emit(); } else { llvm_unreachable("type does not have a context descriptor"); } } void irgen::emitLazyTypeMetadata(IRGenModule &IGM, NominalTypeDecl *type) { eraseExistingTypeContextDescriptor(IGM, type); if (auto sd = dyn_cast(type)) { return emitStructMetadata(IGM, sd); } else if (auto ed = dyn_cast(type)) { emitEnumMetadata(IGM, ed); } else if (auto pd = dyn_cast(type)) { IGM.emitProtocolDecl(pd); } else { llvm_unreachable("should not have enqueued a class decl here!"); } } llvm::Constant * IRGenModule::getAddrOfSharedContextDescriptor(LinkEntity entity, ConstantInit definition, llvm::function_ref emit) { if (!definition) { // Generate the definition if it hasn't been generated yet. auto existing = GlobalVars.find(entity); if (existing == GlobalVars.end() || !existing->second || cast(existing->second)->isDeclaration()) { // In some cases we have multiple declarations in the AST that end up // with the same context mangling (a clang module and its overlay, // equivalent extensions, etc.). These can share a context descriptor // at runtime. auto mangledName = entity.mangleAsString(); if (auto otherDefinition = Module.getGlobalVariable(mangledName)) { GlobalVars.insert({entity, otherDefinition}); return otherDefinition; } // Otherwise, emit the descriptor. emit(); } } return getAddrOfLLVMVariable(entity, Alignment(4), definition, TypeContextDescriptorTy, DebugTypeInfo()); } llvm::Constant * IRGenModule::getAddrOfModuleContextDescriptor(ModuleDecl *D, ConstantInit definition) { auto entity = LinkEntity::forModuleDescriptor(D); return getAddrOfSharedContextDescriptor(entity, definition, [&]{ ModuleContextDescriptorBuilder(*this, D).emit(); }); } llvm::Constant * IRGenModule::getAddrOfObjCModuleContextDescriptor() { if (!ObjCModule) ObjCModule = ModuleDecl::create( Context.getIdentifier(MANGLING_MODULE_OBJC), Context); return getAddrOfModuleContextDescriptor(ObjCModule); } llvm::Constant * IRGenModule::getAddrOfClangImporterModuleContextDescriptor() { if (!ClangImporterModule) ClangImporterModule = ModuleDecl::create( Context.getIdentifier(MANGLING_MODULE_CLANG_IMPORTER), Context); return getAddrOfModuleContextDescriptor(ClangImporterModule); } llvm::Constant * IRGenModule::getAddrOfExtensionContextDescriptor(ExtensionDecl *ED, ConstantInit definition) { auto entity = LinkEntity::forExtensionDescriptor(ED); return getAddrOfSharedContextDescriptor(entity, definition, [&]{ ExtensionContextDescriptorBuilder(*this, ED).emit(); }); } llvm::Constant * IRGenModule::getAddrOfAnonymousContextDescriptor(DeclContext *DC, ConstantInit definition) { auto entity = LinkEntity::forAnonymousDescriptor(DC); return getAddrOfSharedContextDescriptor(entity, definition, [&]{ AnonymousContextDescriptorBuilder(*this, DC).emit(); }); } void IRGenModule::addFieldTypes(ArrayRef fieldTypes) { IRGen.addFieldTypes(fieldTypes, this); } /*****************************************************************************/ /** Metadata Emission ********************************************************/ /*****************************************************************************/ namespace { /// An adapter class which turns a metadata layout class into a /// generic metadata layout class. template class GenericMetadataBuilderBase : public Base { using super = Base; struct FillOp { CanType Type; Optional Conformance; }; protected: using super::IGM; using super::asImpl; using super::Target; using super::B; /// Set to true if the metadata record for the generic type has fields /// outside of the generic parameter vector. bool HasDependentMetadata = false; /// Set to true if the value witness table for the generic type is dependent /// on its generic parameters. Implies HasDependentMetadata. bool HasDependentVWT = false; template GenericMetadataBuilderBase(IRGenModule &IGM, T &&...args) : super(IGM, std::forward(args)...) {} /// Emit the instantiation cache variable for the template. void emitInstantiationCache() { auto cache = cast( IGM.getAddrOfTypeMetadataInstantiationCache(Target, ForDefinition)); auto init = llvm::ConstantAggregateZero::get(cache->getValueType()); cache->setInitializer(init); } /// Emit the create function for the template. void emitInstantiationFunction() { // using MetadataInstantiator = // Metadata *(TypeContextDescriptor *type, // const void * const *arguments, // const GenericMetadataPattern *pattern); llvm::Function *f = IGM.getAddrOfTypeMetadataInstantiationFunction(Target, ForDefinition); f->setAttributes(IGM.constructInitialAttributes()); IRGenFunction IGF(IGM, f); // Skip instrumentation when building for TSan to avoid false positives. // The synchronization for this happens in the Runtime and we do not see it. if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread) f->removeFnAttr(llvm::Attribute::SanitizeThread); if (IGM.DebugInfo) IGM.DebugInfo->emitArtificialFunction(IGF, f); Explosion params = IGF.collectParameters(); llvm::Value *descriptor = params.claimNext(); llvm::Value *args = params.claimNext(); llvm::Value *templatePointer = params.claimNext(); // Bind the generic arguments. if (Target->isGenericContext()) { Address argsArray(args, IGM.getPointerAlignment()); emitPolymorphicParametersFromArray(IGF, Target, argsArray, MetadataState::Abstract); } // Allocate the metadata. llvm::Value *metadata = asImpl().emitAllocateMetadata(IGF, descriptor, args, templatePointer); IGF.Builder.CreateRet(metadata); } void emitCompletionFunction() { // using MetadataCompleter = // MetadataDependency(Metadata *type, // MetadataCompletionContext *context, // const GenericMetadataPattern *pattern); llvm::Function *f = IGM.getAddrOfTypeMetadataCompletionFunction(Target, ForDefinition); f->setAttributes(IGM.constructInitialAttributes()); IRGenFunction IGF(IGM, f); // Skip instrumentation when building for TSan to avoid false positives. // The synchronization for this happens in the Runtime and we do not see it. if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread) f->removeFnAttr(llvm::Attribute::SanitizeThread); if (IGM.DebugInfo) IGM.DebugInfo->emitArtificialFunction(IGF, f); Explosion params = IGF.collectParameters(); llvm::Value *metadata = params.claimNext(); llvm::Value *context = params.claimNext(); llvm::Value *templatePointer = params.claimNext(); (void) context; (void) templatePointer; // Bind the generic arguments. // FIXME: this will be problematic if we ever try to bind superclass // types from type metadata! if (Target->isGenericContext()) { auto type = Target->getDeclaredTypeInContext()->getCanonicalType(); IGF.bindLocalTypeDataFromTypeMetadata(type, IsExact, metadata, MetadataState::Abstract); } // A dependent VWT means that we have dependent metadata. if (HasDependentVWT) HasDependentMetadata = true; MetadataDependencyCollector collector; if (HasDependentMetadata) { asImpl().emitInitializeMetadata(IGF, metadata, false, &collector); } // The metadata is now complete. Finalize any metadata dependencies // we may have collected. auto dependency = collector.finish(IGF); auto returnValue = dependency.combine(IGF); IGF.Builder.CreateRet(returnValue); } /// The information necessary to fill in a GenericMetadataPartialPattern /// structure. struct PartialPattern { llvm::Constant *Data; Size DataOffset; Size DataSize; }; void addPartialPattern(PartialPattern pattern) { // RelativeDirectPointer Pattern; B.addRelativeAddress(pattern.Data); // uint16_t OffsetInWords; B.addInt16(IGM.getOffsetInWords(pattern.DataOffset)); // uint16_t SizeInWords; B.addInt16(IGM.getOffsetInWords(pattern.DataSize)); } public: void createMetadataAccessFunction() { (void) getGenericTypeMetadataAccessFunction(IGM, Target, ForDefinition); } void layout() { asImpl().layoutHeader(); if (asImpl().hasExtraDataPattern()) { asImpl().addExtraDataPattern(); } // Immediate-members pattern. This is only valid for classes. if (asImpl().hasImmediateMembersPattern()) { asImpl().addImmediateMembersPattern(); } // We're done with the pattern now. #ifndef NDEBUG auto finalOffset = B.getNextOffsetFromGlobal(); #endif asImpl().emitInstantiationDefinitions(); assert(finalOffset == B.getNextOffsetFromGlobal() && "emitInstantiationDefinitions added members to the pattern!"); } // Emit the fields of GenericMetadataPattern. void layoutHeader() { // RelativePointer InstantiationFunction; asImpl().addInstantiationFunction(); // RelativePointer CompletionFunction; asImpl().addCompletionFunction(); // ClassMetadataPatternFlags PatternFlags; asImpl().addPatternFlags(); } void addInstantiationFunction() { auto function = IGM.getAddrOfTypeMetadataInstantiationFunction(Target, NotForDefinition); B.addRelativeAddress(function); } void addCompletionFunction() { if (!asImpl().hasCompletionFunction()) { B.addInt32(0); return; } auto function = IGM.getAddrOfTypeMetadataCompletionFunction(Target, NotForDefinition); B.addRelativeAddress(function); } void addPatternFlags() { GenericMetadataPatternFlags flags = asImpl().getPatternFlags(); B.addInt32(flags.getOpaqueValue()); } GenericMetadataPatternFlags getPatternFlags() { GenericMetadataPatternFlags flags; if (asImpl().hasExtraDataPattern()) flags.setHasExtraDataPattern(true); return flags; } bool hasExtraDataPattern() { return false; } void addExtraDataPattern() { asImpl().addPartialPattern(asImpl().buildExtraDataPattern()); } PartialPattern buildExtraDataPattern() { llvm_unreachable("no extra data pattern!"); } bool hasImmediateMembersPattern() { return false; } void addImmediateMembersPattern() { asImpl().addPartialPattern(asImpl().buildImmediateMembersPattern()); } PartialPattern buildImmediateMembersPattern() { llvm_unreachable("no immediate members pattern!"); } void emitInstantiationDefinitions() { // Force the emission of the nominal type descriptor, although we // don't use it yet. (void) asImpl().emitNominalTypeDescriptor(); // Emit the instantiation function. asImpl().emitInstantiationFunction(); // Emit the completion function. if (asImpl().hasCompletionFunction()) asImpl().emitCompletionFunction(); // Emit the instantiation cache. asImpl().emitInstantiationCache(); } }; template class GenericValueMetadataBuilderBase : public GenericMetadataBuilderBase { using super = GenericMetadataBuilderBase; protected: using super::IGM; using super::asImpl; using super::Target; using super::B; template GenericValueMetadataBuilderBase(IRGenModule &IGM, T &&...args) : super(IGM, std::forward(args)...) {} public: /// Emit the fields of a GenericValueMetadataPattern. void layoutHeader() { super::layoutHeader(); // RelativeIndirectablePointer ValueWitnesses; asImpl().addValueWitnessTable(); } GenericMetadataPatternFlags getPatternFlags() { auto flags = super::getPatternFlags(); flags.value_setMetadataKind(asImpl().getMetadataKind()); assert(!asImpl().hasImmediateMembersPattern()); return flags; } void addValueWitnessTable() { auto table = asImpl().emitValueWitnessTable(); B.addRelativeAddress(table); } }; } // end anonymous namespace static void emitInitializeFieldOffsetVector(IRGenFunction &IGF, SILType T, llvm::Value *metadata, bool isVWTMutable, MetadataDependencyCollector *collector) { auto *target = T.getNominalOrBoundGenericNominal(); llvm::Value *fieldVector = emitAddressOfFieldOffsetVector(IGF, metadata, target) .getAddress(); // Collect the stored properties of the type. llvm::SmallVector storedProperties; for (auto prop : target->getStoredProperties()) { storedProperties.push_back(prop); } // Fill out an array with the field type metadata records. Address fields = IGF.createAlloca( llvm::ArrayType::get(IGF.IGM.Int8PtrPtrTy, storedProperties.size()), IGF.IGM.getPointerAlignment(), "classFields"); IGF.Builder.CreateLifetimeStart(fields, IGF.IGM.getPointerSize() * storedProperties.size()); fields = IGF.Builder.CreateStructGEP(fields, 0, Size(0)); unsigned index = 0; for (auto prop : storedProperties) { auto propTy = T.getFieldType(prop, IGF.getSILModule()); llvm::Value *metadata = emitTypeLayoutRef(IGF, propTy, collector); Address field = IGF.Builder.CreateConstArrayGEP(fields, index, IGF.IGM.getPointerSize()); IGF.Builder.CreateStore(metadata, field); ++index; } // Ask the runtime to lay out the class. This can relocate it if it // wasn't allocated with swift_allocateGenericClassMetadata. auto numFields = IGF.IGM.getSize(Size(storedProperties.size())); if (isa(target)) { ClassLayoutFlags flags = ClassLayoutFlags::Swift5Algorithm; IGF.Builder.CreateCall(IGF.IGM.getInitClassMetadataFn(), {metadata, IGF.IGM.getSize(Size(uintptr_t(flags))), numFields, fields.getAddress(), fieldVector}); } else { assert(isa(target)); StructLayoutFlags flags = StructLayoutFlags::Swift5Algorithm; if (isVWTMutable) flags |= StructLayoutFlags::IsVWTMutable; IGF.Builder.CreateCall(IGF.IGM.getInitStructMetadataFn(), {metadata, IGF.IGM.getSize(Size(uintptr_t(flags))), numFields, fields.getAddress(), fieldVector}); } IGF.Builder.CreateLifetimeEnd(fields, IGF.IGM.getPointerSize() * storedProperties.size()); } // Classes namespace { /// Utility class for building member metadata for classes where the /// entire hierarchy is in the current resilience domain, and all stored /// properties have a fixed size. class FixedClassMemberBuilder { IRGenModule &IGM; ConstantStructBuilder &B; const StructLayout &Layout; const ClassLayout &FieldLayout; SILVTable *VTable; public: FixedClassMemberBuilder(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : IGM(IGM), B(builder), Layout(layout), FieldLayout(fieldLayout) { VTable = IGM.getSILModule().lookUpVTable(theClass); } void addFieldOffset(VarDecl *var) { unsigned fieldIndex = FieldLayout.getFieldIndex(var); auto &element = Layout.getElement(fieldIndex); assert(element.getKind() == ElementLayout::Kind::Fixed || element.getKind() == ElementLayout::Kind::Empty); B.addInt(IGM.SizeTy, element.getByteOffset().getValue()); } void addFieldOffsetPlaceholders(MissingMemberDecl *placeholder) { for (unsigned i = 0, e = placeholder->getNumberOfFieldOffsetVectorEntries(); i < e; ++i) { // Emit placeholder values for some number of stored properties we // know exist but aren't able to reference directly. B.addInt(IGM.SizeTy, 0); } } void addMethod(SILDeclRef fn) { // Find the vtable entry. assert(VTable && "no vtable?!"); auto entry = VTable->getEntry(IGM.getSILModule(), fn); // The class is fragile. Emit a direct reference to the vtable entry. if (entry) { B.add(IGM.getAddrOfSILFunction(entry->Implementation, NotForDefinition)); return; } // The method is removed by dead method elimination. // It should be never called. We add a pointer to an error function. B.addBitCast(IGM.getDeletedMethodErrorFn(), IGM.FunctionPtrTy); } void emitInitializeMethodOverrides(IRGenFunction &IGF, llvm::Value *metadata) {} void addGenericArgument(CanType argTy, ClassDecl *forClass) { B.addNullPointer(IGM.TypeMetadataPtrTy); } void addGenericWitnessTable(CanType argTy, ProtocolConformanceRef conf, ClassDecl *forClass) { B.addNullPointer(IGM.WitnessTablePtrTy); } }; /// Utility class for building member metadata for classes that inherit /// from a class in a different resilience domain, or have fields whose /// size is not known at compile time. class ResilientClassMemberBuilder { IRGenModule &IGM; SILVTable *VTable; public: ResilientClassMemberBuilder(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : IGM(IGM) { VTable = IGM.getSILModule().lookUpVTable(theClass); } void addFieldOffset(VarDecl *var) {} void addFieldOffsetPlaceholders(MissingMemberDecl *placeholder) {} void addMethod(SILDeclRef fn) {} // Update vtable entries for method overrides. The runtime copies in // the vtable from the superclass for us; we have to install method // overrides ourselves. void emitInitializeMethodOverrides(IRGenFunction &IGF, llvm::Value *metadata) { for (auto &entry : VTable->getEntries()) { if (entry.TheKind != SILVTable::Entry::Kind::Override) continue; auto fn = entry.Method; auto *classDecl = cast(fn.getDecl()->getDeclContext()); auto &layout = IGM.getClassMetadataLayout(classDecl); auto offset = layout.getMethodInfo(IGF, fn).getOffset(); auto slot = IGF.emitAddressAtOffset(metadata, offset, IGM.Int8PtrTy, IGM.getPointerAlignment()); auto *implFn = IGM.getAddrOfSILFunction(entry.Implementation, NotForDefinition); auto *value = IGF.Builder.CreateBitCast(implFn, IGM.Int8PtrTy); IGF.Builder.CreateStore(value, slot); } } void addGenericArgument(CanType argTy, ClassDecl *forClass) {} void addGenericWitnessTable(CanType argTy, ProtocolConformanceRef conf, ClassDecl *forClass) {} }; /// Base class for laying out class metadata. template class ClassMetadataBuilderBase : public ClassMetadataVisitor { using super = ClassMetadataVisitor; protected: using super::IGM; using super::Target; using super::asImpl; ConstantStructBuilder &B; const StructLayout &Layout; const ClassLayout &FieldLayout; ClassMetadataLayout &MetadataLayout; MemberBuilder Members; ClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : super(IGM, theClass), B(builder), Layout(layout), FieldLayout(fieldLayout), MetadataLayout(IGM.getClassMetadataLayout(theClass)), Members(IGM, theClass, builder, layout, fieldLayout) {} public: void noteResilientSuperclass() {} void noteStartOfImmediateMembers(ClassDecl *theClass) { if (theClass == Target) { emitClassMetadataBaseOffset(); } } /// Emit the base-offset variable for the class. void emitClassMetadataBaseOffset() { // Only classes defined in resilient modules, or those that have // a resilient superclass need this. if (!MetadataLayout.hasResilientSuperclass() && !IGM.isResilient(Target, ResilienceExpansion::Minimal)) { return; } auto *offsetAddr = IGM.getAddrOfClassMetadataBounds(Target, ForDefinition); auto *offsetVar = cast(offsetAddr); if (MetadataLayout.hasResilientSuperclass()) { // If the superclass is resilient to us, we have to compute and // initialize the global when we initialize the metadata. auto init = llvm::ConstantAggregateZero::get(offsetVar->getValueType()); offsetVar->setInitializer(init); offsetVar->setConstant(false); return; } // Otherwise, we know the offset at compile time, even if our // clients do not, so just emit a constant. auto &layout = IGM.getClassMetadataLayout(Target); auto immediateMembersOffset = layout.getStartOfImmediateMembers(); auto size = layout.getSize(); auto negativeSizeInWords = size.AddressPoint / IGM.getPointerSize(); auto positiveSizeInWords = size.getOffsetToEnd() / IGM.getPointerSize(); auto initTy = cast(offsetVar->getValueType()); auto *init = llvm::ConstantStruct::get(initTy, { llvm::ConstantInt::get(IGM.SizeTy, immediateMembersOffset.getValue()), llvm::ConstantInt::get(IGM.Int32Ty, negativeSizeInWords), llvm::ConstantInt::get(IGM.Int32Ty, positiveSizeInWords) }); offsetVar->setInitializer(init); offsetVar->setConstant(true); } /// The 'metadata flags' field in a class is actually a pointer to /// the metaclass object for the class. /// /// NONAPPLE: This is only really required for ObjC interop; maybe /// suppress this for classes that don't need to be exposed to /// ObjC, e.g. for non-Apple platforms? void addMetadataFlags() { static_assert(unsigned(MetadataKind::Class) == 0, "class metadata kind is non-zero?"); if (IGM.ObjCInterop) { // Get the metaclass pointer as an intptr_t. auto metaclass = IGM.getAddrOfMetaclassObject(Target, NotForDefinition); auto flags = llvm::ConstantExpr::getPtrToInt(metaclass, IGM.MetadataKindTy); B.add(flags); } else { // On non-objc platforms just fill it with a null, there // is no Objective-C metaclass. // FIXME: Remove this to save metadata space. // rdar://problem/18801263 B.addInt(IGM.MetadataKindTy, unsigned(MetadataKind::Class)); } } /// The runtime provides a value witness table for Builtin.NativeObject. void addValueWitnessTable() { ClassDecl *cls = Target; auto type = (cls->checkObjCAncestry() != ObjCClassKind::NonObjC ? IGM.Context.TheUnknownObjectType : IGM.Context.TheNativeObjectType); auto wtable = IGM.getAddrOfValueWitnessTable(type); B.add(wtable); } void addDestructorFunction() { if (auto ptr = getAddrOfDestructorFunction()) { B.add(*ptr); } else { // In case the optimizer removed the function. See comment in // addMethod(). B.addNullPointer(IGM.FunctionPtrTy); } } Optional getAddrOfDestructorFunction() { auto dtorRef = SILDeclRef(Target->getDestructor(), SILDeclRef::Kind::Deallocator); SILFunction *dtorFunc = IGM.getSILModule().lookUpFunction(dtorRef); if (!dtorFunc) return llvm::None; return IGM.getAddrOfSILFunction(dtorFunc, NotForDefinition); } void addNominalTypeDescriptor() { auto descriptor = asImpl().emitNominalTypeDescriptor(); B.add(descriptor); } llvm::Constant *emitNominalTypeDescriptor() { return ClassContextDescriptorBuilder(IGM, Target, RequireMetadata).emit(); } void addIVarDestroyer() { auto dtorFunc = getAddrOfIVarDestroyer(); if (dtorFunc) { B.add(*dtorFunc); } else { B.addNullPointer(IGM.FunctionPtrTy); } } Optional getAddrOfIVarDestroyer() { return IGM.getAddrOfIVarInitDestroy(Target, /*isDestroyer=*/ true, /*isForeign=*/ false, NotForDefinition); } bool addReferenceToHeapMetadata(CanType type, bool allowUninitialized) { if (llvm::Constant *metadata = tryEmitConstantHeapMetadataRef(IGM, type, allowUninitialized)) { B.add(metadata); return true; } else { // Leave a null pointer placeholder to be filled at runtime B.addNullPointer(IGM.TypeMetadataPtrTy); return false; } } void addClassFlags() { auto flags = ClassFlags(); #if !SWIFT_DARWIN_ENABLE_STABLE_ABI_BIT // FIXME: Remove this after enabling stable ABI. // This bit is NOT conditioned on UseDarwinPreStableABIBit. flags |= ClassFlags::IsSwiftPreStableABI; #endif // Set a flag if the class uses Swift refcounting. auto type = Target->getDeclaredType()->getCanonicalType(); if (getReferenceCountingForType(IGM, type) == ReferenceCounting::Native) { flags |= ClassFlags::UsesSwiftRefcounting; } // Set a flag if the class has a custom ObjC name. DeclAttributes attrs = Target->getAttrs(); if (auto objc = attrs.getAttribute()) { if (objc->getName()) flags |= ClassFlags::HasCustomObjCName; } if (attrs.hasAttribute()) flags |= ClassFlags::HasCustomObjCName; B.addInt32((uint32_t) flags); } void addInstanceAddressPoint() { // Right now, we never allocate fields before the address point. B.addInt32(0); } void addInstanceSize() { if (llvm::Constant *size = tryEmitClassConstantFragileInstanceSize(IGM, Target)) { // We only support a maximum 32-bit instance size. if (IGM.SizeTy != IGM.Int32Ty) size = llvm::ConstantExpr::getTrunc(size, IGM.Int32Ty); B.add(size); } else { // Leave a zero placeholder to be filled at runtime B.addInt32(0); } } void addInstanceAlignMask() { if (llvm::Constant *align = tryEmitClassConstantFragileInstanceAlignMask(IGM, Target)) { if (IGM.SizeTy != IGM.Int16Ty) align = llvm::ConstantExpr::getTrunc(align, IGM.Int16Ty); B.add(align); } else { // Leave a zero placeholder to be filled at runtime B.addInt16(0); } } void addRuntimeReservedBits() { B.addInt16(0); } void addClassSize() { auto size = MetadataLayout.getSize(); B.addInt32(size.FullSize.getValue()); } void addClassAddressPoint() { // FIXME: Wrong auto size = MetadataLayout.getSize(); B.addInt32(size.AddressPoint.getValue()); } void addClassCacheData() { // We initially fill in these fields with addresses taken from // the ObjC runtime. // FIXME: Remove null data altogether rdar://problem/18801263 B.add(IGM.getObjCEmptyCachePtr()); B.add(IGM.getObjCEmptyVTablePtr()); } void addClassDataPointer() { if (!IGM.ObjCInterop) { // with no Objective-C runtime, just give an empty pointer with the // swift bit set. // FIXME: Remove null data altogether rdar://problem/18801263 B.addInt(IGM.IntPtrTy, 1); return; } // Derive the RO-data. llvm::Constant *data = emitClassPrivateData(IGM, Target); // Set a low bit to indicate this class has Swift metadata. auto bit = llvm::ConstantInt::get(IGM.IntPtrTy, IGM.UseDarwinPreStableABIBit ? 1 : 2); // Emit data + bit. data = llvm::ConstantExpr::getPtrToInt(data, IGM.IntPtrTy); data = llvm::ConstantExpr::getAdd(data, bit); B.add(data); } void addFieldOffset(VarDecl *var) { Members.addFieldOffset(var); } void addFieldOffsetPlaceholders(MissingMemberDecl *placeholder) { Members.addFieldOffsetPlaceholders(placeholder); } void addMethod(SILDeclRef fn) { Members.addMethod(fn); } void addPlaceholder(MissingMemberDecl *m) { assert(m->getNumberOfVTableEntries() == 0 && "cannot generate metadata with placeholders in it"); } void addMethodOverride(SILDeclRef baseRef, SILDeclRef declRef) {} void addGenericArgument(CanType argTy, ClassDecl *forClass) { Members.addGenericArgument(argTy, forClass); } void addGenericWitnessTable(CanType argTy, ProtocolConformanceRef conf, ClassDecl *forClass) { Members.addGenericWitnessTable(argTy, conf, forClass); } protected: llvm::Value *emitFinishIdempotentInitialization(IRGenFunction &IGF, llvm::Value *metadata) { if (IGF.IGM.ObjCInterop) { metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.ObjCClassPtrTy); metadata = IGF.Builder.CreateCall(IGF.IGM.getGetInitializedObjCClassFn(), metadata); metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.TypeMetadataPtrTy); } return metadata; } llvm::Value *emitFinishInitializationOfClassMetadata(IRGenFunction &IGF, llvm::Value *metadata, MetadataDependencyCollector *collector) { if (doesClassMetadataRequireDynamicInitialization(IGF.IGM, Target)) { // We need to: // - fill out the subclass's field offset vector // - copy field offsets and generic arguments from higher in the // class hierarchy auto classTy = Target->getDeclaredTypeInContext()->getCanonicalType(); auto loweredClassTy = IGF.IGM.getLoweredType(classTy); emitInitializeFieldOffsetVector(IGF, loweredClassTy, metadata, /*VWT is mutable*/ false, collector); // Realizing the class with the ObjC runtime will copy back to the // field offset globals for us; but if ObjC interop is disabled, we // have to do that ourselves, assuming we didn't just emit them all // correctly in the first place. if (!IGF.IGM.ObjCInterop) emitInitializeFieldOffsets(IGF, metadata); } else { // Otherwise, all we need to do is register with the ObjC runtime. metadata = emitFinishIdempotentInitialization(IGF, metadata); } emitFieldOffsetGlobals(); emitInitializeMethodOverrides(IGF, metadata); return metadata; } /// Materialize type metadata for the given type and store it into the /// superclass field of the given metadata. void emitStoreOfSuperclass(IRGenFunction &IGF, CanType superclassType, llvm::Value *metadata, MetadataDependencyCollector *collector) { auto request = DynamicMetadataRequest::getNonBlocking( MetadataState::NonTransitiveComplete, collector); llvm::Value *superMetadata = emitClassHeapMetadataRef(IGF, superclassType, MetadataValueType::TypeMetadata, request, /*allowUninit*/ false); Address superField = emitAddressOfSuperclassRefInClassMetadata(IGF, metadata); superField = IGF.Builder.CreateElementBitCast(superField, IGM.TypeMetadataPtrTy); IGF.Builder.CreateStore(superMetadata, superField); } // Update vtable entries for method overrides. The runtime copies in // the vtable from the superclass for us; we have to install method // overrides ourselves. void emitInitializeMethodOverrides(IRGenFunction &IGF, llvm::Value *metadata) { Members.emitInitializeMethodOverrides(IGF, metadata); } // The Objective-C runtime will copy field offsets from the field offset // vector into field offset globals for us, if present. If there's no // Objective-C runtime, we have to do this ourselves. void emitInitializeFieldOffsets(IRGenFunction &IGF, llvm::Value *metadata) { for (auto prop : Target->getStoredProperties()) { unsigned fieldIndex = FieldLayout.getFieldIndex(prop); auto access = FieldLayout.AllFieldAccesses[fieldIndex]; if (access == FieldAccess::NonConstantDirect) { Address offsetA = IGF.IGM.getAddrOfFieldOffset(prop, ForDefinition); // We can't use emitClassFieldOffset() here because that creates // an invariant load, which could be hoisted above the point // where the metadata becomes fully initialized auto slot = emitAddressOfClassFieldOffset(IGF, metadata, Target, prop); auto offsetVal = IGF.emitInvariantLoad(slot); IGF.Builder.CreateStore(offsetVal, offsetA); } } } void emitFieldOffsetGlobals() { for (auto prop : Target->getStoredProperties()) { unsigned fieldIndex = FieldLayout.getFieldIndex(prop); llvm::Constant *fieldOffsetOrZero; auto &element = Layout.getElement(fieldIndex); if (element.getKind() == ElementLayout::Kind::Fixed) { // Use a fixed offset if we have one. fieldOffsetOrZero = IGM.getSize(element.getByteOffset()); } else { // Otherwise, leave a placeholder for the runtime to populate at runtime. fieldOffsetOrZero = IGM.getSize(Size(0)); } auto access = FieldLayout.AllFieldAccesses[fieldIndex]; switch (access) { case FieldAccess::ConstantDirect: case FieldAccess::NonConstantDirect: { // Emit a global variable storing the constant field offset. // If the superclass was imported from Objective-C, the offset // does not include the superclass size; we rely on the // Objective-C runtime sliding it down. // // TODO: Don't emit the symbol if field has a fixed offset and size // in all resilience domains auto offsetAddr = IGM.getAddrOfFieldOffset(prop, ForDefinition); auto offsetVar = cast(offsetAddr.getAddress()); offsetVar->setInitializer(fieldOffsetOrZero); // If we know the offset won't change, make it a constant. offsetVar->setConstant(access == FieldAccess::ConstantDirect); break; } case FieldAccess::ConstantIndirect: // No global variable is needed. break; } } } }; /// Base class for layout of non-generic class metadata. template class ConcreteClassMetadataBuilderBase : public ClassMetadataBuilderBase { using super = ClassMetadataBuilderBase; using super::IGM; using super::Target; using super::B; using super::addReferenceToHeapMetadata; using super::emitFinishInitializationOfClassMetadata; using super::emitFinishIdempotentInitialization; using super::emitFieldOffsetGlobals; bool HasUnfilledSuperclass = false; Size AddressPoint; public: ConcreteClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : super(IGM, theClass, builder, layout, fieldLayout) { } void noteAddressPoint() { super::noteAddressPoint(); AddressPoint = B.getNextOffsetFromGlobal(); } void addSuperClass() { // If this is a root class, use SwiftObject as our formal parent. if (!Target->hasSuperclass()) { // This is only required for ObjC interoperation. if (!IGM.ObjCInterop) { B.addNullPointer(IGM.TypeMetadataPtrTy); return; } // We have to do getAddrOfObjCClass ourselves here because // the ObjC runtime base needs to be ObjC-mangled but isn't // actually imported from a clang module. B.add(IGM.getAddrOfObjCClass( IGM.getObjCRuntimeBaseForSwiftRootClass(Target), NotForDefinition)); return; } Type superclassTy = Target->mapTypeIntoContext(Target->getSuperclass()); if (!addReferenceToHeapMetadata(superclassTy->getCanonicalType(), /*allowUninit*/ false)) { HasUnfilledSuperclass = true; } } bool canBeConstant() { // TODO: the metadata global can actually be constant in a very // special case: it's not a pattern, ObjC interoperation isn't // required, there are no class fields, and there is nothing that // needs to be runtime-adjusted. return false; } void createMetadataAccessFunction() { assert(!Target->isGenericContext()); auto type =cast(Target->getDeclaredType()->getCanonicalType()); (void) getTypeMetadataAccessFunction(IGM, type, ForDefinition, [&](IRGenFunction &IGF, DynamicMetadataRequest request, llvm::Constant *cacheVar) -> MetadataResponse { // There's an interesting special case where we can do the // initialization idempotently and thus avoid the need for a lock. if (!HasUnfilledSuperclass && !doesClassMetadataRequireDynamicInitialization(IGM, Target)) { emitFieldOffsetGlobals(); auto type = Target->getDeclaredType()->getCanonicalType(); auto metadata = IGF.IGM.getAddrOfTypeMetadata(type); return MetadataResponse::forComplete( emitFinishIdempotentInitialization(IGF, metadata)); } // Otherwise, use the generic path. return emitInPlaceTypeMetadataAccessFunctionBody(IGF, type, cacheVar, [&](IRGenFunction &IGF, llvm::Value *metadata) { return emitInPlaceMetadataInitialization(IGF, type, metadata); }); }); } private: llvm::Value *emitInPlaceMetadataInitialization(IRGenFunction &IGF, CanClassType type, llvm::Value *metadata) { // Many of the things done by generic instantiation are unnecessary here: // initializing the metaclass pointer // initializing the ro-data pointer MetadataDependencyCollector *collector = nullptr; // Initialize the superclass if we didn't do so as a constant. if (HasUnfilledSuperclass) { auto superclass = type->getSuperclass()->getCanonicalType(); this->emitStoreOfSuperclass(IGF, superclass, metadata, collector); } // Relocate the metadata if it has a superclass that is resilient // to us. if (doesClassMetadataRequireDynamicInitialization(IGM, Target)) { auto templateSize = IGM.getSize(Size(B.getNextOffsetFromGlobal())); auto numImmediateMembers = IGM.getSize( Size(IGM.getClassMetadataLayout(Target).getNumImmediateMembers())); metadata = IGF.Builder.CreateCall(IGF.IGM.getRelocateClassMetadataFn(), {metadata, templateSize, numImmediateMembers}); } return emitFinishInitializationOfClassMetadata(IGF, metadata, collector); } }; /// A builder for fixed-size, non-generic class metadata. class FixedClassMetadataBuilder : public ConcreteClassMetadataBuilderBase { using super = ConcreteClassMetadataBuilderBase; public: FixedClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : super(IGM, theClass, builder, layout, fieldLayout) {} }; /// A builder for resilient, non-generic class metadata. class ResilientClassMetadataBuilder : public ConcreteClassMetadataBuilderBase { using super = ConcreteClassMetadataBuilderBase; public: ResilientClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &builder, const StructLayout &layout, const ClassLayout &fieldLayout) : super(IGM, theClass, builder, layout, fieldLayout) {} }; /// A builder for GenericClassMetadataPattern objects. class GenericClassMetadataBuilder : public GenericMetadataBuilderBase> { using super = GenericMetadataBuilderBase; Optional ClassRODataOffset, MetaclassObjectOffset, MetaclassRODataOffset; public: GenericClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass, ConstantStructBuilder &B, const StructLayout &layout, const ClassLayout &fieldLayout) : super(IGM, theClass, B, layout, fieldLayout) { // We need special initialization of metadata objects to trick the ObjC // runtime into initializing them. HasDependentMetadata = true; } void layoutHeader() { super::layoutHeader(); // RelativePointer Destroy; addDestructorFunction(); // RelativePointer IVarDestroyer; addIVarDestroyer(); // ClassFlags Flags; addClassFlags(); // uint16_t ClassRODataOffset; if (IGM.ObjCInterop) ClassRODataOffset = B.addPlaceholderWithSize(IGM.Int16Ty); else B.addInt16(0); // uint16_t MetaclassObjectOffset; if (IGM.ObjCInterop) MetaclassObjectOffset = B.addPlaceholderWithSize(IGM.Int16Ty); else B.addInt16(0); // uint16_t MetadataRODataOffset; if (IGM.ObjCInterop) MetaclassRODataOffset = B.addPlaceholderWithSize(IGM.Int16Ty); else B.addInt16(0); // uint16_t Reserved; B.addInt16(0); } GenericMetadataPatternFlags getPatternFlags() { auto flags = super::getPatternFlags(); flags.class_setHasImmediateMembersPattern(hasImmediateMembersPattern()); return flags; } void emitInstantiationDefinitions() { // Emit the base-offset variable. emitClassMetadataBaseOffset(); super::emitInstantiationDefinitions(); } void addDestructorFunction() { auto function = getAddrOfDestructorFunction(); B.addRelativeAddressOrNull(function ? *function : nullptr); } void addIVarDestroyer() { auto function = getAddrOfIVarDestroyer(); B.addRelativeAddressOrNull(function ? *function : nullptr); } bool hasExtraDataPattern() { return IGM.ObjCInterop; } PartialPattern buildExtraDataPattern() { ConstantInitBuilder subBuilder(IGM); auto subB = subBuilder.beginStruct(); subB.setPacked(true); // The offset of the pattern bytes in the overall extra-data section. // Any bytes before this will be zeroed. Currently we don't take // advantage of this. Size patternOffset = Size(0); if (IGM.ObjCInterop) { // Add the metaclass object. B.fillPlaceholderWithInt(*MetaclassObjectOffset, IGM.Int16Ty, IGM.getOffsetInWords(patternOffset + subB.getNextOffsetFromGlobal())); addMetaclassObject(subB); // Add the RO-data objects. auto roDataPoints = emitClassPrivateDataFields(IGM, subB, Target); B.fillPlaceholderWithInt(*ClassRODataOffset, IGM.Int16Ty, IGM.getOffsetInWords(patternOffset + roDataPoints.first)); B.fillPlaceholderWithInt(*MetaclassRODataOffset, IGM.Int16Ty, IGM.getOffsetInWords(patternOffset + roDataPoints.second)); } auto patternSize = subB.getNextOffsetFromGlobal(); auto global = subB.finishAndCreateGlobal("", IGM.getPointerAlignment(), /*constant*/ true); return { global, patternOffset, patternSize }; } void addMetaclassObject(ConstantStructBuilder &B) { // isa ClassDecl *rootClass = getRootClassForMetaclass(IGM, Target); auto isa = IGM.getAddrOfMetaclassObject(rootClass, NotForDefinition); B.add(isa); // super, which is dependent if the superclass is generic B.addNullPointer(IGM.ObjCClassPtrTy); // cache B.add(IGM.getObjCEmptyCachePtr()); // vtable B.add(IGM.getObjCEmptyVTablePtr()); // rodata, which is always dependent B.addInt(IGM.IntPtrTy, 0); } bool hasImmediateMembersPattern() { // TODO: use the real field offsets if they're known statically. return false; } llvm::Value *emitAllocateMetadata(IRGenFunction &IGF, llvm::Value *descriptor, llvm::Value *arguments, llvm::Value *templatePointer) { auto metadata = IGF.Builder.CreateCall(IGM.getAllocateGenericClassMetadataFn(), {descriptor, arguments, templatePointer}); return metadata; } bool hasCompletionFunction() { // TODO: recognize cases where this is not required. // For example, under ObjCInterop mode we can move class realization // into the allocation phase if the superclass is trivial and there's // no layout to do. return true; } void emitInitializeMetadata(IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, MetadataDependencyCollector *collector) { assert(!HasDependentVWT && "class should never have dependent VWT"); // Install the superclass. The runtime takes care of installing // SwiftObject if we're building with ObjC interop and don't have // a formal superclass. if (Target->hasSuperclass()) { CanType superclass = Target->mapTypeIntoContext(Target->getSuperclass()) ->getCanonicalType(); emitStoreOfSuperclass(IGF, superclass, metadata, collector); } // We can assume that this never relocates the metadata because // it should have been allocated properly for the class. (void) emitFinishInitializationOfClassMetadata(IGF, metadata, collector); } }; } // end anonymous namespace /// Emit the ObjC-compatible class symbol for a class. /// Since LLVM and many system linkers do not have a notion of relative symbol /// references, we emit the symbol as a global asm block. static void emitObjCClassSymbol(IRGenModule &IGM, ClassDecl *classDecl, llvm::GlobalValue *metadata) { llvm::SmallString<32> classSymbol; LinkEntity::forObjCClass(classDecl).mangle(classSymbol); // Create the alias. auto *metadataTy = cast(metadata->getType()); // Create the alias. auto *alias = llvm::GlobalAlias::create(metadataTy->getElementType(), metadataTy->getAddressSpace(), metadata->getLinkage(), classSymbol.str(), metadata, IGM.getModule()); alias->setVisibility(metadata->getVisibility()); if (IGM.useDllStorage()) alias->setDLLStorageClass(metadata->getDLLStorageClass()); } /// Emit the type metadata or metadata template for a class. void irgen::emitClassMetadata(IRGenModule &IGM, ClassDecl *classDecl, const StructLayout &layout, const ClassLayout &fieldLayout) { assert(!classDecl->isForeign()); // Set up a dummy global to stand in for the metadata object while we produce // relative references. ConstantInitBuilder builder(IGM); auto init = builder.beginStruct(); init.setPacked(true); bool isPattern; bool canBeConstant; if (classDecl->isGenericContext()) { GenericClassMetadataBuilder builder(IGM, classDecl, init, layout, fieldLayout); builder.layout(); isPattern = true; canBeConstant = false; builder.createMetadataAccessFunction(); } else if (doesClassMetadataRequireDynamicInitialization(IGM, classDecl)) { ResilientClassMetadataBuilder builder(IGM, classDecl, init, layout, fieldLayout); builder.layout(); isPattern = false; canBeConstant = builder.canBeConstant(); builder.createMetadataAccessFunction(); } else { FixedClassMetadataBuilder builder(IGM, classDecl, init, layout, fieldLayout); builder.layout(); isPattern = false; canBeConstant = builder.canBeConstant(); builder.createMetadataAccessFunction(); } CanType declaredType = classDecl->getDeclaredType()->getCanonicalType(); // For now, all type metadata is directly stored. bool isIndirect = false; StringRef section{}; if (classDecl->isObjC() && IGM.TargetInfo.OutputObjectFormat == llvm::Triple::MachO) section = "__DATA,__objc_data, regular"; auto var = IGM.defineTypeMetadata(declaredType, isIndirect, isPattern, canBeConstant, init.finishAndCreateFuture(), section); // Add classes that don't require dynamic initialization to the // ObjC class list. if (IGM.ObjCInterop && !isPattern && !isIndirect && !doesClassMetadataRequireDynamicInitialization(IGM, classDecl)) { // Emit the ObjC class symbol to make the class visible to ObjC. if (classDecl->isObjC()) { emitObjCClassSymbol(IGM, classDecl, var); } IGM.addObjCClass(var, classDecl->getAttrs().hasAttribute()); } } llvm::Value *IRGenFunction::emitInvariantLoad(Address address, const llvm::Twine &name) { auto load = Builder.CreateLoad(address, name); setInvariantLoad(load); return load; } void IRGenFunction::setInvariantLoad(llvm::LoadInst *load) { load->setMetadata(IGM.InvariantMetadataID, IGM.InvariantNode); } void IRGenFunction::setDereferenceableLoad(llvm::LoadInst *load, unsigned size) { auto sizeConstant = llvm::ConstantInt::get(IGM.Int64Ty, size); auto sizeNode = llvm::MDNode::get(IGM.LLVMContext, llvm::ConstantAsMetadata::get(sizeConstant)); load->setMetadata(IGM.DereferenceableID, sizeNode); } /// Emit a load from the given metadata at a constant index. /// /// The load is marked invariant. This function should not be called /// on metadata objects that are in the process of being initialized. static llvm::LoadInst * emitInvariantLoadFromMetadataAtIndex(IRGenFunction &IGF, llvm::Value *metadata, int index, llvm::Type *objectTy, const Twine &suffix = Twine::createNull()) { auto result = emitLoadFromMetadataAtIndex(IGF, metadata, index, objectTy, suffix); IGF.setInvariantLoad(result); return result; } /// Given a type metadata pointer, load its value witness table. llvm::Value * IRGenFunction::emitValueWitnessTableRefForMetadata(llvm::Value *metadata) { auto witness = emitInvariantLoadFromMetadataAtIndex(*this, metadata, -1, IGM.WitnessTablePtrTy, ".valueWitnesses"); // A value witness table is dereferenceable to the number of value witness // pointers. // TODO: If we know the type statically has extra inhabitants, we know // there are more witnesses. auto numValueWitnesses = unsigned(ValueWitness::Last_RequiredValueWitness) + 1; setDereferenceableLoad(witness, IGM.getPointerSize().getValue() * numValueWitnesses); return witness; } /// Given a lowered SIL type, load a value witness table that represents its /// layout. llvm::Value * IRGenFunction::emitValueWitnessTableRef(SILType type, llvm::Value **metadataSlot) { return emitValueWitnessTableRef(type, MetadataState::Complete, metadataSlot); } llvm::Value * IRGenFunction::emitValueWitnessTableRef(SILType type, DynamicMetadataRequest request, llvm::Value **metadataSlot) { assert(request.canResponseStatusBeIgnored()); assert(!request.isStaticallyAbstract() && "cannot make an abstract request for a value witness table"); // See if we have a cached projection we can use. if (auto cached = tryGetLocalTypeDataForLayout(type, LocalTypeDataKind::forValueWitnessTable())) { if (metadataSlot) *metadataSlot = emitTypeMetadataRefForLayout(type, request); return cached; } auto metadata = emitTypeMetadataRefForLayout(type, request); if (metadataSlot) *metadataSlot = metadata; auto vwtable = emitValueWitnessTableRefForMetadata(metadata); setScopedLocalTypeDataForLayout(type, LocalTypeDataKind::forValueWitnessTable(), vwtable); return vwtable; } //===----------------------------------------------------------------------===// // Value types (structs and enums) //===----------------------------------------------------------------------===// static llvm::Value * emitInPlaceValueTypeMetadataInitialization(IRGenFunction &IGF, CanNominalType type, llvm::Value *metadata, MetadataDependencyCollector *collector) { // All the value types are basically similar, as are foreign types. assert(isa(type) || isa(type) || IGF.IGM.requiresForeignTypeMetadata(type)); // Set up the value witness table if it's dependent. SILType loweredType = IGF.IGM.getLoweredType(AbstractionPattern(type), type); auto &ti = IGF.IGM.getTypeInfo(loweredType); if (!ti.isFixedSize()) { loweredType = loweredType.getAddressType(); if (isa(type)) { emitInitializeFieldOffsetVector(IGF, loweredType, metadata, true, collector); } else if (isa(type)) { auto &strategy = getEnumImplStrategy(IGF.IGM, loweredType); strategy.initializeMetadata(IGF, metadata, true, loweredType, collector); } } return metadata; } /// Create an access function for the type metadata of the given /// non-generic nominal type. static void createInPlaceValueTypeMetadataAccessFunction(IRGenModule &IGM, NominalTypeDecl *typeDecl) { assert(!typeDecl->isGenericContext()); auto type = cast(typeDecl->getDeclaredType()->getCanonicalType()); (void) getTypeMetadataAccessFunction(IGM, type, ForDefinition, [&](IRGenFunction &IGF, DynamicMetadataRequest request, llvm::Constant *cacheVariable) { return emitInPlaceTypeMetadataAccessFunctionBody(IGF, type, cacheVariable, [&](IRGenFunction &IGF, llvm::Value *metadata) { MetadataDependencyCollector *collector = nullptr; // FIXME return emitInPlaceValueTypeMetadataInitialization(IGF, type, metadata, collector); }); }); } //===----------------------------------------------------------------------===// // Structs //===----------------------------------------------------------------------===// namespace { /// An adapter for laying out struct metadata. template class StructMetadataBuilderBase : public StructMetadataVisitor { using super = StructMetadataVisitor; protected: ConstantStructBuilder &B; using super::IGM; using super::Target; using super::asImpl; StructMetadataBuilderBase(IRGenModule &IGM, StructDecl *theStruct, ConstantStructBuilder &B) : super(IGM, theStruct), B(B) { } public: void noteStartOfTypeSpecificMembers() {} SILType getLoweredType() { return IGM.getLoweredType(Target->getDeclaredTypeInContext()); } MetadataKind getMetadataKind() { return MetadataKind::Struct; } void addMetadataFlags() { B.addInt(IGM.MetadataKindTy, unsigned(getMetadataKind())); } llvm::Constant *emitNominalTypeDescriptor() { auto descriptor = StructContextDescriptorBuilder(IGM, Target, RequireMetadata).emit(); return descriptor; } void addNominalTypeDescriptor() { B.add(emitNominalTypeDescriptor()); } llvm::Constant *emitValueWitnessTable() { auto type = this->Target->getDeclaredType()->getCanonicalType(); return irgen::emitValueWitnessTable(IGM, type, false); } void addValueWitnessTable() { B.add(emitValueWitnessTable()); } void addFieldOffset(VarDecl *var) { assert(var->hasStorage() && "storing field offset for computed property?!"); SILType structType = getLoweredType(); llvm::Constant *offset = emitPhysicalStructMemberFixedOffset(IGM, structType, var); // If we have a fixed offset, add it. Otherwise, leave zero as a // placeholder. if (offset) { B.add(offset); } else { asImpl().flagUnfilledFieldOffset(); B.addInt(IGM.Int32Ty, 0); } } void noteEndOfFieldOffsets() { B.addAlignmentPadding(super::IGM.getPointerAlignment()); } void addGenericArgument(CanType type) { B.addNullPointer(IGM.TypeMetadataPtrTy); } void addGenericWitnessTable(CanType type, ProtocolConformanceRef conf) { B.addNullPointer(IGM.WitnessTablePtrTy); } }; class StructMetadataBuilder : public StructMetadataBuilderBase { bool HasUnfilledFieldOffset = false; public: StructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct, ConstantStructBuilder &B) : StructMetadataBuilderBase(IGM, theStruct, B) {} void flagUnfilledFieldOffset() { HasUnfilledFieldOffset = true; } bool canBeConstant() { return !HasUnfilledFieldOffset; } void createMetadataAccessFunction() { createInPlaceValueTypeMetadataAccessFunction(IGM, Target); } }; /// Emit a value witness table for a fixed-layout generic type, or a null /// placeholder if the value witness table is dependent on generic parameters. /// Returns nullptr if the value witness table is dependent. static llvm::Constant * getValueWitnessTableForGenericValueType(IRGenModule &IGM, NominalTypeDecl *decl, bool &dependent) { CanType unboundType = decl->getDeclaredType()->getCanonicalType(); dependent = hasDependentValueWitnessTable(IGM, unboundType); return emitValueWitnessTable(IGM, unboundType, dependent); } /// A builder for metadata templates. class GenericStructMetadataBuilder : public GenericValueMetadataBuilderBase> { using super = GenericValueMetadataBuilderBase; public: GenericStructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct, ConstantStructBuilder &B) : super(IGM, theStruct, B) {} llvm::Value *emitAllocateMetadata(IRGenFunction &IGF, llvm::Value *descriptor, llvm::Value *arguments, llvm::Value *templatePointer) { auto &layout = IGM.getMetadataLayout(Target); auto extraSize = layout.getSize().getOffsetToEnd() - IGM.getOffsetOfStructTypeSpecificMetadataMembers(); auto extraSizeV = IGM.getSize(extraSize); return IGF.Builder.CreateCall(IGM.getAllocateGenericValueMetadataFn(), {descriptor, arguments, templatePointer, extraSizeV}); } void flagUnfilledFieldOffset() { // We just assume this might happen. } llvm::Constant *emitValueWitnessTable() { return getValueWitnessTableForGenericValueType(IGM, Target, HasDependentVWT); } bool hasExtraDataPattern() { auto &ti = IGM.getTypeInfo(getLoweredType()); if (!isa(ti)) return false; if (Target->getStoredProperties().empty()) return false; return true; } /// Fill in a constant field offset vector if possible. PartialPattern buildExtraDataPattern() { ConstantInitBuilder builder(IGM); auto init = builder.beginArray(IGM.Int32Ty); struct Scanner : StructMetadataScanner { SILType Type; ConstantArrayBuilder &B; Scanner(IRGenModule &IGM, StructDecl *target, SILType type, ConstantArrayBuilder &B) : StructMetadataScanner(IGM, target), Type(type), B(B) {} void addFieldOffset(VarDecl *field) { auto offset = emitPhysicalStructMemberFixedOffset(IGM, Type, field); if (offset) { B.add(offset); return; } assert(IGM.isKnownEmpty(Type.getFieldType(field, IGM.getSILModule()), ResilienceExpansion::Maximal)); B.addInt32(0); } void noteEndOfFieldOffsets() { B.addAlignmentPadding(IGM.getPointerAlignment()); } }; Scanner(IGM, Target, getLoweredType(), init).layout(); Size vectorSize = init.getNextOffsetFromGlobal(); auto global = init.finishAndCreateGlobal("", IGM.getPointerAlignment(), /*constant*/ true); auto &layout = IGM.getMetadataLayout(Target); return { global, layout.getFieldOffsetVectorOffset().getStatic() - IGM.getOffsetOfStructTypeSpecificMetadataMembers(), vectorSize }; } bool hasCompletionFunction() { return !isa(IGM.getTypeInfo(getLoweredType())); } void emitInitializeMetadata(IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, MetadataDependencyCollector *collector) { auto loweredTy = getLoweredType(); auto &fixedTI = IGM.getTypeInfo(loweredTy); if (isa(fixedTI)) return; emitInitializeFieldOffsetVector(IGF, loweredTy, metadata, isVWTMutable, collector); } }; } // end anonymous namespace /// Emit the type metadata or metadata template for a struct. void irgen::emitStructMetadata(IRGenModule &IGM, StructDecl *structDecl) { // TODO: structs nested within generic types ConstantInitBuilder initBuilder(IGM); auto init = initBuilder.beginStruct(); init.setPacked(true); bool isPattern; bool canBeConstant; if (structDecl->isGenericContext()) { GenericStructMetadataBuilder builder(IGM, structDecl, init); builder.layout(); isPattern = true; canBeConstant = false; builder.createMetadataAccessFunction(); } else { StructMetadataBuilder builder(IGM, structDecl, init); builder.layout(); isPattern = false; canBeConstant = builder.canBeConstant(); builder.createMetadataAccessFunction(); } CanType declaredType = structDecl->getDeclaredType()->getCanonicalType(); // For now, all type metadata is directly stored. bool isIndirect = false; IGM.defineTypeMetadata(declaredType, isIndirect, isPattern, canBeConstant, init.finishAndCreateFuture()); } // Enums namespace { template class EnumMetadataBuilderBase : public EnumMetadataVisitor { using super = EnumMetadataVisitor; protected: ConstantStructBuilder &B; using super::IGM; using super::Target; EnumMetadataBuilderBase(IRGenModule &IGM, EnumDecl *theEnum, ConstantStructBuilder &B) : super(IGM, theEnum), B(B) { } SILType getLoweredType() { return IGM.getLoweredType(Target->getDeclaredTypeInContext()); } public: void noteStartOfTypeSpecificMembers() {} MetadataKind getMetadataKind() { return Target->isOptionalDecl() ? MetadataKind::Optional : MetadataKind::Enum; } void addMetadataFlags() { auto kind = getMetadataKind(); B.addInt(IGM.MetadataKindTy, unsigned(kind)); } llvm::Constant *emitValueWitnessTable() { auto type = Target->getDeclaredType()->getCanonicalType(); return irgen::emitValueWitnessTable(IGM, type, false); } void addValueWitnessTable() { B.add(emitValueWitnessTable()); } llvm::Constant *emitNominalTypeDescriptor() { auto descriptor = EnumContextDescriptorBuilder(IGM, Target, RequireMetadata).emit(); return descriptor; } void addNominalTypeDescriptor() { B.add(emitNominalTypeDescriptor()); } void addGenericArgument(CanType type) { B.addNullPointer(IGM.TypeMetadataPtrTy); } void addGenericWitnessTable(CanType type, ProtocolConformanceRef conf) { B.addNullPointer(IGM.WitnessTablePtrTy); } Optional getConstantPayloadSize() { auto enumTy = Target->getDeclaredTypeInContext()->getCanonicalType(); auto &enumTI = IGM.getTypeInfoForUnlowered(enumTy); if (!enumTI.isFixedSize(ResilienceExpansion::Maximal)) { return None; } assert(!enumTI.isFixedSize(ResilienceExpansion::Minimal) && "non-generic, non-resilient enums don't need payload size in metadata"); auto &strategy = getEnumImplStrategy(IGM, enumTy); return Size(strategy.getPayloadSizeForMetadata()); } }; class EnumMetadataBuilder : public EnumMetadataBuilderBase { bool HasUnfilledPayloadSize = false; public: EnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum, ConstantStructBuilder &B) : EnumMetadataBuilderBase(IGM, theEnum, B) {} void addPayloadSize() { auto payloadSize = getConstantPayloadSize(); if (!payloadSize) { B.addInt(IGM.IntPtrTy, 0); HasUnfilledPayloadSize = true; return; } B.addInt(IGM.IntPtrTy, payloadSize->getValue()); } bool canBeConstant() { return !HasUnfilledPayloadSize; } void createMetadataAccessFunction() { createInPlaceValueTypeMetadataAccessFunction(IGM, Target); } }; class GenericEnumMetadataBuilder : public GenericValueMetadataBuilderBase> { public: using super = GenericValueMetadataBuilderBase; GenericEnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum, ConstantStructBuilder &B) : super(IGM, theEnum, B) {} llvm::Value *emitAllocateMetadata(IRGenFunction &IGF, llvm::Value *descriptor, llvm::Value *arguments, llvm::Value *templatePointer) { auto &layout = IGM.getMetadataLayout(Target); auto extraSize = layout.getSize().getOffsetToEnd() - IGM.getOffsetOfEnumTypeSpecificMetadataMembers(); auto extraSizeV = IGM.getSize(extraSize); auto metadata = IGF.Builder.CreateCall(IGM.getAllocateGenericValueMetadataFn(), {descriptor, arguments, templatePointer, extraSizeV}); // Initialize the payload-size field if we have a constant value for it. // This is so small that we just do it inline instead of bothering // with a pattern. if (layout.hasPayloadSizeOffset()) { if (auto size = getConstantPayloadSize()) { auto offset = layout.getPayloadSizeOffset(); auto slot = IGF.emitAddressAtOffset(metadata, offset, IGM.SizeTy, IGM.getPointerAlignment()); IGF.Builder.CreateStore(IGM.getSize(*size), slot); } } return metadata; } llvm::Constant *emitValueWitnessTable() { return getValueWitnessTableForGenericValueType(IGM, Target, HasDependentVWT); } bool hasCompletionFunction() { return !isa(IGM.getTypeInfo(getLoweredType())); } void emitInitializeMetadata(IRGenFunction &IGF, llvm::Value *metadata, bool isVWTMutable, MetadataDependencyCollector *collector) { // Nominal types are always preserved through SIL lowering. auto enumTy = getLoweredType(); auto &strategy = getEnumImplStrategy(IGF.IGM, enumTy); strategy.initializeMetadata(IGF, metadata, isVWTMutable, enumTy, collector); } }; } // end anonymous namespace void irgen::emitEnumMetadata(IRGenModule &IGM, EnumDecl *theEnum) { // TODO: enums nested inside generic types ConstantInitBuilder initBuilder(IGM); auto init = initBuilder.beginStruct(); init.setPacked(true); bool isPattern; bool canBeConstant; if (theEnum->isGenericContext()) { GenericEnumMetadataBuilder builder(IGM, theEnum, init); builder.layout(); isPattern = true; canBeConstant = false; builder.createMetadataAccessFunction(); } else { EnumMetadataBuilder builder(IGM, theEnum, init); builder.layout(); isPattern = false; canBeConstant = builder.canBeConstant(); builder.createMetadataAccessFunction(); } CanType declaredType = theEnum->getDeclaredType()->getCanonicalType(); // For now, all type metadata is directly stored. bool isIndirect = false; IGM.defineTypeMetadata(declaredType, isIndirect, isPattern, canBeConstant, init.finishAndCreateFuture()); } llvm::Value *IRGenFunction::emitObjCSelectorRefLoad(StringRef selector) { llvm::Constant *loadSelRef = IGM.getAddrOfObjCSelectorRef(selector); llvm::Value *loadSel = Builder.CreateLoad(Address(loadSelRef, IGM.getPointerAlignment())); // When generating JIT'd code, we need to call sel_registerName() to force // the runtime to unique the selector. For non-JIT'd code, the linker will // do it for us. if (IGM.IRGen.Opts.UseJIT) { loadSel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), loadSel); } return loadSel; } //===----------------------------------------------------------------------===// // Foreign types //===----------------------------------------------------------------------===// namespace { /// An adapter that turns a metadata layout class into a foreign metadata /// layout class. /// /// Foreign metadata is generated for declarations that are /// synthesized by the Clang importer from C declarations, meaning they don't /// have a single Swift binary that is responsible for their emission. /// In this case, we emit the record into every binary that needs it, with /// a header with a unique identifier string that the runtime can use to pick /// the first-used instance as the canonical instance for a process. template class ForeignMetadataBuilderBase : public Base { using super = Base; protected: using super::IGM; using super::asImpl; using super::B; template ForeignMetadataBuilderBase(T &&...args) : super(std::forward(args)...) {} Size AddressPoint = Size::invalid(); public: void layout() { if (asImpl().requiresInitializationFunction()) asImpl().addInitializationFunction(); asImpl().addForeignFlags(); super::layout(); } void addForeignFlags() { int64_t flags = 0; if (asImpl().requiresInitializationFunction()) flags |= 1; B.addInt(IGM.IntPtrTy, flags); } void addForeignName() { CanType targetType = asImpl().getTargetType(); IRGenMangler mangler; std::string Name = mangler.mangleTypeForForeignMetadataUniquing(targetType); llvm::Constant *nameStr = IGM.getAddrOfGlobalString(Name, /*relatively addressed*/ true); B.addRelativeAddress(nameStr); } void addInitializationFunction() { auto type = cast(asImpl().getTargetType()); auto fnTy = llvm::FunctionType::get(IGM.VoidTy, {IGM.TypeMetadataPtrTy}, /*variadic*/ false); llvm::Function *fn = llvm::Function::Create(fnTy, llvm::GlobalValue::PrivateLinkage, Twine("initialize_metadata_") + type->getDecl()->getName().str(), &IGM.Module); fn->setAttributes(IGM.constructInitialAttributes()); // Set up the function. IRGenFunction IGF(IGM, fn); if (IGM.DebugInfo) IGM.DebugInfo->emitArtificialFunction(IGF, fn); // Emit the initialization. llvm::Value *metadata = IGF.collectParameters().claimNext(); asImpl().emitInitialization(IGF, metadata); IGF.Builder.CreateRetVoid(); B.addRelativeAddress(fn); // Keep pointer alignment on 64-bit platforms for further fields. switch (IGM.getPointerSize().getValue()) { case 4: break; case 8: B.addInt32(0); break; default: llvm_unreachable("unsupported word size"); } } void noteAddressPoint() { AddressPoint = B.getNextOffsetFromGlobal(); } Size getOffsetOfAddressPoint() const { return AddressPoint; } void createMetadataAccessFunction() { auto type = cast(asImpl().getTargetType()); (void) getTypeMetadataAccessFunction(IGM, type, ForDefinition, [&](IRGenFunction &IGF, DynamicMetadataRequest request, llvm::Constant *cacheVariable) { return emitInPlaceTypeMetadataAccessFunctionBody(IGF, type, cacheVariable, [&](IRGenFunction &IGF, llvm::Value *candidate) { MetadataDependencyCollector *collector = nullptr; auto metadata = uniqueForeignTypeMetadataRef(IGF, candidate); return emitInPlaceValueTypeMetadataInitialization(IGF, type, metadata, collector); }); }); } }; class ForeignClassMetadataBuilder; class ForeignClassMetadataBuilderBase : public ForeignClassMetadataVisitor { protected: ConstantStructBuilder &B; ForeignClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *target, ConstantStructBuilder &B) : ForeignClassMetadataVisitor(IGM, target), B(B) {} }; /// A builder for ForeignClassMetadata. class ForeignClassMetadataBuilder : public ForeignMetadataBuilderBase { public: ForeignClassMetadataBuilder(IRGenModule &IGM, ClassDecl *target, ConstantStructBuilder &B) : ForeignMetadataBuilderBase(IGM, target, B) {} void emitInitialization(IRGenFunction &IGF, llvm::Value *metadata) { // Dig out the address of the superclass field. auto &layout = IGF.IGM.getForeignMetadataLayout(Target); Address metadataWords(IGF.Builder.CreateBitCast(metadata, IGM.Int8PtrPtrTy), IGM.getPointerAlignment()); auto superclassField = createPointerSizedGEP(IGF, metadataWords, layout.getSuperClassOffset().getStaticOffset()); superclassField = IGF.Builder.CreateBitCast( superclassField, llvm::PointerType::get(IGM.TypeMetadataPtrTy, 0)); // Unique the superclass field and write it back. auto superclass = IGF.Builder.CreateLoad(superclassField); auto uniquedSuperclass = uniqueForeignTypeMetadataRef(IGF, superclass); IGF.Builder.CreateStore(uniquedSuperclass, superclassField); } // Visitor methods. void addValueWitnessTable() { // Without Objective-C interop, foreign classes must still use // Swift native reference counting. auto type = (IGM.ObjCInterop ? IGM.Context.TheUnknownObjectType : IGM.Context.TheNativeObjectType); auto wtable = IGM.getAddrOfValueWitnessTable(type); B.add(wtable); } void addMetadataFlags() { B.addInt(IGM.MetadataKindTy, (unsigned) MetadataKind::ForeignClass); } void addNominalTypeDescriptor() { auto descriptor = ClassContextDescriptorBuilder(this->IGM, Target, RequireMetadata).emit(); B.add(descriptor); } void noteStartOfSuperClass() { } void addSuperClass() { auto superclassDecl = Target->getSuperclassDecl(); if (!superclassDecl || !superclassDecl->isForeign()) { B.addNullPointer(IGM.TypeMetadataPtrTy); return; } auto superclassType = superclassDecl->swift::TypeDecl::getDeclaredInterfaceType() ->getCanonicalType(); auto superclass = IGM.getAddrOfForeignTypeMetadataCandidate(superclassType); B.add(superclass); } void addReservedWord() { B.addNullPointer(IGM.Int8PtrTy); } }; /// A builder for ForeignStructMetadata. class ForeignStructMetadataBuilder : public ForeignMetadataBuilderBase> { public: ForeignStructMetadataBuilder(IRGenModule &IGM, StructDecl *target, ConstantStructBuilder &builder) : ForeignMetadataBuilderBase(IGM, target, builder) {} CanType getTargetType() const { return Target->getDeclaredType()->getCanonicalType(); } bool requiresInitializationFunction() const { return false; } void emitInitialization(IRGenFunction &IGF, llvm::Value *metadata) {} void addValueWitnessTable() { B.add(emitValueWitnessTable()); } void flagUnfilledFieldOffset() { llvm_unreachable("foreign type with non-fixed layout?"); } }; /// A builder for ForeignEnumMetadata. class ForeignEnumMetadataBuilder : public ForeignMetadataBuilderBase> { public: ForeignEnumMetadataBuilder(IRGenModule &IGM, EnumDecl *target, ConstantStructBuilder &builder) : ForeignMetadataBuilderBase(IGM, target, builder) {} CanType getTargetType() const { return Target->getDeclaredType()->getCanonicalType(); } bool requiresInitializationFunction() const { return false; } void emitInitialization(IRGenFunction &IGF, llvm::Value *metadata) {} void addValueWitnessTable() { B.add(emitValueWitnessTable()); } void addPayloadSize() const { llvm_unreachable("nongeneric enums shouldn't need payload size in metadata"); } }; } // end anonymous namespace bool IRGenModule::requiresForeignTypeMetadata(CanType type) { if (NominalTypeDecl *nominal = type->getAnyNominal()) { if (auto *clas = dyn_cast(nominal)) { return clas->isForeign(); } return isa(nominal->getModuleScopeContext()); } return false; } llvm::Constant * IRGenModule::getAddrOfForeignTypeMetadataCandidate(CanType type) { // What we save in GlobalVars is actually the offsetted value. auto entity = LinkEntity::forForeignTypeMetadataCandidate(type); if (auto entry = GlobalVars[entity]) return entry; // Create a temporary base for relative references. ConstantInitBuilder builder(*this); auto init = builder.beginStruct(); init.setPacked(true); // Local function to create the global variable for the foreign type // metadata candidate. Size addressPoint; llvm::Constant *result = nullptr; auto createCandidateVariable = [&] { auto definition = init.finishAndCreateFuture(); // Create the global variable. LinkInfo link = LinkInfo::get(*this, entity, ForDefinition); auto var = createVariable(*this, link, definition.getType(), getPointerAlignment()); definition.installInGlobal(var); // Apply the offset. result = llvm::ConstantExpr::getBitCast(var, Int8PtrTy); result = llvm::ConstantExpr::getInBoundsGetElementPtr( Int8Ty, result, getSize(addressPoint)); result = llvm::ConstantExpr::getBitCast(result, TypeMetadataPtrTy); // Only remember the offset. GlobalVars[entity] = result; }; // Compute the constant initializer and the offset of the type // metadata candidate within it. if (auto classType = dyn_cast(type)) { assert(!classType.getParent()); auto classDecl = classType->getDecl(); assert(classDecl->isForeign()); ForeignClassMetadataBuilder builder(*this, classDecl, init); builder.layout(); addressPoint = builder.getOffsetOfAddressPoint(); createCandidateVariable(); builder.createMetadataAccessFunction(); } else if (auto structType = dyn_cast(type)) { auto structDecl = structType->getDecl(); assert(isa(structDecl->getModuleScopeContext())); ImportedStructs.insert(structDecl); ForeignStructMetadataBuilder builder(*this, structDecl, init); builder.layout(); addressPoint = builder.getOffsetOfAddressPoint(); createCandidateVariable(); builder.createMetadataAccessFunction(); } else if (auto enumType = dyn_cast(type)) { auto enumDecl = enumType->getDecl(); assert(enumDecl->hasClangNode()); ForeignEnumMetadataBuilder builder(*this, enumDecl, init); builder.layout(); addressPoint = builder.getOffsetOfAddressPoint(); createCandidateVariable(); builder.createMetadataAccessFunction(); } else { llvm_unreachable("foreign metadata for unexpected type?!"); } // Keep type metadata around for all types. addRuntimeResolvableType(type->getAnyNominal()); // If the enclosing type is also an imported type, force its metadata too. if (auto enclosing = type->getNominalParent()) { auto canonicalEnclosing = enclosing->getCanonicalType(); if (requiresForeignTypeMetadata(canonicalEnclosing)) { getAddrOfForeignTypeMetadataCandidate(canonicalEnclosing); } } return result; } // Protocols /// Get the runtime identifier for a special protocol, if any. SpecialProtocol irgen::getSpecialProtocolID(ProtocolDecl *P) { auto known = P->getKnownProtocolKind(); if (!known) return SpecialProtocol::None; switch (*known) { case KnownProtocolKind::Error: return SpecialProtocol::Error; // The other known protocols aren't special at runtime. case KnownProtocolKind::Sequence: case KnownProtocolKind::IteratorProtocol: case KnownProtocolKind::RawRepresentable: case KnownProtocolKind::Equatable: case KnownProtocolKind::Hashable: case KnownProtocolKind::CaseIterable: case KnownProtocolKind::Comparable: case KnownProtocolKind::ObjectiveCBridgeable: case KnownProtocolKind::DestructorSafeContainer: case KnownProtocolKind::SwiftNewtypeWrapper: case KnownProtocolKind::ExpressibleByArrayLiteral: case KnownProtocolKind::ExpressibleByBooleanLiteral: case KnownProtocolKind::ExpressibleByDictionaryLiteral: case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral: case KnownProtocolKind::ExpressibleByFloatLiteral: case KnownProtocolKind::ExpressibleByIntegerLiteral: case KnownProtocolKind::ExpressibleByStringInterpolation: case KnownProtocolKind::ExpressibleByStringLiteral: case KnownProtocolKind::ExpressibleByNilLiteral: case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral: case KnownProtocolKind::ExpressibleByColorLiteral: case KnownProtocolKind::ExpressibleByImageLiteral: case KnownProtocolKind::ExpressibleByFileReferenceLiteral: case KnownProtocolKind::ExpressibleByBuiltinBooleanLiteral: case KnownProtocolKind::ExpressibleByBuiltinUTF16ExtendedGraphemeClusterLiteral: case KnownProtocolKind::ExpressibleByBuiltinExtendedGraphemeClusterLiteral: case KnownProtocolKind::ExpressibleByBuiltinFloatLiteral: case KnownProtocolKind::ExpressibleByBuiltinIntegerLiteral: case KnownProtocolKind::ExpressibleByBuiltinStringLiteral: case KnownProtocolKind::ExpressibleByBuiltinUTF16StringLiteral: case KnownProtocolKind::ExpressibleByBuiltinUnicodeScalarLiteral: case KnownProtocolKind::OptionSet: case KnownProtocolKind::BridgedNSError: case KnownProtocolKind::BridgedStoredNSError: case KnownProtocolKind::CFObject: case KnownProtocolKind::ErrorCodeProtocol: case KnownProtocolKind::ExpressibleByBuiltinConstStringLiteral: case KnownProtocolKind::ExpressibleByBuiltinConstUTF16StringLiteral: case KnownProtocolKind::CodingKey: case KnownProtocolKind::Encodable: case KnownProtocolKind::Decodable: return SpecialProtocol::None; } llvm_unreachable("Not a valid KnownProtocolKind."); } namespace { class ProtocolDescriptorBuilder { IRGenModule &IGM; ConstantStructBuilder &B; ProtocolDecl *Protocol; std::string AssociatedTypeNames; SILDefaultWitnessTable *DefaultWitnesses; public: ProtocolDescriptorBuilder(IRGenModule &IGM, ProtocolDecl *protocol, ConstantStructBuilder &B, SILDefaultWitnessTable *defaultWitnesses) : IGM(IGM), B(B), Protocol(protocol), DefaultWitnesses(defaultWitnesses) {} void layout() { addObjCCompatibilityIsa(); addName(); addInherited(); addObjCCompatibilityTables(); addSize(); addFlags(); addRequirements(); addSuperclass(); addAssociatedTypeNames(); B.suggestType(IGM.ProtocolDescriptorStructTy); } void addObjCCompatibilityIsa() { // The ObjC runtime will drop a reference to its magic Protocol class // here. B.addNullPointer(IGM.Int8PtrTy); } void addName() { // Include the _Tt prefix. Since Swift protocol descriptors are laid // out to look like ObjC Protocol* objects, the name has to clearly be // a Swift mangled name. IRGenMangler mangler; std::string Name = mangler.mangleForProtocolDescriptor(Protocol->getDeclaredType()); auto global = IGM.getAddrOfGlobalString(Name); B.add(global); } void addInherited() { // If there are no inherited protocols, produce null. auto inherited = Protocol->getInheritedProtocols(); if (inherited.empty()) { B.addNullPointer(IGM.Int8PtrTy); return; } // Otherwise, collect references to all of the inherited protocol // descriptors. SmallVector inheritedDescriptors; inheritedDescriptors.push_back(IGM.getSize(Size(inherited.size()))); for (ProtocolDecl *p : inherited) { auto descriptor = IGM.getAddrOfProtocolDescriptor(p); inheritedDescriptors.push_back(descriptor); } auto inheritedInit = llvm::ConstantStruct::getAnon(inheritedDescriptors); auto inheritedVar = new llvm::GlobalVariable(IGM.Module, inheritedInit->getType(), /*isConstant*/ true, llvm::GlobalValue::PrivateLinkage, inheritedInit); B.addBitCast(inheritedVar, IGM.Int8PtrTy); } void addObjCCompatibilityTables() { // Required instance methods B.addNullPointer(IGM.Int8PtrTy); // Required class methods B.addNullPointer(IGM.Int8PtrTy); // Optional instance methods B.addNullPointer(IGM.Int8PtrTy); // Optional class methods B.addNullPointer(IGM.Int8PtrTy); // Properties B.addNullPointer(IGM.Int8PtrTy); } void addSize() { // The number of fields so far in words, plus 4 bytes for size and // 4 bytes for flags. B.addInt32(B.getNextOffsetFromGlobal().getValue() + 4 + 4); } void addFlags() { auto flags = ProtocolDescriptorFlags() .withSwift(true) .withClassConstraint(Protocol->requiresClass() ? ProtocolClassConstraint::Class : ProtocolClassConstraint::Any) .withDispatchStrategy( Lowering::TypeConverter::getProtocolDispatchStrategy(Protocol)) .withSpecialProtocol(getSpecialProtocolID(Protocol)); if (DefaultWitnesses) flags = flags.withResilient(true); B.addInt32(flags.getIntValue()); } void addRequirements() { auto &pi = IGM.getProtocolInfo(Protocol); B.addInt32(pi.getNumWitnesses()); // If there are no entries, just add a null reference and return. if (pi.getNumWitnesses() == 0) { B.addInt(IGM.RelativeAddressTy, 0); return; } ConstantInitBuilder reqtBuilder(IGM); auto reqtsArray = reqtBuilder.beginArray(IGM.ProtocolRequirementStructTy); for (auto &entry : pi.getWitnessEntries()) { auto reqt = reqtsArray.beginStruct(IGM.ProtocolRequirementStructTy); auto info = getRequirementInfo(entry); // Flags. reqt.addInt32(info.Flags.getIntValue()); // Dispatch thunk. reqt.addRelativeAddressOrNull(info.Thunk); // Default implementation. reqt.addRelativeAddressOrNull(info.DefaultImpl); // Add the associated type name to the list. if (entry.isAssociatedType()) { if (!AssociatedTypeNames.empty()) AssociatedTypeNames += ' '; AssociatedTypeNames += entry.getAssociatedType()->getName().str(); } reqt.finishAndAddTo(reqtsArray); } auto global = cast( IGM.getAddrOfProtocolRequirementArray(Protocol, reqtsArray.finishAndCreateFuture())); global->setConstant(true); B.addRelativeOffset(IGM.Int32Ty, global); IGM.setTrueConstGlobal(global); } struct RequirementInfo { ProtocolRequirementFlags Flags; llvm::Constant *Thunk; llvm::Constant *DefaultImpl; }; /// Build the information which will go into a ProtocolRequirement entry. RequirementInfo getRequirementInfo(const WitnessTableEntry &entry) { using Flags = ProtocolRequirementFlags; if (entry.isBase()) { assert(entry.isOutOfLineBase()); auto flags = Flags(Flags::Kind::BaseProtocol); return { flags, nullptr, nullptr }; } if (entry.isAssociatedType()) { auto flags = Flags(Flags::Kind::AssociatedTypeAccessFunction); return { flags, nullptr, nullptr }; } if (entry.isAssociatedConformance()) { auto flags = Flags(Flags::Kind::AssociatedConformanceAccessFunction); return { flags, nullptr, nullptr }; } assert(entry.isFunction()); SILDeclRef func(entry.getFunction()); // Look up the dispatch thunk if the protocol is resilient. llvm::Constant *thunk = nullptr; if (Protocol->isResilient()) thunk = IGM.getAddrOfDispatchThunk(func, NotForDefinition); // Classify the function. auto flags = getMethodDescriptorFlags(func.getDecl()); // Look for a default witness. llvm::Constant *defaultImpl = findDefaultWitness(func); return { flags, thunk, defaultImpl }; } llvm::Constant *findDefaultWitness(SILDeclRef func) { if (!DefaultWitnesses) return nullptr; for (auto &entry : DefaultWitnesses->getEntries()) { if (!entry.isValid() || entry.getRequirement() != func) continue; return IGM.getAddrOfSILFunction(entry.getWitness(), NotForDefinition); } return nullptr; } void addSuperclass() { // FIXME: Implement. B.addRelativeAddressOrNull(nullptr); } void addAssociatedTypeNames() { llvm::Constant *global = nullptr; if (!AssociatedTypeNames.empty()) { global = IGM.getAddrOfGlobalString(AssociatedTypeNames, /*willBeRelativelyAddressed=*/true); } B.addRelativeAddressOrNull(global); } }; } // end anonymous namespace /// Emit global structures associated with the given protocol. This comprises /// the protocol descriptor, and for ObjC interop, references to the descriptor /// that the ObjC runtime uses for uniquing. void IRGenModule::emitProtocolDecl(ProtocolDecl *protocol) { // Emit remote reflection metadata for the protocol. emitFieldMetadataRecord(protocol); // If the protocol is Objective-C-compatible, go through the path that // produces an ObjC-compatible protocol_t. if (protocol->isObjC()) { // In JIT mode, we need to create protocol descriptors using the ObjC // runtime in JITted code. if (IRGen.Opts.UseJIT) return; // Native ObjC protocols are emitted on-demand in ObjC and uniqued by the // runtime; we don't need to try to emit a unique descriptor symbol for them. if (protocol->hasClangNode()) return; getObjCProtocolGlobalVars(protocol); return; } SILDefaultWitnessTable *defaultWitnesses = nullptr; if (protocol->isResilient()) defaultWitnesses = getSILModule().lookUpDefaultWitnessTable(protocol); ConstantInitBuilder initBuilder(*this); auto init = initBuilder.beginStruct(); ProtocolDescriptorBuilder builder(*this, protocol, init, defaultWitnesses); builder.layout(); auto var = cast( getAddrOfProtocolDescriptor(protocol, init.finishAndCreateFuture())); var->setConstant(true); // Note that we emitted this protocol. SwiftProtocols.push_back(protocol); // If the protocol is resilient, emit dispatch thunks. if (isResilient(protocol, ResilienceExpansion::Minimal)) { for (auto *member : protocol->getMembers()) { if (auto *funcDecl = dyn_cast(member)) { emitDispatchThunk(SILDeclRef(funcDecl)); } if (auto *ctorDecl = dyn_cast(member)) { emitDispatchThunk(SILDeclRef(ctorDecl, SILDeclRef::Kind::Allocator)); } } } } //===----------------------------------------------------------------------===// // Generic requirements. //===----------------------------------------------------------------------===// /// Add a generic parameter reference to the given constant struct builder. static void addGenericParamRef(IRGenModule &IGM, ConstantStructBuilder &B, GenericSignature *sig, CanType type) { // type should be either a generic parameter or dependent member type // thereof. if (auto genericParam = dyn_cast(type)) { // We can encode the ordinal of a direct type parameter reference // inline. auto ordinal = sig->getGenericParamOrdinal(genericParam); B.addInt32(ordinal << 1); return; } if (auto dmt = dyn_cast(type)) { // We have to encode the associated type path out-of-line. auto assocTypeRecord = IGM.getAddrOfAssociatedTypeGenericParamRef(sig, dmt); B.addTaggedRelativeOffset(IGM.Int32Ty, assocTypeRecord, 1); return; } llvm_unreachable("not a generic parameter"); } /// Add a generic requirement to the given constant struct builder. static void addGenericRequirement(IRGenModule &IGM, ConstantStructBuilder &B, GenericRequirementsMetadata &metadata, GenericSignature *sig, GenericRequirementFlags flags, Type paramType, llvm::function_ref addReference) { if (flags.hasKeyArgument()) ++metadata.NumGenericKeyArguments; if (flags.hasExtraArgument()) ++metadata.NumGenericExtraArguments; B.addInt(IGM.Int32Ty, flags.getIntValue()); addGenericParamRef(IGM, B, sig, paramType->getCanonicalType()); addReference(); } GenericRequirementsMetadata irgen::addGenericRequirements( IRGenModule &IGM, ConstantStructBuilder &B, GenericSignature *sig, ArrayRef requirements) { assert(sig); GenericRequirementsMetadata metadata; for (auto &requirement : requirements) { ++metadata.NumRequirements; switch (auto kind = requirement.getKind()) { case RequirementKind::Layout: switch (auto layoutKind = requirement.getLayoutConstraint()->getKind()) { case LayoutConstraintKind::Class: { // Encode the class constraint. auto flags = GenericRequirementFlags(GenericRequirementKind::Layout, /*key argument*/ false, /*extra argument*/ false); addGenericRequirement(IGM, B, metadata, sig, flags, requirement.getFirstType(), [&]{ B.addInt32((uint32_t)GenericRequirementLayoutKind::Class); }); break; } default: // No other layout constraints are supported in source-level Swift // today. llvm_unreachable("shouldn't show up in ABI"); } break; case RequirementKind::Conformance: { // ABI TODO: We also need a *key* argument that uniquely identifies // the conformance for conformance requirements as well. auto protocol = requirement.getSecondType()->castTo() ->getDecl(); bool needsWitnessTable = Lowering::TypeConverter::protocolRequiresWitnessTable(protocol); auto flags = GenericRequirementFlags(GenericRequirementKind::Protocol, /*TODO key argument*/ false, needsWitnessTable); auto descriptorRef = IGM.getConstantReferenceForProtocolDescriptor(protocol); addGenericRequirement(IGM, B, metadata, sig, flags, requirement.getFirstType(), [&]{ B.addRelativeAddress(descriptorRef); }); break; } case RequirementKind::SameType: case RequirementKind::Superclass: { auto abiKind = kind == RequirementKind::SameType ? GenericRequirementKind::SameType : GenericRequirementKind::BaseClass; auto flags = GenericRequirementFlags(abiKind, false, false); auto typeName = getTypeRef(IGM, requirement.getSecondType()->getCanonicalType()); addGenericRequirement(IGM, B, metadata, sig, flags, requirement.getFirstType(), [&]{ B.addRelativeAddress(typeName); }); // ABI TODO: Same type and superclass constraints also imply // "same conformance" constraints on any protocol requirements of // the constrained type, which we should emit. break; } } } return metadata; } //===----------------------------------------------------------------------===// // Other metadata. //===----------------------------------------------------------------------===// llvm::Value *irgen::emitMetatypeInstanceType(IRGenFunction &IGF, llvm::Value *metatypeMetadata) { // The instance type field of MetatypeMetadata is immediately after // the isa field. return emitInvariantLoadFromMetadataAtIndex(IGF, metatypeMetadata, 1, IGF.IGM.TypeMetadataPtrTy); }