#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ===--- compare_perf_tests.py -------------------------------------------===// # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ===---------------------------------------------------------------------===// """ This script compares performance test logs and issues a formatted report. Invoke `$ compare_perf_tests.py -h ` for complete list of options. class `PerformanceTestResult` collects information about a single test class `LogParser` converts log files into `PerformanceTestResult`s. class `ResultComparison` compares new and old `PerformanceTestResult`s. class `TestComparator` analyzes changes between the old and new test results. class `ReportFormatter` creates the test comparison report in specified format. """ import argparse import functools import json import re import statistics import sys class PerformanceTestResult(object): u"""Result from executing an individual Swift Benchmark Suite benchmark. Reported by the test driver (Benchmark_O, Benchmark_Onone, Benchmark_Osize or Benchmark_Driver). It supports log formats emitted by the test driver. """ # TODO: Delete after December 2023 @classmethod def fromOldFormat(cls, header, line): """Original format with statistics for normal distribution (MEAN, SD): #,TEST,SAMPLES,MIN(μs),MAX(μs),MEAN(μs),SD(μs),MEDIAN(μs),MAX_RSS(B),PAGES,ICS,YIELD Note that MAX_RSS, PAGES, ICS, YIELD are all optional """ csv_row = line.split(",") if "," in line else line.split() labels = header.split(",") if "," in header else header.split() # Synthesize a JSON form with the basic values: num_samples = int(csv_row[2]) json_data = { "number": int(csv_row[0]), "name": csv_row[1], "num_samples": num_samples, } # Map remaining columns according to label field_map = [ ("ICS", "ics"), ("MAX_RSS", "max_rss"), # Must precede "MAX" ("MAX", "max"), ("MEAN", "mean"), ("MEDIAN", "median"), ("MIN", "min"), ("PAGES", "pages"), ("SD", "sd"), ("YIELD", "yield") ] for label, value in zip(labels, csv_row): for match, json_key in field_map: if match in label: json_data[json_key] = float(value) break # Heroic: Reconstruct samples if we have enough info # This is generally a bad idea, but sadly necessary for the # old format that doesn't provide raw sample data. if num_samples == 1 and "min" in json_data: json_data["samples"] = [ json_data["min"] ] elif num_samples == 2 and "min" in json_data and "max" in json_data: json_data["samples"] = [ json_data["min"], json_data["max"] ] elif (num_samples == 3 and "min" in json_data and "max" in json_data and "median" in json_data): json_data["samples"] = [ json_data["min"], json_data["median"], json_data["max"] ] return PerformanceTestResult(json_data) # TODO: Delete after December 2023 @classmethod def fromQuantileFormat(cls, header, line): """Quantiles format with variable number of columns depending on the number of quantiles: #,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),MAX(μs) #,TEST,SAMPLES,QMIN(μs),Q1(μs),Q2(μs),Q3(μs),MAX(μs),MAX_RSS(B) The number of columns between QMIN and MAX depends on the test driver's `--quantile`parameter. In both cases, the last column, MAX_RSS is optional. Delta encoding: If a header name includes 𝚫, that column stores the difference from the previous column. E.g, a header "#,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),𝚫MAX(μs)" indicates the final "MAX" column must be computed by adding the value in that column to the value of the previous "MEDIAN" column. """ csv_row = line.split(",") if "," in line else line.split() labels = header.split(",") for i in range(1, len(labels)): if "𝚫" in labels[i] or "Δ" in labels[i]: prev = int(csv_row[i - 1]) inc = int(csv_row[i]) if csv_row[i] != '' else 0 csv_row[i] = str(prev + inc) # Synthesize a JSON form and then initialize from that json_data = { "number": int(csv_row[0]), "name": csv_row[1], "num_samples": int(csv_row[2]), } # Process optional trailing fields MAX_RSS, PAGES, ICS, YIELD i = len(labels) - 1 while True: if "MAX_RSS" in labels[i]: json_data["max_rss"] = float(csv_row[i]) elif "PAGES" in labels[i]: json_data["pages"] = float(csv_row[i]) elif "ICS" in labels[i]: json_data["ics"] = float(csv_row[i]) elif "YIELD" in labels[i]: json_data["yield"] = float(csv_row[i]) else: break i -= 1 if i < 0: break # Rest is the quantiles (includes min/max columns) quantiles = [float(q) for q in csv_row[3:i + 1]] # Heroic effort: # If we have enough quantiles, we can reconstruct the samples # This is generally a bad idea, but sadly necessary since # the quantile format doesn't provide raw sample data. if json_data["num_samples"] == len(quantiles): json_data["samples"] = sorted(quantiles) elif json_data["num_samples"] == 2: json_data["samples"] = [quantiles[0], quantiles[-1]] elif json_data["num_samples"] == 1: json_data["samples"] = [quantiles[0]] else: json_data["quantiles"] = quantiles if len(quantiles) > 0: json_data["min"] = quantiles[0] json_data["max"] = quantiles[-1] json_data["median"] = quantiles[(len(quantiles) - 1) // 2] return PerformanceTestResult(json_data) @classmethod def fromJSONFormat(cls, line): """JSON format stores a test result as a JSON object on a single line Compared to the legacy tab-separated/comma-separated formats, this makes it much easier to add new fields, handle optional fields, and allows us to include the full set of samples so we can use better statistics downstream. The code here includes optional support for min, max, median, mean, etc. supported by the older formats, though in practice, you shouldn't rely on those: Just store the full samples and then compute whatever statistics you need as required. """ json_data = json.loads(line) return PerformanceTestResult(json_data) def __init__(self, json_data): # Ugly hack to get the old tests to run if isinstance(json_data, str): json_data = json.loads(json_data) # We always have these assert (json_data.get("number") is not None) assert (json_data.get("name") is not None) self.test_num = json_data["number"] self.name = json_data["name"] # We always have either samples or num_samples assert (json_data.get("num_samples") is not None or json_data.get("samples") is not None) self.num_samples = json_data.get("num_samples") or len(json_data["samples"]) self.samples = json_data.get("samples") or [] # Everything else is optional and can be read # out of the JSON data if needed # See max_rss() below for an example of this. self.json_data = dict(json_data) def __repr__(self): return "PerformanceTestResult(" + json.dumps(self.json_data) + ")" def json(self): """Return a single-line JSON form of this result This can be parsed back via fromJSONFormat above. It can also represent all data stored by the older formats, so there's no reason to not use it everywhere. """ data = dict(self.json_data) # In case these got modified data["number"] = self.test_num data["name"] = self.name # If we have full sample data, use that and # drop any lingering pre-computed statistics # (It's better for downstream consumers to just # compute whatever statistics they need from scratch.) # After December 2023, uncomment the next line: # assert len(self.samples) == self.num_samples if len(self.samples) == self.num_samples: data["samples"] = self.samples data.pop("num_samples", None) # TODO: Delete min/max/mean/sd/q1/median/q3/quantiles # after December 2023 data.pop("min", None) data.pop("max", None) data.pop("mean", None) data.pop("sd", None) data.pop("q1", None) data.pop("median", None) data.pop("q3", None) data.pop("quantiles", None) else: # Preserve other pre-existing JSON statistics data["num_samples"] = self.num_samples return json.dumps(data) def __str__(self): return self.json() @property def setup(self): """TODO: Implement this """ return 0 @property def max_rss(self): """Return max_rss if available """ return self.json_data.get("max_rss") @property def mem_pages(self): """Return pages if available """ return self.json_data.get("pages") @property def involuntary_cs(self): """Return involuntary context switches if available """ return self.json_data.get("ics") @property def yield_count(self): """Return voluntary yield count if available """ return self.json_data.get("yield") @property def min_value(self): """Return the minimum value from all samples If we have full samples, compute it directly. In the legacy case, we might not have full samples, so in that case we'll return a value that was given to us initially (if any). Eventually (after December 2023), this can be simplified to just `return min(self.samples)`, since by then the legacy forms should no longer be in use. """ if self.num_samples == len(self.samples): return min(self.samples) return self.json_data.get("min") @property def max_value(self): """Return the maximum sample value See min_value comments for details on the legacy behavior.""" if self.num_samples == len(self.samples): return max(self.samples) return self.json_data.get("max") @property def median(self): """Return the median sample value See min_value comments for details on the legacy behavior.""" if self.num_samples == len(self.samples): return statistics.median(self.samples) return self.json_data.get("median") # TODO: Eliminate q1 and q3. They're kept for now # to preserve compatibility with older reports. But quantiles # aren't really useful statistics, so just drop them. @property def q1(self): """Return the 25% quantile See min_value comments for details on the legacy behavior.""" if self.num_samples == len(self.samples): q = statistics.quantiles(self.samples, n=4) return q[0] return self.json_data.get("q1") @property def q3(self): """Return the 75% quantile See min_value comments for details on the legacy behavior.""" if self.num_samples == len(self.samples): q = statistics.quantiles(self.samples, n=4) return q[2] return self.json_data.get("q3") @property def mean(self): """Return the average TODO: delete this; it's not useful""" if self.num_samples == len(self.samples): return statistics.mean(self.samples) return self.json_data.get("mean") @property def sd(self): """Return the standard deviation TODO: delete this; it's not useful""" if self.num_samples == len(self.samples): if len(self.samples) > 1: return statistics.stdev(self.samples) else: return 0 return self.json_data.get("sd") def merge(self, other): """Merge two results. This is trivial in the non-legacy case: We just pool all the samples. In the legacy case (or the mixed legacy/non-legacy cases), we try to estimate the min/max/mean/sd/median/etc based on whatever information is available. After Dec 2023, we should be able to drop the legacy support. """ # The following can be removed after Dec 2023 # (by which time the legacy support should no longer # be necessary) if self.num_samples != len(self.samples): # If we don't have samples, we can't rely on being # able to compute real statistics from those samples, # so we make a best-effort attempt to estimate a joined # statistic from whatever data we actually have. # If both exist, take the minimum, else take whichever is set other_min_value = other.min_value if other_min_value is not None: self_min_value = self.min_value if self_min_value is not None: self.json_data["min"] = min(other_min_value, self_min_value) else: self.json_data["min"] = other_min_value # If both exist, take the maximum, else take whichever is set other_max_value = other.max_value if other_max_value is not None: self_max_value = self.max_value if self_max_value is not None: self.json_data["max"] = max(other_max_value, self_max_value) else: self.json_data["max"] = other_max_value # If both exist, take the weighted average, else take whichever is set other_mean = other.mean if other_mean is not None: self_mean = self.mean if self_mean is not None: self.json_data["mean"] = ( (other_mean * other.num_samples + self_mean * self.num_samples) / (self.num_samples + other.num_samples) ) else: self.json_data["mean"] = other_mean self.json_data.pop("median", None) # Remove median self.json_data.pop("sd", None) # Remove stdev self.json_data.pop("q1", None) # Remove 25% quantile self.json_data.pop("q3", None) # Remove 75% quantile self.json_data.pop("quantiles", None) # Remove quantiles # Accumulate samples (if present) and num_samples (always) self.samples += other.samples self.num_samples += other.num_samples # Metadata # Use the smaller if both have a max_rss value self.json_data["max_rss"] = other.max_rss other_max_rss = other.max_rss if other_max_rss is not None: self_max_rss = self.max_rss if self_max_rss is not None: self.json_data["max_rss"] = min(self_max_rss, other_max_rss) else: self.json_data["max_rss"] = other_max_rss class ResultComparison(object): """ResultComparison compares MINs from new and old PerformanceTestResult. It computes speedup ratio and improvement delta (%). """ def __init__(self, old, new): """Initialize with old and new `PerformanceTestResult`s to compare.""" self.old = old self.new = new assert old.name == new.name self.name = old.name # Test name, convenience accessor # Speedup ratio self.ratio = (old.min_value + 0.001) / (new.min_value + 0.001) # Test runtime improvement in % ratio = (new.min_value + 0.001) / (old.min_value + 0.001) self.delta = (ratio - 1) * 100 # If we have full samples for both old and new... if ( len(old.samples) == old.num_samples and len(new.samples) == new.num_samples ): # TODO: Use a T-Test or U-Test to determine whether # one set of samples should be considered reliably better than # the other. None # If we do not have full samples, we'll use the # legacy calculation for compatibility. # TODO: After Dec 2023, we should always be using full samples # everywhere and can delete the following entirely. # # Indication of dubious changes: when result's MIN falls inside the # (MIN, MAX) interval of result they are being compared with. self.is_dubious = ( ( old.min_value < new.min_value and new.min_value < old.max_value ) or ( new.min_value < old.min_value and old.min_value < new.max_value ) ) class LogParser(object): """Converts log outputs into `PerformanceTestResult`s. Supports various formats produced by the `Benchmark_Driver` and `Benchmark_O`('Onone', 'Osize'). It can also merge together the results from concatenated log files. """ def __init__(self): """Create instance of `LogParser`.""" self.results = [] def parse_results(self, lines): """Parse results from the lines of the log output from Benchmark*. Returns a list of `PerformanceTestResult`s. """ match_json = re.compile(r"\s*({.*)") match_header = re.compile(r"( *#[, \t]+TEST.*)") match_legacy = re.compile(r" *(\d+[, \t].*)") header = "" for line in lines: # Current format has a JSON-encoded object on each line # That format is flexible so should be the only format # used going forward if match_json.match(line): r = PerformanceTestResult.fromJSONFormat(line) self.results.append(r) elif match_header.match(line): # Legacy formats use a header line (which can be # inspected to determine the presence and order of columns) header = line elif match_legacy.match(line): # Legacy format: lines of space- or tab-separated values if "QMIN" in header: r = PerformanceTestResult.fromQuantileFormat(header, line) else: r = PerformanceTestResult.fromOldFormat(header, line) self.results.append(r) else: # Ignore unrecognized lines # print('Skipping: ' + line.rstrip('\n'), file=sys.stderr, flush=True) continue return self.results @staticmethod def _results_from_lines(lines): names = dict() for r in LogParser().parse_results(lines): if r.name not in names: names[r.name] = r else: names[r.name].merge(r) return names @staticmethod def results_from_string(log_contents): """Parse `PerformanceTestResult`s from the supplied string. Returns dictionary of test names and `PerformanceTestResult`s. """ return LogParser._results_from_lines(log_contents.splitlines()) @staticmethod def results_from_file(log_file): """Parse `PerformanceTestResult`s from the log file. Returns dictionary of test names and `PerformanceTestResult`s. """ with open(log_file) as f: return LogParser._results_from_lines(f.readlines()) class TestComparator(object): """Analyzes changes between the old and new test results. It determines which tests were `added`, `removed` and which can be compared. It then splits the `ResultComparison`s into 3 groups according to the `delta_threshold` by the change in performance: `increased`, `decreased` and `unchanged`. Whole computation is performed during initialization and results are provided as properties on this object. The lists of `added`, `removed` and `unchanged` tests are sorted alphabetically. The `increased` and `decreased` lists are sorted in descending order by the amount of change. """ def __init__(self, old_results, new_results, delta_threshold): """Initialize with dictionaries of old and new benchmark results. Dictionary keys are benchmark names, values are `PerformanceTestResult`s. """ old_tests = set(old_results.keys()) new_tests = set(new_results.keys()) comparable_tests = new_tests.intersection(old_tests) added_tests = new_tests.difference(old_tests) removed_tests = old_tests.difference(new_tests) self.added = sorted([new_results[t] for t in added_tests], key=lambda r: r.name) self.removed = sorted( [old_results[t] for t in removed_tests], key=lambda r: r.name ) def compare(name): return ResultComparison(old_results[name], new_results[name]) comparisons = list(map(compare, comparable_tests)) def partition(items, p): return functools.reduce( lambda x, y: x[not p(y)].append(y) or x, items, ([], []) ) decreased, not_decreased = partition( comparisons, lambda c: c.ratio < (1 - delta_threshold) ) increased, unchanged = partition( not_decreased, lambda c: c.ratio > (1 + delta_threshold) ) # sorted partitions names = [c.name for c in comparisons] comparisons = dict(zip(names, comparisons)) self.decreased = [ comparisons[c.name] for c in sorted(decreased, key=lambda c: -c.delta) ] self.increased = [ comparisons[c.name] for c in sorted(increased, key=lambda c: c.delta) ] self.unchanged = [ comparisons[c.name] for c in sorted(unchanged, key=lambda c: c.name) ] class ReportFormatter(object): """Creates the report from performance test comparison in specified format. `ReportFormatter` formats the `PerformanceTestResult`s and `ResultComparison`s provided by `TestComparator` into report table. Supported formats are: `markdown` (used for displaying benchmark results on GitHub), `git` and `html`. """ def __init__(self, comparator, changes_only, single_table=False): """Initialize with `TestComparator` and names of branches.""" self.comparator = comparator self.changes_only = changes_only self.single_table = single_table PERFORMANCE_TEST_RESULT_HEADER = ("TEST", "MIN", "MAX", "MEAN", "MAX_RSS") RESULT_COMPARISON_HEADER = ("TEST", "OLD", "NEW", "DELTA", "RATIO") @staticmethod def header_for(result): """Column labels for header row in results table.""" return ( ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER if isinstance(result, PerformanceTestResult) else # isinstance(result, ResultComparison) ReportFormatter.RESULT_COMPARISON_HEADER ) @staticmethod def values(result): """Format values from PerformanceTestResult or ResultComparison. Returns tuple of strings to display in the results table. """ return ( ( result.name, str(result.min_value) if result.min_value is not None else "-", str(result.max_value) if result.max_value is not None else "-", str(result.mean) if result.mean is not None else "-", str(result.max_rss) if result.max_rss is not None else "—", ) if isinstance(result, PerformanceTestResult) else # isinstance(result, ResultComparison) ( result.name, str(result.old.min_value) if result.old.min_value is not None else "-", str(result.new.min_value) if result.new.min_value is not None else "-", "{0:+.1f}%".format(result.delta), "{0:.2f}x{1}".format(result.ratio, " (?)" if result.is_dubious else ""), ) ) def markdown(self): """Report results of benchmark comparisons in Markdown format.""" return self._formatted_text( label_formatter=lambda s: ("**" + s + "**"), COLUMN_SEPARATOR=" | ", DELIMITER_ROW=([":---"] + ["---:"] * 4), SEPARATOR="  | | | | \n", SECTION="""
{0} ({1}) {2}
""", ) def git(self): """Report results of benchmark comparisons in 'git' format.""" return self._formatted_text( label_formatter=lambda s: s.upper(), COLUMN_SEPARATOR=" ", DELIMITER_ROW=None, SEPARATOR="\n", SECTION=""" {0} ({1}): \n{2}""", ) def _column_widths(self): changed = self.comparator.decreased + self.comparator.increased results = changed if self.changes_only else changed + self.comparator.unchanged results += self.comparator.added + self.comparator.removed widths = [ map(len, columns) for columns in [ ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER, ReportFormatter.RESULT_COMPARISON_HEADER, ] + [ReportFormatter.values(r) for r in results] ] def max_widths(maximum, widths): return map(max, zip(maximum, widths)) return list(functools.reduce(max_widths, widths, [0] * 5)) def _formatted_text( self, label_formatter, COLUMN_SEPARATOR, DELIMITER_ROW, SEPARATOR, SECTION ): widths = self._column_widths() self.header_printed = False def justify_columns(contents): return [c.ljust(w) for w, c in zip(widths, contents)] def row(contents): return ( "" if not contents else COLUMN_SEPARATOR.join(justify_columns(contents)) + "\n" ) def header(title, column_labels): labels = ( column_labels if not self.single_table else map(label_formatter, (title,) + column_labels[1:]) ) h = ( ("" if not self.header_printed else SEPARATOR) + row(labels) + (row(DELIMITER_ROW) if not self.header_printed else "") ) if self.single_table and not self.header_printed: self.header_printed = True return h def format_columns(r, is_strong): return r if not is_strong else r[:-1] + ("**" + r[-1] + "**",) def table(title, results, is_strong=False, is_open=False): if not results: return "" rows = [ row(format_columns(ReportFormatter.values(r), is_strong)) for r in results ] table = header( title if self.single_table else "", ReportFormatter.header_for(results[0]), ) + "".join(rows) return ( table if self.single_table else SECTION.format( title, len(results), table, "open" if is_open else "" ) ) return "\n" + "".join( [ table("Regression", self.comparator.decreased, True, True), table("Improvement", self.comparator.increased, True), ( "" if self.changes_only else table("No Changes", self.comparator.unchanged) ), table("Added", self.comparator.added, is_open=True), table("Removed", self.comparator.removed, is_open=True), ] ) HTML = """ {0}
""" HTML_HEADER_ROW = """ {0} ({1}) {2} {3} {4} {5} """ HTML_ROW = """ {0} {1} {2} {3} {5} """ def html(self): """Report results of benchmark comparisons in HTML format.""" def row(name, old, new, delta, speedup, speedup_color): return self.HTML_ROW.format(name, old, new, delta, speedup_color, speedup) def header(contents): return self.HTML_HEADER_ROW.format(*contents) def table(title, results, speedup_color): rows = [ row(*(ReportFormatter.values(r) + (speedup_color,))) for r in results ] return ( "" if not rows else header( (title, len(results)) + ReportFormatter.header_for(results[0])[1:] ) + "".join(rows) ) return self.HTML.format( "".join( [ table("Regression", self.comparator.decreased, "red"), table("Improvement", self.comparator.increased, "green"), ( "" if self.changes_only else table("No Changes", self.comparator.unchanged, "black") ), table("Added", self.comparator.added, ""), table("Removed", self.comparator.removed, ""), ] ) ) def parse_args(args): """Parse command line arguments and set default values.""" parser = argparse.ArgumentParser(description="Compare Performance tests.") parser.add_argument( "--old-file", help="Baseline performance test suite (csv file)", required=True ) parser.add_argument( "--new-file", help="New performance test suite (csv file)", required=True ) parser.add_argument( "--format", choices=["markdown", "git", "html"], help="Output format. Default is markdown.", default="markdown", ) parser.add_argument("--output", help="Output file name") parser.add_argument( "--changes-only", help="Output only affected tests", action="store_true" ) parser.add_argument( "--single-table", help="Combine data in a single table in git and markdown formats", action="store_true", ) parser.add_argument( "--delta-threshold", help="Delta threshold. Default 0.05.", type=float, default=0.05, ) return parser.parse_args(args) def create_report( old_results, new_results, delta_threshold, format, changes_only=True, single_table=True, ): comparator = TestComparator(old_results, new_results, delta_threshold) formatter = ReportFormatter(comparator, changes_only, single_table) formats = { "markdown": formatter.markdown, "git": formatter.git, "html": formatter.html, } report = formats[format]() return report def main(): """Compare benchmarks for changes in a formatted report.""" args = parse_args(sys.argv[1:]) report = create_report( LogParser.results_from_file(args.old_file), LogParser.results_from_file(args.new_file), args.delta_threshold, args.format, args.changes_only, args.single_table, ) print(report) if args.output: with open(args.output, "w") as f: f.write(report) if __name__ == "__main__": sys.exit(main())