//===--- Frontend.cpp - frontend utility methods --------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file contains utility methods for parsing and performing semantic // on modules. // //===----------------------------------------------------------------------===// #include "swift/Frontend/Frontend.h" #include "swift/AST/ASTContext.h" #include "swift/AST/DiagnosticsFrontend.h" #include "swift/AST/DiagnosticsSema.h" #include "swift/AST/FileSystem.h" #include "swift/AST/Module.h" #include "swift/AST/TypeCheckRequests.h" #include "swift/Basic/FileTypes.h" #include "swift/Basic/SourceManager.h" #include "swift/Basic/Statistic.h" #include "swift/Frontend/ModuleInterfaceLoader.h" #include "swift/Parse/Lexer.h" #include "swift/SIL/SILModule.h" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SILOptimizer/Utils/Generics.h" #include "swift/Serialization/SerializationOptions.h" #include "swift/Serialization/SerializedModuleLoader.h" #include "swift/Serialization/ModuleDependencyScanner.h" #include "swift/Strings.h" #include "swift/Subsystems.h" #include "clang/AST/ASTContext.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Error.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" using namespace swift; CompilerInstance::CompilerInstance() = default; CompilerInstance::~CompilerInstance() = default; std::string CompilerInvocation::getPCHHash() const { using llvm::hash_combine; auto Code = hash_combine(LangOpts.getPCHHashComponents(), FrontendOpts.getPCHHashComponents(), ClangImporterOpts.getPCHHashComponents(), SearchPathOpts.getPCHHashComponents(), DiagnosticOpts.getPCHHashComponents(), SILOpts.getPCHHashComponents(), IRGenOpts.getPCHHashComponents()); return llvm::APInt(64, Code).toString(36, /*Signed=*/false); } const PrimarySpecificPaths & CompilerInvocation::getPrimarySpecificPathsForAtMostOnePrimary() const { return getFrontendOptions().getPrimarySpecificPathsForAtMostOnePrimary(); } const PrimarySpecificPaths & CompilerInvocation::getPrimarySpecificPathsForPrimary( StringRef filename) const { return getFrontendOptions().getPrimarySpecificPathsForPrimary(filename); } const PrimarySpecificPaths & CompilerInvocation::getPrimarySpecificPathsForSourceFile( const SourceFile &SF) const { return getPrimarySpecificPathsForPrimary(SF.getFilename()); } std::string CompilerInvocation::getOutputFilenameForAtMostOnePrimary() const { return getPrimarySpecificPathsForAtMostOnePrimary().OutputFilename; } std::string CompilerInvocation::getMainInputFilenameForDebugInfoForAtMostOnePrimary() const { return getPrimarySpecificPathsForAtMostOnePrimary() .MainInputFilenameForDebugInfo; } std::string CompilerInvocation::getObjCHeaderOutputPathForAtMostOnePrimary() const { return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.ObjCHeaderOutputPath; } std::string CompilerInvocation::getModuleOutputPathForAtMostOnePrimary() const { return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.ModuleOutputPath; } std::string CompilerInvocation::getReferenceDependenciesFilePathForPrimary( StringRef filename) const { return getPrimarySpecificPathsForPrimary(filename) .SupplementaryOutputs.ReferenceDependenciesFilePath; } std::string CompilerInvocation::getSerializedDiagnosticsPathForAtMostOnePrimary() const { return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.SerializedDiagnosticsPath; } std::string CompilerInvocation::getTBDPathForWholeModule() const { assert(getFrontendOptions().InputsAndOutputs.isWholeModule() && "TBDPath only makes sense when the whole module can be seen"); return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.TBDPath; } std::string CompilerInvocation::getLdAddCFileOutputPathForWholeModule() const { assert(getFrontendOptions().InputsAndOutputs.isWholeModule() && "LdAdd cfile only makes sense when the whole module can be seen"); return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.LdAddCFilePath; } std::string CompilerInvocation::getModuleInterfaceOutputPathForWholeModule() const { assert(getFrontendOptions().InputsAndOutputs.isWholeModule() && "ModuleInterfaceOutputPath only makes sense when the whole module " "can be seen"); return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.ModuleInterfaceOutputPath; } std::string CompilerInvocation::getPrivateModuleInterfaceOutputPathForWholeModule() const { assert(getFrontendOptions().InputsAndOutputs.isWholeModule() && "PrivateModuleInterfaceOutputPath only makes sense when the whole " "module can be seen"); return getPrimarySpecificPathsForAtMostOnePrimary() .SupplementaryOutputs.PrivateModuleInterfaceOutputPath; } SerializationOptions CompilerInvocation::computeSerializationOptions( const SupplementaryOutputPaths &outs, const ModuleDecl *module) const { const FrontendOptions &opts = getFrontendOptions(); SerializationOptions serializationOpts; serializationOpts.OutputPath = outs.ModuleOutputPath.c_str(); serializationOpts.DocOutputPath = outs.ModuleDocOutputPath.c_str(); serializationOpts.SourceInfoOutputPath = outs.ModuleSourceInfoOutputPath.c_str(); serializationOpts.GroupInfoPath = opts.GroupInfoPath.c_str(); if (opts.SerializeBridgingHeader && !outs.ModuleOutputPath.empty()) serializationOpts.ImportedHeader = opts.ImplicitObjCHeaderPath; serializationOpts.ModuleLinkName = opts.ModuleLinkName; serializationOpts.UserModuleVersion = opts.UserModuleVersion; serializationOpts.ExtraClangOptions = getClangImporterOptions().ExtraArgs; if (opts.EmitSymbolGraph) { if (!opts.SymbolGraphOutputDir.empty()) { serializationOpts.SymbolGraphOutputDir = opts.SymbolGraphOutputDir; } else { serializationOpts.SymbolGraphOutputDir = serializationOpts.OutputPath; } SmallString<256> OutputDir(serializationOpts.SymbolGraphOutputDir); llvm::sys::fs::make_absolute(OutputDir); serializationOpts.SymbolGraphOutputDir = OutputDir.str().str(); } serializationOpts.SkipSymbolGraphInheritedDocs = opts.SkipInheritedDocs; if (!getIRGenOptions().ForceLoadSymbolName.empty()) serializationOpts.AutolinkForceLoad = true; // Options contain information about the developer's computer, // so only serialize them if the module isn't going to be shipped to // the public. serializationOpts.SerializeOptionsForDebugging = opts.SerializeOptionsForDebugging.getValueOr( !isModuleExternallyConsumed(module)); serializationOpts.DisableCrossModuleIncrementalInfo = opts.DisableCrossModuleIncrementalBuild; serializationOpts.StaticLibrary = opts.Static; return serializationOpts; } Lowering::TypeConverter &CompilerInstance::getSILTypes() { if (auto *tc = TheSILTypes.get()) return *tc; auto *tc = new Lowering::TypeConverter(*getMainModule()); TheSILTypes.reset(tc); return *tc; } void CompilerInstance::recordPrimaryInputBuffer(unsigned BufID) { PrimaryBufferIDs.insert(BufID); } bool CompilerInstance::setUpASTContextIfNeeded() { if (Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::CompileModuleFromInterface || Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::TypecheckModuleFromInterface) { // Compiling a module interface from source uses its own CompilerInstance // with options read from the input file. Don't bother setting up an // ASTContext at this level. return false; } // For the time being, we only need to record dependencies in batch mode // and single file builds. Invocation.getLangOptions().RecordRequestReferences = !isWholeModuleCompilation(); Context.reset(ASTContext::get( Invocation.getLangOptions(), Invocation.getTypeCheckerOptions(), Invocation.getSearchPathOptions(), Invocation.getClangImporterOptions(), SourceMgr, Diagnostics)); registerParseRequestFunctions(Context->evaluator); registerTypeCheckerRequestFunctions(Context->evaluator); registerSILGenRequestFunctions(Context->evaluator); registerSILOptimizerRequestFunctions(Context->evaluator); registerTBDGenRequestFunctions(Context->evaluator); registerIRGenRequestFunctions(Context->evaluator); // Migrator, indexing and typo correction need some IDE requests. // The integrated REPL needs IDE requests for completion. if (Invocation.getMigratorOptions().shouldRunMigrator() || !Invocation.getFrontendOptions().IndexStorePath.empty() || Invocation.getLangOptions().TypoCorrectionLimit || Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::REPL) { registerIDERequestFunctions(Context->evaluator); } registerIRGenSILTransforms(*Context); if (setUpModuleLoaders()) return true; return false; } void CompilerInstance::setupStatsReporter() { const auto &Invok = getInvocation(); const std::string &StatsOutputDir = Invok.getFrontendOptions().StatsOutputDir; if (StatsOutputDir.empty()) return; auto silOptModeArgStr = [](OptimizationMode mode) -> StringRef { switch (mode) { case OptimizationMode::ForSpeed: return "O"; case OptimizationMode::ForSize: return "Osize"; default: return "Onone"; } }; auto getClangSourceManager = [](ASTContext &Ctx) -> clang::SourceManager * { if (auto *clangImporter = static_cast( Ctx.getClangModuleLoader())) { return &clangImporter->getClangASTContext().getSourceManager(); } return nullptr; }; const auto &FEOpts = Invok.getFrontendOptions(); const auto &LangOpts = Invok.getLangOptions(); const auto &SILOpts = Invok.getSILOptions(); const std::string &OutFile = FEOpts.InputsAndOutputs.lastInputProducingOutput().outputFilename(); auto Reporter = std::make_unique( "swift-frontend", FEOpts.ModuleName, FEOpts.InputsAndOutputs.getStatsFileMangledInputName(), LangOpts.Target.normalize(), llvm::sys::path::extension(OutFile), silOptModeArgStr(SILOpts.OptMode), StatsOutputDir, &getSourceMgr(), getClangSourceManager(getASTContext()), Invok.getFrontendOptions().TraceStats, Invok.getFrontendOptions().ProfileEvents, Invok.getFrontendOptions().ProfileEntities); // Hand the stats reporter down to the ASTContext so the rest of the compiler // can use it. getASTContext().setStatsReporter(Reporter.get()); Stats = std::move(Reporter); } bool CompilerInstance::setupDiagnosticVerifierIfNeeded() { auto &diagOpts = Invocation.getDiagnosticOptions(); bool hadError = false; if (diagOpts.VerifyMode != DiagnosticOptions::NoVerify) { DiagVerifier = std::make_unique( SourceMgr, InputSourceCodeBufferIDs, diagOpts.VerifyMode == DiagnosticOptions::VerifyAndApplyFixes, diagOpts.VerifyIgnoreUnknown); for (const auto &filename : diagOpts.AdditionalVerifierFiles) { auto result = getFileSystem().getBufferForFile(filename); if (!result) { Diagnostics.diagnose(SourceLoc(), diag::error_open_input_file, filename, result.getError().message()); hadError |= true; continue; } auto bufferID = SourceMgr.addNewSourceBuffer(std::move(result.get())); DiagVerifier->appendAdditionalBufferID(bufferID); } addDiagnosticConsumer(DiagVerifier.get()); } return hadError; } void CompilerInstance::setupDependencyTrackerIfNeeded() { assert(!Context && "Must be called before the ASTContext is created"); const auto &Invocation = getInvocation(); const auto &opts = Invocation.getFrontendOptions(); // Note that we may track dependencies even when we don't need to write them // directly; in particular, -track-system-dependencies affects how module // interfaces get loaded, and so we need to be consistently tracking system // dependencies throughout the compiler. auto collectionMode = opts.IntermoduleDependencyTracking; if (!collectionMode) { // If we have an output path specified, but no other tracking options, // default to non-system dependency tracking. if (opts.InputsAndOutputs.hasDependencyTrackerPath() || !opts.IndexStorePath.empty()) { collectionMode = IntermoduleDepTrackingMode::ExcludeSystem; } } if (!collectionMode) return; DepTracker = std::make_unique(*collectionMode); } bool CompilerInstance::setup(const CompilerInvocation &Invok) { Invocation = Invok; setupDependencyTrackerIfNeeded(); // If initializing the overlay file system fails there's no sense in // continuing because the compiler will read the wrong files. if (setUpVirtualFileSystemOverlays()) return true; setUpLLVMArguments(); setUpDiagnosticOptions(); assert(Lexer::isIdentifier(Invocation.getModuleName())); if (setUpInputs()) return true; if (setUpASTContextIfNeeded()) return true; setupStatsReporter(); if (setupDiagnosticVerifierIfNeeded()) return true; return false; } static bool loadAndValidateVFSOverlay( const std::string &File, const llvm::IntrusiveRefCntPtr &BaseFS, const llvm::IntrusiveRefCntPtr &OverlayFS, DiagnosticEngine &Diag) { auto Buffer = BaseFS->getBufferForFile(File); if (!Buffer) { Diag.diagnose(SourceLoc(), diag::cannot_open_file, File, Buffer.getError().message()); return true; } auto VFS = llvm::vfs::getVFSFromYAML(std::move(Buffer.get()), nullptr, File); if (!VFS) { Diag.diagnose(SourceLoc(), diag::invalid_vfs_overlay_file, File); return true; } OverlayFS->pushOverlay(std::move(VFS)); return false; } bool CompilerInstance::setUpVirtualFileSystemOverlays() { auto BaseFS = SourceMgr.getFileSystem(); auto OverlayFS = llvm::IntrusiveRefCntPtr( new llvm::vfs::OverlayFileSystem(BaseFS)); bool hadAnyFailure = false; bool hasOverlays = false; for (const auto &File : Invocation.getSearchPathOptions().VFSOverlayFiles) { hasOverlays = true; hadAnyFailure |= loadAndValidateVFSOverlay(File, BaseFS, OverlayFS, Diagnostics); } // If we successfully loaded all the overlays, let the source manager and // diagnostic engine take advantage of the overlay file system. if (!hadAnyFailure && hasOverlays) { SourceMgr.setFileSystem(OverlayFS); } return hadAnyFailure; } void CompilerInstance::setUpLLVMArguments() { // Honor -Xllvm. if (!Invocation.getFrontendOptions().LLVMArgs.empty()) { llvm::SmallVector Args; Args.push_back("swift (LLVM option parsing)"); for (unsigned i = 0, e = Invocation.getFrontendOptions().LLVMArgs.size(); i != e; ++i) Args.push_back(Invocation.getFrontendOptions().LLVMArgs[i].c_str()); Args.push_back(nullptr); llvm::cl::ParseCommandLineOptions(Args.size()-1, Args.data()); } } void CompilerInstance::setUpDiagnosticOptions() { if (Invocation.getDiagnosticOptions().ShowDiagnosticsAfterFatalError) { Diagnostics.setShowDiagnosticsAfterFatalError(); } if (Invocation.getDiagnosticOptions().SuppressWarnings) { Diagnostics.setSuppressWarnings(true); } if (Invocation.getDiagnosticOptions().WarningsAsErrors) { Diagnostics.setWarningsAsErrors(true); } if (Invocation.getDiagnosticOptions().PrintDiagnosticNames) { Diagnostics.setPrintDiagnosticNames(true); } Diagnostics.setDiagnosticDocumentationPath( Invocation.getDiagnosticOptions().DiagnosticDocumentationPath); if (!Invocation.getDiagnosticOptions().LocalizationCode.empty()) { Diagnostics.setLocalization( Invocation.getDiagnosticOptions().LocalizationCode, Invocation.getDiagnosticOptions().LocalizationPath); } } // The ordering of ModuleLoaders is important! // // 1. SourceLoader: This is a hack and only the compiler's tests are using it, // to avoid writing repetitive code involving generating modules/interfaces. // Ideally, we'd get rid of it. // 2. MemoryBufferSerializedModuleLoader: This is used by LLDB, because it might // already have the module available in memory. // 3. ExplicitSwiftModuleLoader: Loads a serialized module if it can, provided // this modules was specified as an explicit input to the compiler. // 4. ModuleInterfaceLoader: Tries to find an up-to-date swiftmodule. If it // succeeds, it issues a particular "error" (see // [NOTE: ModuleInterfaceLoader-defer-to-ImplicitSerializedModuleLoader]), // which is interpreted by the overarching loader as a command to use the // ImplicitSerializedModuleLoader. If we failed to find a .swiftmodule, // this falls back to using an interface. Actual errors lead to diagnostics. // 5. ImplicitSerializedModuleLoader: Loads a serialized module if it can. // Used for implicit loading of modules from the compiler's search paths. // 6. ClangImporter: This must come after all the Swift module loaders because // in the presence of overlays and mixed-source frameworks, we want to prefer // the overlay or framework module over the underlying Clang module. bool CompilerInstance::setUpModuleLoaders() { if (hasSourceImport()) { bool enableLibraryEvolution = Invocation.getFrontendOptions().EnableLibraryEvolution; Context->addModuleLoader(SourceLoader::create(*Context, enableLibraryEvolution, getDependencyTracker())); } auto MLM = ModuleLoadingMode::PreferSerialized; if (auto forceModuleLoadingMode = llvm::sys::Process::GetEnv("SWIFT_FORCE_MODULE_LOADING")) { if (*forceModuleLoadingMode == "prefer-interface" || *forceModuleLoadingMode == "prefer-parseable") MLM = ModuleLoadingMode::PreferInterface; else if (*forceModuleLoadingMode == "prefer-serialized") MLM = ModuleLoadingMode::PreferSerialized; else if (*forceModuleLoadingMode == "only-interface" || *forceModuleLoadingMode == "only-parseable") MLM = ModuleLoadingMode::OnlyInterface; else if (*forceModuleLoadingMode == "only-serialized") MLM = ModuleLoadingMode::OnlySerialized; else { Diagnostics.diagnose(SourceLoc(), diag::unknown_forced_module_loading_mode, *forceModuleLoadingMode); return true; } } auto IgnoreSourceInfoFile = Invocation.getFrontendOptions().IgnoreSwiftSourceInfo; if (Invocation.getLangOptions().EnableMemoryBufferImporter) { auto MemoryBufferLoader = MemoryBufferSerializedModuleLoader::create( *Context, getDependencyTracker(), MLM, IgnoreSourceInfoFile); this->MemoryBufferLoader = MemoryBufferLoader.get(); Context->addModuleLoader(std::move(MemoryBufferLoader)); } // Wire up the Clang importer. If the user has specified an SDK, use it. // Otherwise, we just keep it around as our interface to Clang's ABI // knowledge. std::unique_ptr clangImporter = ClangImporter::create(*Context, Invocation.getPCHHash(), getDependencyTracker()); if (!clangImporter) { Diagnostics.diagnose(SourceLoc(), diag::error_clang_importer_create_fail); return true; } // Configure ModuleInterfaceChecker for the ASTContext. auto const &Clang = clangImporter->getClangInstance(); std::string ModuleCachePath = getModuleCachePathFromClang(Clang); auto &FEOpts = Invocation.getFrontendOptions(); ModuleInterfaceLoaderOptions LoaderOpts(FEOpts); Context->addModuleInterfaceChecker( std::make_unique( *Context, ModuleCachePath, FEOpts.PrebuiltModuleCachePath, FEOpts.BackupModuleInterfaceDir, LoaderOpts, RequireOSSAModules_t(Invocation.getSILOptions()))); // If implicit modules are disabled, we need to install an explicit module // loader. bool ExplicitModuleBuild = Invocation.getFrontendOptions().DisableImplicitModules; if (ExplicitModuleBuild) { auto ESML = ExplicitSwiftModuleLoader::create( *Context, getDependencyTracker(), MLM, Invocation.getSearchPathOptions().ExplicitSwiftModules, Invocation.getSearchPathOptions().ExplicitSwiftModuleMap, IgnoreSourceInfoFile); this->DefaultSerializedLoader = ESML.get(); Context->addModuleLoader(std::move(ESML)); } else { if (MLM != ModuleLoadingMode::OnlySerialized) { // We only need ModuleInterfaceLoader for implicit modules. auto PIML = ModuleInterfaceLoader::create( *Context, *static_cast(Context ->getModuleInterfaceChecker()), getDependencyTracker(), MLM, FEOpts.PreferInterfaceForModules, IgnoreSourceInfoFile); Context->addModuleLoader(std::move(PIML), false, false, true); } std::unique_ptr ISML = ImplicitSerializedModuleLoader::create(*Context, getDependencyTracker(), MLM, IgnoreSourceInfoFile); this->DefaultSerializedLoader = ISML.get(); Context->addModuleLoader(std::move(ISML)); } Context->addModuleLoader(std::move(clangImporter), /*isClang*/ true); // When scanning for dependencies, we must add the scanner loaders in order to handle // ASTContext operations such as canImportModule if (Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::ScanDependencies) { auto ModuleCachePath = getModuleCachePathFromClang(Context ->getClangModuleLoader()->getClangInstance()); auto &FEOpts = Invocation.getFrontendOptions(); ModuleInterfaceLoaderOptions LoaderOpts(FEOpts); InterfaceSubContextDelegateImpl ASTDelegate( Context->SourceMgr, &Context->Diags, Context->SearchPathOpts, Context->LangOpts, Context->ClangImporterOpts, LoaderOpts, /*buildModuleCacheDirIfAbsent*/ false, ModuleCachePath, FEOpts.PrebuiltModuleCachePath, FEOpts.BackupModuleInterfaceDir, FEOpts.SerializeModuleInterfaceDependencyHashes, FEOpts.shouldTrackSystemDependencies(), RequireOSSAModules_t(Invocation.getSILOptions())); auto mainModuleName = Context->getIdentifier(FEOpts.ModuleName); std::unique_ptr PSMS = std::make_unique(*Context, MLM, mainModuleName, Context->SearchPathOpts.PlaceholderDependencyModuleMap, ASTDelegate); Context->addModuleLoader(std::move(PSMS)); } return false; } Optional CompilerInstance::setUpCodeCompletionBuffer() { Optional codeCompletionBufferID; auto codeCompletePoint = Invocation.getCodeCompletionPoint(); if (codeCompletePoint.first) { auto memBuf = codeCompletePoint.first; // CompilerInvocation doesn't own the buffers, copy to a new buffer. codeCompletionBufferID = SourceMgr.addMemBufferCopy(memBuf); InputSourceCodeBufferIDs.push_back(*codeCompletionBufferID); SourceMgr.setCodeCompletionPoint(*codeCompletionBufferID, codeCompletePoint.second); } return codeCompletionBufferID; } SourceFile *CompilerInstance::getCodeCompletionFile() const { auto *mod = getMainModule(); auto &eval = mod->getASTContext().evaluator; return evaluateOrDefault(eval, CodeCompletionFileRequest{mod}, nullptr); } bool CompilerInstance::setUpInputs() { // Adds to InputSourceCodeBufferIDs, so may need to happen before the // per-input setup. const Optional codeCompletionBufferID = setUpCodeCompletionBuffer(); const auto &Inputs = Invocation.getFrontendOptions().InputsAndOutputs.getAllInputs(); const bool shouldRecover = Invocation.getFrontendOptions() .InputsAndOutputs.shouldRecoverMissingInputs(); bool hasFailed = false; for (const InputFile &input : Inputs) { bool failed = false; Optional bufferID = getRecordedBufferID(input, shouldRecover, failed); hasFailed |= failed; if (!bufferID.hasValue() || !input.isPrimary()) continue; recordPrimaryInputBuffer(*bufferID); } if (hasFailed) return true; // Set the primary file to the code-completion point if one exists. if (codeCompletionBufferID.hasValue() && !isPrimaryInput(*codeCompletionBufferID)) { assert(PrimaryBufferIDs.empty() && "re-setting PrimaryBufferID"); recordPrimaryInputBuffer(*codeCompletionBufferID); } return false; } Optional CompilerInstance::getRecordedBufferID(const InputFile &input, const bool shouldRecover, bool &failed) { if (!input.getBuffer()) { if (Optional existingBufferID = SourceMgr.getIDForBufferIdentifier(input.getFileName())) { return existingBufferID; } } auto buffers = getInputBuffersIfPresent(input); // Recover by dummy buffer if requested. if (!buffers.hasValue() && shouldRecover && input.getType() == file_types::TY_Swift) { buffers = ModuleBuffers(llvm::MemoryBuffer::getMemBuffer( "// missing file\n", input.getFileName())); } if (!buffers.hasValue()) { failed = true; return None; } // FIXME: The fact that this test happens twice, for some cases, // suggests that setupInputs could use another round of refactoring. if (serialization::isSerializedAST(buffers->ModuleBuffer->getBuffer())) { PartialModules.push_back(std::move(*buffers)); return None; } assert(buffers->ModuleDocBuffer.get() == nullptr); assert(buffers->ModuleSourceInfoBuffer.get() == nullptr); // Transfer ownership of the MemoryBuffer to the SourceMgr. unsigned bufferID = SourceMgr.addNewSourceBuffer(std::move(buffers->ModuleBuffer)); InputSourceCodeBufferIDs.push_back(bufferID); return bufferID; } Optional CompilerInstance::getInputBuffersIfPresent( const InputFile &input) { if (auto b = input.getBuffer()) { return ModuleBuffers(llvm::MemoryBuffer::getMemBufferCopy(b->getBuffer(), b->getBufferIdentifier())); } // FIXME: Working with filenames is fragile, maybe use the real path // or have some kind of FileManager. using FileOrError = llvm::ErrorOr>; FileOrError inputFileOrErr = swift::vfs::getFileOrSTDIN(getFileSystem(), input.getFileName(), /*FileSize*/-1, /*RequiresNullTerminator*/true, /*IsVolatile*/false, /*Bad File Descriptor Retry*/getInvocation().getFrontendOptions() .BadFileDescriptorRetryCount); if (!inputFileOrErr) { Diagnostics.diagnose(SourceLoc(), diag::error_open_input_file, input.getFileName(), inputFileOrErr.getError().message()); return None; } if (!serialization::isSerializedAST((*inputFileOrErr)->getBuffer())) return ModuleBuffers(std::move(*inputFileOrErr)); auto swiftdoc = openModuleDoc(input); auto sourceinfo = openModuleSourceInfo(input); return ModuleBuffers(std::move(*inputFileOrErr), swiftdoc.hasValue() ? std::move(swiftdoc.getValue()) : nullptr, sourceinfo.hasValue() ? std::move(sourceinfo.getValue()) : nullptr); } Optional> CompilerInstance::openModuleSourceInfo(const InputFile &input) { llvm::SmallString<128> pathWithoutProjectDir(input.getFileName()); llvm::sys::path::replace_extension(pathWithoutProjectDir, file_types::getExtension(file_types::TY_SwiftSourceInfoFile)); llvm::SmallString<128> pathWithProjectDir = pathWithoutProjectDir.str(); StringRef fileName = llvm::sys::path::filename(pathWithoutProjectDir); llvm::sys::path::remove_filename(pathWithProjectDir); llvm::sys::path::append(pathWithProjectDir, "Project"); llvm::sys::path::append(pathWithProjectDir, fileName); if (auto sourceInfoFileOrErr = swift::vfs::getFileOrSTDIN(getFileSystem(), pathWithProjectDir)) return std::move(*sourceInfoFileOrErr); if (auto sourceInfoFileOrErr = swift::vfs::getFileOrSTDIN(getFileSystem(), pathWithoutProjectDir)) return std::move(*sourceInfoFileOrErr); return None; } Optional> CompilerInstance::openModuleDoc(const InputFile &input) { llvm::SmallString<128> moduleDocFilePath(input.getFileName()); llvm::sys::path::replace_extension( moduleDocFilePath, file_types::getExtension(file_types::TY_SwiftModuleDocFile)); using FileOrError = llvm::ErrorOr>; FileOrError moduleDocFileOrErr = swift::vfs::getFileOrSTDIN(getFileSystem(), moduleDocFilePath); if (moduleDocFileOrErr) return std::move(*moduleDocFileOrErr); if (moduleDocFileOrErr.getError() == std::errc::no_such_file_or_directory) return std::unique_ptr(); Diagnostics.diagnose(SourceLoc(), diag::error_open_input_file, moduleDocFilePath, moduleDocFileOrErr.getError().message()); return None; } /// Enable Swift concurrency on a per-target basis static bool shouldImportConcurrencyByDefault(const llvm::Triple &target) { if (target.isOSDarwin()) return true; if (target.isOSWindows()) return true; if (target.isOSLinux()) return true; #if SWIFT_ENABLE_EXPERIMENTAL_CONCURRENCY if (target.isOSOpenBSD()) return true; #endif return false; } bool CompilerInvocation::shouldImportSwiftConcurrency() const { return shouldImportConcurrencyByDefault(getLangOptions().Target) && !getLangOptions().DisableImplicitConcurrencyModuleImport && getFrontendOptions().InputMode != FrontendOptions::ParseInputMode::SwiftModuleInterface; } bool CompilerInvocation::shouldImportSwiftDistributed() const { return getLangOptions().EnableExperimentalDistributed && getFrontendOptions().InputMode != FrontendOptions::ParseInputMode::SwiftModuleInterface; } /// Implicitly import the SwiftOnoneSupport module in non-optimized /// builds. This allows for use of popular specialized functions /// from the standard library, which makes the non-optimized builds /// execute much faster. bool CompilerInvocation::shouldImportSwiftONoneSupport() const { if (getImplicitStdlibKind() != ImplicitStdlibKind::Stdlib) return false; if (getSILOptions().shouldOptimize()) return false; // If we are not executing an action that has a dependency on // SwiftOnoneSupport, don't load it. // // FIXME: Knowledge of SwiftOnoneSupport loading in the Frontend is a layering // violation. However, SIL currently does not have a way to express this // dependency itself for the benefit of autolinking. In the mean time, we // will be conservative and say that actions like -emit-silgen and // -emit-sibgen - that don't really involve the optimizer - have a // strict dependency on SwiftOnoneSupport. // // This optimization is disabled by -track-system-dependencies to preserve // the explicit dependency. const auto &options = getFrontendOptions(); return options.shouldTrackSystemDependencies() || FrontendOptions::doesActionGenerateSIL(options.RequestedAction); } void CompilerInstance::verifyImplicitConcurrencyImport() { if (Invocation.shouldImportSwiftConcurrency() && !canImportSwiftConcurrency()) { Diagnostics.diagnose(SourceLoc(), diag::warn_implicit_concurrency_import_failed); } } bool CompilerInstance::canImportSwiftConcurrency() const { return getASTContext().canImportModule( {getASTContext().getIdentifier(SWIFT_CONCURRENCY_NAME), SourceLoc()}); } ImplicitImportInfo CompilerInstance::getImplicitImportInfo() const { auto &frontendOpts = Invocation.getFrontendOptions(); ImplicitImportInfo imports; imports.StdlibKind = Invocation.getImplicitStdlibKind(); auto pushImport = [&](StringRef moduleStr, ImportOptions options = ImportOptions()) { ImportPath::Builder importPath(Context->getIdentifier(moduleStr)); UnloadedImportedModule import(importPath.copyTo(*Context), /*isScoped=*/false); imports.AdditionalUnloadedImports.emplace_back(import, options); }; for (auto &moduleStrAndTestable : frontendOpts.getImplicitImportModuleNames()) { pushImport(moduleStrAndTestable.first, moduleStrAndTestable.second ? ImportFlags::Testable : ImportOptions()); } if (Invocation.shouldImportSwiftONoneSupport()) { pushImport(SWIFT_ONONE_SUPPORT); } // FIXME: The canImport check is required for compatibility // with older SDKs. Longer term solution is to have the driver make // the decision on the implicit import: rdar://76996377 if (Invocation.shouldImportSwiftConcurrency()) { switch (imports.StdlibKind) { case ImplicitStdlibKind::Builtin: case ImplicitStdlibKind::None: break; case ImplicitStdlibKind::Stdlib: if (canImportSwiftConcurrency()) pushImport(SWIFT_CONCURRENCY_NAME); break; } } imports.ShouldImportUnderlyingModule = frontendOpts.ImportUnderlyingModule; imports.BridgingHeaderPath = frontendOpts.ImplicitObjCHeaderPath; return imports; } static Optional tryMatchInputModeToSourceFileKind(FrontendOptions::ParseInputMode mode) { switch (mode) { case FrontendOptions::ParseInputMode::SwiftLibrary: // A Swift file in -parse-as-library mode is a library file. return SourceFileKind::Library; case FrontendOptions::ParseInputMode::SIL: // A Swift file in -parse-sil mode is a SIL file. return SourceFileKind::SIL; case FrontendOptions::ParseInputMode::SwiftModuleInterface: return SourceFileKind::Interface; case FrontendOptions::ParseInputMode::Swift: return SourceFileKind::Main; } llvm::outs() << (unsigned)mode; llvm_unreachable("Unhandled input parsing mode!"); } SourceFile * CompilerInstance::computeMainSourceFileForModule(ModuleDecl *mod) const { // Swift libraries cannot have a 'main'. const auto &FOpts = getInvocation().getFrontendOptions(); const auto &Inputs = FOpts.InputsAndOutputs.getAllInputs(); if (FOpts.InputMode == FrontendOptions::ParseInputMode::SwiftLibrary) { return nullptr; } // Try to pull out a file called 'main.swift'. auto MainInputIter = std::find_if(Inputs.begin(), Inputs.end(), [](const InputFile &input) { return input.getType() == file_types::TY_Swift && llvm::sys::path::filename(input.getFileName()) == "main.swift"; }); Optional MainBufferID = None; if (MainInputIter != Inputs.end()) { MainBufferID = getSourceMgr().getIDForBufferIdentifier(MainInputIter->getFileName()); } else if (InputSourceCodeBufferIDs.size() == 1) { // Barring that, just nominate a single Swift file as the main file. MainBufferID.emplace(InputSourceCodeBufferIDs.front()); } if (!MainBufferID.hasValue()) { return nullptr; } auto SFK = tryMatchInputModeToSourceFileKind(FOpts.InputMode); if (!SFK.hasValue()) { return nullptr; } return createSourceFileForMainModule(mod, *SFK, *MainBufferID, /*isMainBuffer*/true); } bool CompilerInstance::createFilesForMainModule( ModuleDecl *mod, SmallVectorImpl &files) const { // Try to pull out the main source file, if any. This ensures that it // is at the start of the list of files. Optional MainBufferID = None; if (SourceFile *mainSourceFile = computeMainSourceFileForModule(mod)) { MainBufferID = mainSourceFile->getBufferID(); files.push_back(mainSourceFile); } // If we have partial modules to load, do so now, bailing if any failed to // load. if (!PartialModules.empty()) { if (loadPartialModulesAndImplicitImports(mod, files)) return true; } // Finally add the library files. // FIXME: This is the only demand point for InputSourceCodeBufferIDs. We // should compute this list of source files lazily. for (auto BufferID : InputSourceCodeBufferIDs) { // Skip the main buffer, we've already handled it. if (BufferID == MainBufferID) continue; auto *libraryFile = createSourceFileForMainModule(mod, SourceFileKind::Library, BufferID); files.push_back(libraryFile); } return false; } ModuleDecl *CompilerInstance::getMainModule() const { if (!MainModule) { Identifier ID = Context->getIdentifier(Invocation.getModuleName()); MainModule = ModuleDecl::createMainModule(*Context, ID, getImplicitImportInfo()); if (Invocation.getFrontendOptions().EnableTesting) MainModule->setTestingEnabled(); if (Invocation.getFrontendOptions().EnablePrivateImports) MainModule->setPrivateImportsEnabled(); if (Invocation.getFrontendOptions().EnableImplicitDynamic) MainModule->setImplicitDynamicEnabled(); if (!Invocation.getFrontendOptions().ModuleABIName.empty()) { MainModule->setABIName(getASTContext().getIdentifier( Invocation.getFrontendOptions().ModuleABIName)); } if (Invocation.getFrontendOptions().EnableLibraryEvolution) MainModule->setResilienceStrategy(ResilienceStrategy::Resilient); // Register the main module with the AST context. Context->addLoadedModule(MainModule); // Create and add the module's files. SmallVector files; if (!createFilesForMainModule(MainModule, files)) { for (auto *file : files) MainModule->addFile(*file); } else { // If we failed to load a partial module, mark the main module as having // "failed to load", as it will contain no files. Note that we don't try // to add any of the successfully loaded partial modules. This ensures // that we don't encounter cases where we try to resolve a cross-reference // into a partial module that failed to load. MainModule->setFailedToLoad(); } } return MainModule; } void CompilerInstance::setMainModule(ModuleDecl *newMod) { assert(newMod->isMainModule()); MainModule = newMod; Context->addLoadedModule(newMod); } bool CompilerInstance::performParseAndResolveImportsOnly() { FrontendStatsTracer tracer(getStatsReporter(), "parse-and-resolve-imports"); auto *mainModule = getMainModule(); // Load access notes. if (!Invocation.getFrontendOptions().AccessNotesPath.empty()) { auto accessNotesPath = Invocation.getFrontendOptions().AccessNotesPath; auto bufferOrError = swift::vfs::getFileOrSTDIN(getFileSystem(), accessNotesPath); if (bufferOrError) { int sourceID = SourceMgr.addNewSourceBuffer(std::move(bufferOrError.get())); auto buffer = SourceMgr.getLLVMSourceMgr().getMemoryBuffer(sourceID); if (auto accessNotesFile = AccessNotesFile::load(*Context, buffer)) mainModule->getAccessNotes() = *accessNotesFile; } else { Diagnostics.diagnose(SourceLoc(), diag::access_notes_file_io_error, accessNotesPath, bufferOrError.getError().message()); } } // Resolve imports for all the source files. for (auto *file : mainModule->getFiles()) { if (auto *SF = dyn_cast(file)) performImportResolution(*SF); } assert(llvm::all_of(mainModule->getFiles(), [](const FileUnit *File) -> bool { auto *SF = dyn_cast(File); if (!SF) return true; return SF->ASTStage >= SourceFile::ImportsResolved; }) && "some files have not yet had their imports resolved"); mainModule->setHasResolvedImports(); bindExtensions(*mainModule); return Context->hadError(); } void CompilerInstance::performSema() { performParseAndResolveImportsOnly(); FrontendStatsTracer tracer(getStatsReporter(), "perform-sema"); forEachFileToTypeCheck([&](SourceFile &SF) { performTypeChecking(SF); }); finishTypeChecking(); } bool CompilerInstance::loadStdlibIfNeeded() { // If we aren't expecting an implicit stdlib import, there's nothing to do. if (getImplicitImportInfo().StdlibKind != ImplicitStdlibKind::Stdlib) return false; FrontendStatsTracer tracer(getStatsReporter(), "load-stdlib"); ModuleDecl *M = Context->getStdlibModule(/*loadIfAbsent*/ true); if (!M) { Diagnostics.diagnose(SourceLoc(), diag::error_stdlib_not_found, Invocation.getTargetTriple()); return true; } verifyImplicitConcurrencyImport(); // If we failed to load, we should have already diagnosed. if (M->failedToLoad()) { assert(Diagnostics.hadAnyError() && "Module failed to load but nothing was diagnosed?"); return true; } return false; } bool CompilerInstance::loadPartialModulesAndImplicitImports( ModuleDecl *mod, SmallVectorImpl &partialModules) const { assert(DefaultSerializedLoader && "Expected module loader in Compiler Instance"); FrontendStatsTracer tracer(getStatsReporter(), "load-partial-modules-and-implicit-imports"); // Force loading implicit imports. This is currently needed to allow // deserialization to resolve cross references into bridging headers. // FIXME: Once deserialization loads all the modules it needs for cross // references, this can be removed. (void)mod->getImplicitImports(); // Load in the partial modules. bool hadLoadError = false; for (auto &PM : PartialModules) { assert(PM.ModuleBuffer); auto *file = DefaultSerializedLoader->loadAST(*mod, /*diagLoc*/ SourceLoc(), /*moduleInterfacePath*/ "", std::move(PM.ModuleBuffer), std::move(PM.ModuleDocBuffer), std::move(PM.ModuleSourceInfoBuffer), /*isFramework*/ false); if (file) { partialModules.push_back(file); } else { hadLoadError = true; } } return hadLoadError; } void CompilerInstance::forEachFileToTypeCheck( llvm::function_ref fn) { if (isWholeModuleCompilation()) { for (auto fileName : getMainModule()->getFiles()) { auto *SF = dyn_cast(fileName); if (!SF) { continue; } fn(*SF); } } else { for (auto *SF : getPrimarySourceFiles()) { fn(*SF); } } } void CompilerInstance::finishTypeChecking() { forEachFileToTypeCheck([](SourceFile &SF) { performWholeModuleTypeChecking(SF); }); } SourceFile::ParsingOptions CompilerInstance::getSourceFileParsingOptions(bool forPrimary) const { const auto &frontendOpts = Invocation.getFrontendOptions(); const auto action = frontendOpts.RequestedAction; auto opts = SourceFile::getDefaultParsingOptions(getASTContext().LangOpts); if (FrontendOptions::shouldActionOnlyParse(action)) { // Generally in a parse-only invocation, we want to disable #if evaluation. // However, there are a couple of modes where we need to know which clauses // are active. if (action != FrontendOptions::ActionType::EmitImportedModules && action != FrontendOptions::ActionType::ScanDependencies) { opts |= SourceFile::ParsingFlags::DisablePoundIfEvaluation; } // If we need to dump the parse tree, disable delayed bodies as we want to // show everything. if (action == FrontendOptions::ActionType::DumpParse) opts |= SourceFile::ParsingFlags::DisableDelayedBodies; } if (forPrimary || isWholeModuleCompilation()) { // Disable delayed body parsing for primaries and in WMO, unless // forcefully skipping function bodies auto typeOpts = getASTContext().TypeCheckerOpts; if (typeOpts.SkipFunctionBodies == FunctionBodySkipping::None) opts |= SourceFile::ParsingFlags::DisableDelayedBodies; } else { // Suppress parse warnings for non-primaries, as they'll get parsed multiple // times. opts |= SourceFile::ParsingFlags::SuppressWarnings; } // Enable interface hash computation for primaries, but not in WMO, as it's // only currently needed for incremental mode. if (forPrimary) { opts |= SourceFile::ParsingFlags::EnableInterfaceHash; } return opts; } SourceFile *CompilerInstance::createSourceFileForMainModule( ModuleDecl *mod, SourceFileKind fileKind, Optional bufferID, bool isMainBuffer) const { auto isPrimary = bufferID && isPrimaryInput(*bufferID); auto opts = getSourceFileParsingOptions(isPrimary); auto *inputFile = new (*Context) SourceFile(*mod, fileKind, bufferID, opts, isPrimary); if (isMainBuffer) inputFile->SyntaxParsingCache = Invocation.getMainFileSyntaxParsingCache(); return inputFile; } void CompilerInstance::freeASTContext() { TheSILTypes.reset(); Context.reset(); MainModule = nullptr; DefaultSerializedLoader = nullptr; MemoryBufferLoader = nullptr; PrimaryBufferIDs.clear(); } /// Perform "stable" optimizations that are invariant across compiler versions. static bool performMandatorySILPasses(CompilerInvocation &Invocation, SILModule *SM) { // Don't run diagnostic passes at all when merging modules. if (Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::MergeModules) { return false; } if (Invocation.getDiagnosticOptions().SkipDiagnosticPasses) { // Even if we are not supposed to run the diagnostic passes, we still need // to run the ownership evaluator. return runSILOwnershipEliminatorPass(*SM); } return runSILDiagnosticPasses(*SM); } /// Perform SIL optimization passes if optimizations haven't been disabled. /// These may change across compiler versions. static void performSILOptimizations(CompilerInvocation &Invocation, SILModule *SM) { FrontendStatsTracer tracer(SM->getASTContext().Stats, "SIL optimization"); if (Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::MergeModules || !Invocation.getSILOptions().shouldOptimize()) { runSILPassesForOnone(*SM); return; } StringRef CustomPipelinePath = Invocation.getSILOptions().ExternalPassPipelineFilename; if (!CustomPipelinePath.empty()) { runSILOptimizationPassesWithFileSpecification(*SM, CustomPipelinePath); } else { runSILOptimizationPasses(*SM); } // When building SwiftOnoneSupport.o verify all expected ABI symbols. if (Invocation.getFrontendOptions().CheckOnoneSupportCompleteness // TODO: handle non-ObjC based stdlib builds, e.g. on linux. && Invocation.getLangOptions().EnableObjCInterop && Invocation.getFrontendOptions().RequestedAction == FrontendOptions::ActionType::EmitObject) { checkCompletenessOfPrespecializations(*SM); } } static void countStatsPostSILOpt(UnifiedStatsReporter &Stats, const SILModule& Module) { auto &C = Stats.getFrontendCounters(); // FIXME: calculate these in constant time, via the dense maps. C.NumSILOptFunctions += Module.getFunctionList().size(); C.NumSILOptVtables += Module.getVTables().size(); C.NumSILOptWitnessTables += Module.getWitnessTableList().size(); C.NumSILOptDefaultWitnessTables += Module.getDefaultWitnessTableList().size(); C.NumSILOptGlobalVariables += Module.getSILGlobalList().size(); } bool CompilerInstance::performSILProcessing(SILModule *silModule) { if (performMandatorySILPasses(Invocation, silModule) && !Invocation.getFrontendOptions().AllowModuleWithCompilerErrors) return true; { FrontendStatsTracer tracer(silModule->getASTContext().Stats, "SIL verification, pre-optimization"); silModule->verify(); } performSILOptimizations(Invocation, silModule); if (auto *stats = getStatsReporter()) countStatsPostSILOpt(*stats, *silModule); { FrontendStatsTracer tracer(silModule->getASTContext().Stats, "SIL verification, post-optimization"); silModule->verify(); } performSILInstCountIfNeeded(silModule); return false; } const PrimarySpecificPaths & CompilerInstance::getPrimarySpecificPathsForWholeModuleOptimizationMode() const { return getPrimarySpecificPathsForAtMostOnePrimary(); } const PrimarySpecificPaths & CompilerInstance::getPrimarySpecificPathsForAtMostOnePrimary() const { return Invocation.getPrimarySpecificPathsForAtMostOnePrimary(); } const PrimarySpecificPaths & CompilerInstance::getPrimarySpecificPathsForPrimary(StringRef filename) const { return Invocation.getPrimarySpecificPathsForPrimary(filename); } const PrimarySpecificPaths & CompilerInstance::getPrimarySpecificPathsForSourceFile( const SourceFile &SF) const { return Invocation.getPrimarySpecificPathsForSourceFile(SF); }