//===----------------------------------------------------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// Returns the minimum element in `elements`. /// /// Requires: `elements` is non-empty. O(elements.count()) @availability(*, unavailable, message="call the 'minElement()' method on the sequence") public func minElement< R : SequenceType where R.Generator.Element : Comparable>(elements: R) -> R.Generator.Element { return elements.minElement()! } /// Returns the maximum element in `elements`. /// /// Requires: `elements` is non-empty. O(elements.count()) @availability(*, unavailable, message="call the 'maxElement()' method on the sequence") public func maxElement< R : SequenceType where R.Generator.Element : Comparable>(elements: R) -> R.Generator.Element { return elements.maxElement()! } /// Returns the first index where `value` appears in `domain` or `nil` if /// `value` is not found. /// /// - Complexity: O(`domain.count()`) @availability(*, unavailable, message="call the 'indexOf()' method on the collection") public func find< C: CollectionType where C.Generator.Element : Equatable >(domain: C, _ value: C.Generator.Element) -> C.Index? { // FIXME(prext): remove this function when protocol extensions land. return domain.indexOf(value) } /// Return the lesser of `x` and `y` public func min(x: T, _ y: T) -> T { var r = x if y < x { r = y } return r } /// Return the least argument passed public func min(x: T, _ y: T, _ z: T, _ rest: T...) -> T { var r = x if y < x { r = y } if z < r { r = z } for t in rest { if t < r { r = t } } return r } /// Return the greater of `x` and `y` public func max(x: T, _ y: T) -> T { var r = y if y < x { r = x } return r } /// Return the greatest argument passed public func max(x: T, _ y: T, _ z: T, _ rest: T...) -> T { var r = y if y < x { r = x } if r < z { r = z } for t in rest { if t >= r { r = t } } return r } /// Return the result of slicing `elements` into sub-sequences that /// don't contain elements satisfying the predicate `isSeparator`. /// /// - parameter maxSplit: the maximum number of slices to return, minus 1. /// If `maxSplit + 1` slices would otherwise be returned, the /// algorithm stops splitting and returns a suffix of `elements` /// /// - parameter allowEmptySlices: if true, an empty slice is produced in /// the result for each pair of consecutive public func split( elements: S, maxSplit: Int = Int.max, allowEmptySlices: Bool = false, @noescape isSeparator: (S.Generator.Element) -> R ) -> [S.SubSlice] { var result = Array() // FIXME: could be simplified pending // (ternary operator not resolving some/none) var startIndex: Optional = allowEmptySlices ? .Some(elements.startIndex) : .None var splits = 0 for j in elements.indices { if isSeparator(elements[j]) { if startIndex != nil { let i = startIndex! result.append(elements[i..= maxSplit { break } if !allowEmptySlices { startIndex = .None } } } else { if startIndex == nil { startIndex = .Some(j) } } } switch startIndex { case let i?: result.append(elements[i..(s: S0, _ prefix: S1) -> Bool { return s.startsWith(prefix) } /// Return true iff `s` begins with elements equivalent to those of /// `prefix`, using `isEquivalent` as the equivalence test. /// /// Requires: `isEquivalent` is an [equivalence relation](http://en.wikipedia.org/wiki/Equivalence_relation) @availability(*, unavailable, message="call the 'startsWith()' method on the sequence") public func startsWith< S0 : SequenceType, S1 : SequenceType where S0.Generator.Element == S1.Generator.Element >(s: S0, _ prefix: S1, @noescape _ isEquivalent: (S1.Generator.Element, S1.Generator.Element) -> Bool) -> Bool { return s.startsWith(prefix, isEquivalent: isEquivalent) } /// The `GeneratorType` for `EnumerateSequence`. `EnumerateGenerator` /// wraps a `Base` `GeneratorType` and yields successive `Int` values, /// starting at zero, along with the elements of the underlying /// `Base`: /// /// var g = EnumerateGenerator(["foo", "bar"].generate()) /// g.next() // (0, "foo") /// g.next() // (1, "bar") /// g.next() // nil /// /// - Note: Idiomatic usage is to call `enumerate` instead of /// constructing an `EnumerateGenerator` directly. public struct EnumerateGenerator< Base: GeneratorType > : GeneratorType, SequenceType { /// The type of element returned by `next()`. public typealias Element = (index: Int, element: Base.Element) var base: Base var count: Int /// Construct from a `Base` generator public init(_ base: Base) { self.base = base count = 0 } /// Advance to the next element and return it, or `nil` if no next /// element exists. /// /// Requires: no preceding call to `self.next()` has returned `nil`. public mutating func next() -> Element? { let b = base.next() if b == nil { return .None } return .Some((index: count++, element: b!)) } /// A type whose instances can produce the elements of this /// sequence, in order. public typealias Generator = EnumerateGenerator /// `EnumerateGenerator` is also a `SequenceType`, so it /// `generate`s a copy of itself public func generate() -> Generator { return self } } /// The `SequenceType` returned by `enumerate()`. `EnumerateSequence` /// is a sequence of pairs (*n*, *x*), where *n*s are consecutive /// `Int`s starting at zero, and *x*s are the elements of a `Base` /// `SequenceType`: /// /// var s = EnumerateSequence(["foo", "bar"]) /// Array(s) // [(0, "foo"), (1, "bar")] /// /// - Note: Idiomatic usage is to call `enumerate` instead of /// constructing an `EnumerateSequence` directly. public struct EnumerateSequence : SequenceType { var base: Base /// Construct from a `Base` sequence public init(_ base: Base) { self.base = base } /// Return a *generator* over the elements of this *sequence*. /// /// - Complexity: O(1) public func generate() -> EnumerateGenerator { return EnumerateGenerator(base.generate()) } } /// Return a lazy `SequenceType` containing pairs (*n*, *x*), where /// *n*s are consecutive `Int`s starting at zero, and *x*s are /// the elements of `base`: /// /// > for (n, c) in enumerate("Swift".characters) { /// print("\(n): '\(c)'" ) /// } /// 0: 'S' /// 1: 'w' /// 2: 'i' /// 3: 'f' /// 4: 't' @availability(*, unavailable, message="call the 'enumerate()' method on the sequence") public func enumerate( base: Seq ) -> EnumerateSequence { return base.enumerate() } /// Return `true` iff `a1` and `a2` contain the same elements in the /// same order. @availability(*, unavailable, message="call the 'equal()' method on the sequence") public func equal< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element, S1.Generator.Element : Equatable >(a1: S1, _ a2: S2) -> Bool { // FIXME(prext): remove this function when protocol extensions land. return a1.elementsEqual(a2) } /// Return true iff `a1` and `a2` contain equivalent elements, using /// `isEquivalent` as the equivalence test. /// /// Requires: `isEquivalent` is an [equivalence relation](http://en.wikipedia.org/wiki/Equivalence_relation) @availability(*, unavailable, message="call the 'equal()' method on the sequence") public func equal< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element >(a1: S1, _ a2: S2, @noescape _ isEquivalent: (S1.Generator.Element, S1.Generator.Element) -> Bool) -> Bool { // FIXME(prext): remove this function when protocol extensions land. return a1.elementsEqual(a2, isEquivalent: isEquivalent) } /// Return true iff a1 precedes a2 in a lexicographical ("dictionary") /// ordering, using "<" as the comparison between elements. @availability(*, unavailable, message="call the 'lexicographicalCompare()' method on the sequence") public func lexicographicalCompare< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element, S1.Generator.Element : Comparable>( a1: S1, _ a2: S2) -> Bool { return a1.lexicographicalCompare(a2) } /// Return true iff `a1` precedes `a2` in a lexicographical ("dictionary") /// ordering, using `isOrderedBefore` as the comparison between elements. /// /// Requires: `isOrderedBefore` is a /// [strict weak ordering](http://en.wikipedia.org/wiki/Strict_weak_order#Strict_weak_orderings) /// over the elements of `a1` and `a2`. @availability(*, unavailable, message="call the 'lexicographicalCompare()' method on the sequence") public func lexicographicalCompare< S1 : SequenceType, S2 : SequenceType where S1.Generator.Element == S2.Generator.Element >( a1: S1, _ a2: S2, @noescape isOrderedBefore less: (S1.Generator.Element, S1.Generator.Element) -> Bool ) -> Bool { return a1.lexicographicalCompare(a2, isOrderedBefore: less) } /// Return `true` iff an element in `seq` satisfies `predicate`. @availability(*, unavailable, message="call the 'contains()' method on the sequence") public func contains< S : SequenceType, L : BooleanType >(seq: S, @noescape _ predicate: (S.Generator.Element) -> L) -> Bool { return seq.contains({ predicate($0).boolValue }) } /// Return `true` iff `x` is in `seq`. @availability(*, unavailable, message="call the 'contains()' method on the sequence") public func contains< S : SequenceType where S.Generator.Element : Equatable >(seq: S, _ x: S.Generator.Element) -> Bool { return seq.contains(x) } /// Return the result of repeatedly calling `combine` with an /// accumulated value initialized to `initial` and each element of /// `sequence`, in turn. @availability(*, unavailable, message="call the 'reduce()' method on the sequence") public func reduce( sequence: S, _ initial: U, @noescape _ combine: (U, S.Generator.Element) -> U ) -> U { return sequence.reduce(initial, combine: combine) }