//===--- ParseSIL.cpp - SIL File Parsing logic ----------------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #include "swift/AST/ArchetypeBuilder.h" #include "swift/AST/NameLookup.h" #include "swift/Parse/Parser.h" #include "swift/Parse/Lexer.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILBuilder.h" #include "swift/SIL/SILModule.h" #include "swift/Subsystems.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/ADT/StringSwitch.h" using namespace swift; //===----------------------------------------------------------------------===// // SILParserState implementation //===----------------------------------------------------------------------===// namespace swift { class SILParserTUState { public: SILParserTUState() {} ~SILParserTUState(); /// This is all of the forward referenced functions with /// the location for where the reference is. llvm::DenseMap> ForwardRefFns; /// Did we parse a sil_stage for this module? bool DidParseSILStage = false; DiagnosticEngine *Diags = nullptr; }; } SILParserState::SILParserState(SILModule *M) : M(M) { S = M ? new SILParserTUState() : nullptr; } SILParserState::~SILParserState() { delete S; } SILParserTUState::~SILParserTUState() { if (!ForwardRefFns.empty()) for (auto Entry : ForwardRefFns) Diags->diagnose(Entry.second.second, diag::sil_use_of_undefined_value, Entry.first.str()); } //===----------------------------------------------------------------------===// // SILParser //===----------------------------------------------------------------------===// namespace { class SILParser { public: Parser &P; SILModule &SILMod; SILParserTUState &TUState; SILFunction *F; private: /// HadError - Have we seen an error parsing this function? bool HadError = false; /// Data structures used to perform name lookup of basic blocks. llvm::DenseMap BlocksByName; llvm::DenseMap> UndefinedBlocks; /// Data structures used to perform name lookup for local values. llvm::StringMap LocalValues; llvm::StringMap> ForwardMRVLocalValues; llvm::StringMap ForwardRefLocalValues; /// Construct ArchetypeType from Generic Params. bool handleGenericParams(GenericParamList *GenericParams); bool performTypeLocChecking(TypeLoc &T); public: SILParser(Parser &P) : P(P), SILMod(*P.SIL->M), TUState(*P.SIL->S) {} /// diagnoseProblems - After a function is fully parse, emit any diagnostics /// for errors and return true if there were any. bool diagnoseProblems(); /// getGlobalNameForReference - Given a reference to a global name, look it /// up and return an appropriate SIL function. SILFunction *getGlobalNameForReference(Identifier Name, SILType Ty, SourceLoc Loc); /// getGlobalNameForDefinition - Given a definition of a global name, look /// it up and return an appropriate SIL function. SILFunction *getGlobalNameForDefinition(Identifier Name, SILType Ty, SourceLoc Loc); /// getBBForDefinition - Return the SILBasicBlock for a definition of the /// specified block. SILBasicBlock *getBBForDefinition(Identifier Name, SourceLoc Loc); /// getBBForReference - return the SILBasicBlock of the specified name. The /// source location is used to diagnose a failure if the block ends up never /// being defined. SILBasicBlock *getBBForReference(Identifier Name, SourceLoc Loc); struct UnresolvedValueName { StringRef Name; SourceLoc NameLoc; unsigned ResultVal; bool isMRV() const { return ResultVal != ~0U; } }; /// getLocalValue - Get a reference to a local value with the specified name /// and type. SILValue getLocalValue(UnresolvedValueName Name, SILType Type, SILLocation L); /// setLocalValue - When an instruction or block argument is defined, this /// method is used to register it and update our symbol table. void setLocalValue(ValueBase *Value, StringRef Name, SourceLoc NameLoc); public: /// @{ Primitive parsing. /// \verbatim /// sil-identifier ::= [A-Za-z_0-9]+ /// \endverbatim bool parseSILIdentifier(Identifier &Result, SourceLoc &Loc, const Diagnostic &D); template bool parseSILIdentifier(Identifier &Result, Diag ID, ArgTypes... Args) { SourceLoc L; return parseSILIdentifier(Result, L, Diagnostic(ID, Args...)); } template bool parseSILIdentifier(Identifier &Result, SourceLoc &L, Diag ID, ArgTypes... Args) { return parseSILIdentifier(Result, L, Diagnostic(ID, Args...)); } /// @} // Parsing logic. bool parseSILType(SILType &Result); bool parseSILType(SILType &Result, SourceLoc &TypeLoc) { TypeLoc = P.Tok.getLoc(); return parseSILType(Result); } bool parseSILDeclRef(SILDeclRef &Result); bool parseGlobalName(Identifier &Name); bool parseValueName(UnresolvedValueName &Name); bool parseValueRef(SILValue &Result, SILType Ty, SILLocation Loc); bool parseTypedValueRef(SILValue &Result, SourceLoc &Loc); bool parseTypedValueRef(SILValue &Result) { SourceLoc Tmp; return parseTypedValueRef(Result, Tmp); } bool parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc, StringRef &OpcodeName); /// \brief Parses the basic block arguments as part of branch instruction. bool parseSILBBArgsAtBranch(SmallVector &Args); bool parseSILInstruction(SILBasicBlock *BB); bool parseCallInstruction(SILLocation InstLoc, ValueKind Opcode, SILBuilder &B, ValueBase *&ResultVal); bool parseSILFunctionRef(SILLocation InstLoc, SILBuilder &B, ValueBase *&ResultVal); bool parseSILBasicBlock(); bool isStartOfSILInstruction(); }; } // end anonymous namespace. bool SILParser::parseSILIdentifier(Identifier &Result, SourceLoc &Loc, const Diagnostic &D) { switch (P.Tok.getKind()) { case tok::identifier: case tok::kw_constructor: Result = P.Context.getIdentifier(P.Tok.getText()); Loc = P.Tok.getLoc(); P.consumeToken(); return false; default: P.diagnose(P.Tok, D); return true; } } /// diagnoseProblems - After a function is fully parse, emit any diagnostics /// for errors and return true if there were any. bool SILParser::diagnoseProblems() { // Check for any uses of basic blocks that were not defined. if (!UndefinedBlocks.empty()) { // FIXME: These are going to come out in nondeterminstic order. for (auto Entry : UndefinedBlocks) P.diagnose(Entry.second.first, diag::sil_undefined_basicblock_use, Entry.second.second); HadError = true; } if (!ForwardRefLocalValues.empty()) { // FIXME: These are going to come out in nondeterminstic order. for (auto &Entry : ForwardRefLocalValues) P.diagnose(Entry.second, diag::sil_use_of_undefined_value, Entry.first()); HadError = true; } return HadError; } /// getGlobalNameForDefinition - Given a definition of a global name, look /// it up and return an appropriate SIL function. SILFunction *SILParser::getGlobalNameForDefinition(Identifier Name, SILType Ty, SourceLoc Loc) { // Check to see if a function of this name has been forward referenced. If so // complete the forward reference. auto It = TUState.ForwardRefFns.find(Name); if (It != TUState.ForwardRefFns.end()) { SILFunction *Fn = It->second.first; // Verify that the types match up. if (Fn->getLoweredType() != Ty) { P.diagnose(Loc, diag::sil_value_use_type_mismatch, Ty.getAsString(), Fn->getLoweredType().getAsString()); P.diagnose(It->second.second, diag::sil_prior_reference); Fn = new (SILMod) SILFunction(SILMod, SILLinkage::Internal, "", Ty, SILFileLocation(Loc)); } assert(Fn->isExternalDeclaration() && "Forward defns cannot have bodies!"); TUState.ForwardRefFns.erase(It); return Fn; } // If we don't have a forward reference, make sure the function hasn't been // defined already. if (SILMod.lookup(Name.str()) != nullptr) { P.diagnose(Loc, diag::sil_value_redefinition, Name.str()); return new (SILMod) SILFunction(SILMod, SILLinkage::Internal, "", Ty, SILFileLocation(Loc)); } // Otherwise, this definition is the first use of this name. return new (SILMod) SILFunction(SILMod, SILLinkage::Internal, Name.str(), Ty, SILFileLocation(Loc)); } /// getGlobalNameForReference - Given a reference to a global name, look it /// up and return an appropriate SIL function. SILFunction *SILParser::getGlobalNameForReference(Identifier Name, SILType Ty, SourceLoc Loc) { // Check to see if we have a function by this name already. if (SILFunction *FnRef = SILMod.lookup(Name.str())) { // If so, check for matching types. if (FnRef->getLoweredType() != Ty) { P.diagnose(Loc, diag::sil_value_use_type_mismatch, Ty.getAsString(), FnRef->getLoweredType().getAsString()); FnRef = new (SILMod) SILFunction(SILMod, SILLinkage::Internal, "", Ty, SILFileLocation(Loc)); } return FnRef; } // If we didn't find a function, create a new one - it must be a forward // reference. auto Fn = new (SILMod) SILFunction(SILMod, SILLinkage::Internal, Name.str(), Ty, SILFileLocation(Loc)); TUState.ForwardRefFns[Name] = { Fn, Loc }; TUState.Diags = &P.Diags; return Fn; } /// getBBForDefinition - Return the SILBasicBlock for a definition of the /// specified block. SILBasicBlock *SILParser::getBBForDefinition(Identifier Name, SourceLoc Loc) { // If there was no name specified for this block, just create a new one. if (Name.empty()) return new (SILMod) SILBasicBlock(F); SILBasicBlock *&BB = BlocksByName[Name]; // If the block has never been named yet, just create it. if (BB == nullptr) return BB = new (SILMod) SILBasicBlock(F); // If it already exists, it was either a forward reference or a redefinition. // If it is a forward reference, it should be in our undefined set. if (!UndefinedBlocks.erase(BB)) { // If we have a redefinition, return a new BB to avoid inserting // instructions after the terminator. P.diagnose(Loc, diag::sil_basicblock_redefinition, Name); HadError = true; return new (SILMod) SILBasicBlock(F); } // FIXME: Splice the block to the end of the function so they come out in the // right order. return BB; } /// getBBForReference - return the SILBasicBlock of the specified name. The /// source location is used to diagnose a failure if the block ends up never /// being defined. SILBasicBlock *SILParser::getBBForReference(Identifier Name, SourceLoc Loc) { // If the block has already been created, use it. SILBasicBlock *&BB = BlocksByName[Name]; if (BB != nullptr) return BB; // Otherwise, create it and remember that this is a forward reference so // that we can diagnose use without definition problems. BB = new (SILMod) SILBasicBlock(F); UndefinedBlocks[BB] = {Loc, Name}; return BB; } /// sil-global-name: /// '@' identifier bool SILParser::parseGlobalName(Identifier &Name) { return P.parseToken(tok::sil_at_sign, diag::expected_sil_value_name) || parseSILIdentifier(Name, diag::expected_sil_value_name); } /// getLocalValue - Get a reference to a local value with the specified name /// and type. SILValue SILParser::getLocalValue(UnresolvedValueName Name, SILType Type, SILLocation Loc) { // Check to see if this is already defined. ValueBase *&Entry = LocalValues[Name.Name]; if (Entry) { // If this value is already defined, check it to make sure types match. SILType EntryTy; // If this is a reference to something with multiple results, get the right // one. if (Name.isMRV()) { if (Name.ResultVal >= Entry->getTypes().size()) { HadError = true; P.diagnose(Name.NameLoc, diag::invalid_sil_value_name_result_number); // Make sure to return something of the requested type. return new (SILMod) GlobalAddrInst(Loc, nullptr, Type); } } EntryTy = Entry->getType(Name.isMRV() ? Name.ResultVal : 0); if (EntryTy != Type) { HadError = true; P.diagnose(Name.NameLoc, diag::sil_value_use_type_mismatch, Name.Name, EntryTy.getAsString()); // Make sure to return something of the requested type. return new (SILMod) GlobalAddrInst(Loc, nullptr, Type); } return SILValue(Entry, Name.isMRV() ? Name.ResultVal : 0); } // Otherwise, this is a forward reference. Create a dummy node to represent // it until we see a real definition. ForwardRefLocalValues[Name.Name] = Name.NameLoc; if (Name.ResultVal == ~0U) { Entry = new (SILMod) GlobalAddrInst(Loc, nullptr, Type); return Entry; } // If we have multiple results, track them through ForwardMRVLocalValues. std::vector &Placeholders = ForwardMRVLocalValues[Name.Name]; if (Placeholders.size() <= Name.ResultVal) Placeholders.resize(Name.ResultVal+1); if (!Placeholders[Name.ResultVal]) Placeholders[Name.ResultVal] = new (SILMod) GlobalAddrInst(Loc, nullptr, Type); return Placeholders[Name.ResultVal]; } /// setLocalValue - When an instruction or block argument is defined, this /// method is used to register it and update our symbol table. void SILParser::setLocalValue(ValueBase *Value, StringRef Name, SourceLoc NameLoc) { ValueBase *&Entry = LocalValues[Name]; // If this value was already defined, it is either a redefinition, or a // specification for a forward referenced value. if (Entry) { if (!ForwardRefLocalValues.erase(Name)) { P.diagnose(NameLoc, diag::sil_value_redefinition, Name); HadError = true; return; } // If the forward reference was of the wrong type, diagnose this now. if (Entry->getTypes() != Value->getTypes()) { P.diagnose(NameLoc, diag::sil_value_def_type_mismatch, Name, Entry->getType(0).getAsString()); HadError = true; } else { // Forward references only live here if they have a single result. SILValue(Entry).replaceAllUsesWith(SILValue(Value)); } Entry = Value; return; } // Otherwise, just store it in our map. Entry = Value; // If Entry has multiple values, it may be forward referenced. if (Entry->getTypes().size() > 1) { auto It = ForwardMRVLocalValues.find(Name); if (It != ForwardMRVLocalValues.end()) { // Take the information about the forward ref out of the maps. std::vector Entries(std::move(It->second)); SourceLoc Loc = ForwardRefLocalValues[Name]; // Remove the entries from the maps. ForwardRefLocalValues.erase(Name); ForwardMRVLocalValues.erase(It); // Verify that any forward-referenced values line up. if (Entries.size() > Value->getTypes().size()) { P.diagnose(Loc, diag::sil_value_def_type_mismatch, Name, Entry->getType(0).getAsString()); HadError = true; return; } // Validate that any forward-referenced elements have the right type, and // RAUW them. for (unsigned i = 0, e = Entries.size(); i != e; ++i) { if (!Entries[i]) continue; if (Entries[i]->getType(0) != Value->getType(i)) { P.diagnose(Loc, diag::sil_value_def_type_mismatch, Name, Entry->getType(0).getAsString()); HadError = true; return; } Entries[i].replaceAllUsesWith(SILValue(Value, i)); } } } } //===----------------------------------------------------------------------===// // SIL Parsing Logic //===----------------------------------------------------------------------===// /// parseSILLinkage - Parse a linkage specifier if present. /// sil-linkage: /// /*empty*/ // defaults to external linkage. /// 'internal' /// 'thunk' static bool parseSILLinkage(SILLinkage &Result, Parser &P) { if (P.Tok.isNot(tok::identifier)) { Result = SILLinkage::External; } else if (P.Tok.getText() == "internal") { Result = SILLinkage::Internal; P.consumeToken(tok::identifier); } else if (P.Tok.getText() == "thunk") { Result = SILLinkage::Thunk; P.consumeToken(tok::identifier); } else { P.diagnose(P.Tok, diag::expected_sil_linkage_or_function); return true; } return false; } /// Parse an option attribute ('[' Expected ']')? static bool parseSILOptional(bool &Result, SILParser &SP, StringRef Expected) { if (SP.P.consumeIf(tok::l_square)) { Identifier Id; SP.parseSILIdentifier(Id, diag::expected_in_attribute_list); if (Id.str() != Expected) return true; SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list); Result = true; } return false; } /// Construct ArchetypeType from Generic Params. bool SILParser::handleGenericParams(GenericParamList *GenericParams) { ArchetypeBuilder Builder(*P.TU, P.Diags); unsigned Index = 0; for (auto GP : *GenericParams) { auto TypeParam = GP.getAsTypeParam(); // Do some type checking / name binding for Inherited. // FIXME: This is a hack. We shouldn't ever have to build these. SmallVector allProtocols; llvm::SmallPtrSet knownProtocols; for (auto &Inherited : TypeParam->getInherited()) { if (performTypeLocChecking(Inherited)) return true; // Collect the protocols mentioned by this existential type. SmallVector protocols; if (Inherited.getType()->isExistentialType(protocols)) { for (auto proto : protocols) { if (knownProtocols.insert(proto)) allProtocols.push_back(proto); } } // Set the superclass. else if (Inherited.getType()->getClassOrBoundGenericClass()) { TypeParam->setSuperclass(Inherited.getType()); } } // Set this list of all protocols. TypeParam->setProtocols(P.Context.AllocateCopy(allProtocols)); // Add the generic parameter to the builder. Builder.addGenericParameter(TypeParam, Index++); } // Add the requirements clause to the builder. for (auto &Req : GenericParams->getRequirements()) { if (Req.isInvalid()) continue; if (Builder.addRequirement(Req)) Req.setInvalid(); } // Wire up the archetypes. Builder.assignArchetypes(); for (auto GP : *GenericParams) { auto TypeParam = GP.getAsTypeParam(); TypeParam->setArchetype(Builder.getArchetype(TypeParam)); } GenericParams->setAllArchetypes( P.Context.AllocateCopy(Builder.getAllArchetypes())); return false; } bool SILParser::performTypeLocChecking(TypeLoc &T) { // Do some type checking / name binding for the parsed type. // We have to lie and say we're done with parsing to make this happen. assert(P.TU->ASTStage == TranslationUnit::Parsing && "Unexpected stage during parsing!"); llvm::SaveAndRestore ASTStage(P.TU->ASTStage, TranslationUnit::Parsed); return swift::performTypeLocChecking(P.TU, T); } /// Find the top-level ValueDecl or Module given a name. static llvm::PointerUnion lookupTopDecl(Parser &P, Identifier Name) { // Use UnqualifiedLookup to look through all of the imports. // We have to lie and say we're done with parsing to make this happen. assert(P.TU->ASTStage == TranslationUnit::Parsing && "Unexpected stage during parsing!"); llvm::SaveAndRestore ASTStage(P.TU->ASTStage, TranslationUnit::Parsed); UnqualifiedLookup DeclLookup(Name, P.TU); assert(DeclLookup.isSuccess() && DeclLookup.Results.size() == 1); if (DeclLookup.Results.back().Kind == UnqualifiedLookupResult::ModuleName) { Module *Mod = DeclLookup.Results.back().getNamedModule(); return Mod; } assert(DeclLookup.Results.back().hasValueDecl()); ValueDecl *VD = DeclLookup.Results.back().getValueDecl(); return VD; } /// Find the ValueDecl given a type and a member name. static ValueDecl *lookupMember(Parser &P, Type Ty, Identifier Name) { SmallVector Lookup; P.TU->lookupQualified(Ty, Name, NL_QualifiedDefault, Lookup); assert(Lookup.size() == 1); return Lookup[0]; } /// sil-type: /// '$' '*'? attribute-list (generic-params)? type /// bool SILParser::parseSILType(SILType &Result) { if (P.parseToken(tok::sil_dollar, diag::expected_sil_type)) return true; // If we have a '*', then this is an address type. SILValueCategory category = SILValueCategory::Object; if (P.Tok.isAnyOperator() && P.Tok.getText() == "*") { category = SILValueCategory::Address; P.consumeToken(); } // Parse attributes. DeclAttributes attrs; P.parseAttributeList(attrs); // Handle [local_storage], which changes the SIL value category. if (attrs.isLocalStorage()) { // Require '*' on local_storage values. if (category != SILValueCategory::Address) P.diagnose(attrs.LSquareLoc, diag::sil_local_storage_non_address); category = SILValueCategory::LocalStorage; attrs.LocalStorage = false; } // Parse Generic Parameters. Generic Parameters are visible in the function // body. GenericParamList *PList = P.maybeParseGenericParams(); ParserResult TyR = P.parseType(diag::expected_sil_type); if (TyR.isNull()) return true; // Apply attributes to the type. TypeLoc Ty = P.applyAttributeToType(TyR.get(), attrs); if (PList) if (handleGenericParams(PList)) return true; if (performTypeLocChecking(Ty)) return true; // Build PolymorphicFunctionType if necessary. FunctionType *FT = dyn_cast(Ty.getType().getPointer()); if (FT && PList) { auto Info = PolymorphicFunctionType::ExtInfo(attrs.hasCC() ? attrs.getAbstractCC() : AbstractCC::Freestanding, attrs.isThin(), attrs.isNoReturn()); Type resultType = PolymorphicFunctionType::get(FT->getInput(), FT->getResult(), PList, Info, P.Context); Ty.setType(resultType); // Reset attributes that are applied. attrs.Thin = false; attrs.cc = Nothing; } if (performTypeLocChecking(Ty)) return true; Result = SILType::getPrimitiveType(Ty.getType()->getCanonicalType(), category); return false; } /// sil-decl-ref ::= '#' sil-identifier ('.' sil-identifier)* sil-decl-subref? /// sil-decl-subref ::= '!' sil-decl-subref-part ('.' sil-decl-uncurry-level)? /// ('.' sil-decl-lang)? /// sil-decl-subref ::= '!' sil-decl-uncurry-level ('.' sil-decl-lang)? /// sil-decl-subref ::= '!' sil-decl-lang /// sil-decl-subref-part ::= 'getter' /// sil-decl-subref-part ::= 'setter' /// sil-decl-subref-part ::= 'allocator' /// sil-decl-subref-part ::= 'initializer' /// sil-decl-subref-part ::= 'unionelt' /// sil-decl-subref-part ::= 'destroyer' /// sil-decl-subref-part ::= 'globalaccessor' /// sil-decl-uncurry-level ::= [0-9]+ /// sil-decl-lang ::= 'objc' bool SILParser::parseSILDeclRef(SILDeclRef &Result) { if (P.parseToken(tok::sil_pound, diag::expected_sil_constant)) return true; // Handle sil-dotted-path. Identifier Id; SmallVector FullName; do { if (parseSILIdentifier(Id, diag::expected_sil_constant)) return true; FullName.push_back(Id); } while (P.consumeIf(tok::period)); // Look up ValueDecl from a dotted path. ValueDecl *VD; llvm::PointerUnion Res = lookupTopDecl(P, FullName[0]); if (Res.is()) { assert(FullName.size() > 1 && "A single module is not a full path to SILDeclRef"); auto Mod = Res.get(); VD = lookupMember(P, ModuleType::get(Mod), FullName[1]); for (unsigned I = 2, E = FullName.size(); I < E; I++) VD = lookupMember(P, VD->getType(), FullName[I]); } else { VD = Res.get(); for (unsigned I = 1, E = FullName.size(); I < E; I++) VD = lookupMember(P, VD->getType(), FullName[I]); } // Initialize Kind, uncurryLevel and IsObjC. SILDeclRef::Kind Kind = SILDeclRef::Kind::Func; unsigned uncurryLevel = 0; bool IsObjC = false; if (!P.consumeIf(tok::sil_exclamation)) { // Construct SILDeclRef. Result = SILDeclRef(VD, Kind, uncurryLevel, IsObjC); return false; } // Handle sil-constant-kind-and-uncurry-level. // ParseState indicates the value we just handled. // 1 means we just handled Kind, 2 means we just handled uncurryLevel. // We accept func|getter|setter|...|objc or an integer when ParseState is 0; // accept objc or an integer when ParseState is 1; accept objc when ParseState // is 2. unsigned ParseState = 0; do { if (P.Tok.is(tok::identifier)) { if (parseSILIdentifier(Id, diag::expected_sil_constant)) return true; if (!ParseState && Id.str() == "func") { Kind = SILDeclRef::Kind::Func; ParseState = 1; } else if (!ParseState && Id.str() == "getter") { Kind = SILDeclRef::Kind::Getter; ParseState = 1; } else if (!ParseState && Id.str() == "setter") { Kind = SILDeclRef::Kind::Setter; ParseState = 1; } else if (!ParseState && Id.str() == "allocator") { Kind = SILDeclRef::Kind::Allocator; ParseState = 1; } else if (!ParseState && Id.str() == "initializer") { Kind = SILDeclRef::Kind::Initializer; ParseState = 1; } else if (!ParseState && Id.str() == "unionelt") { Kind = SILDeclRef::Kind::UnionElement; ParseState = 1; } else if (!ParseState && Id.str() == "destroyer") { Kind = SILDeclRef::Kind::Destroyer; ParseState = 1; } else if (!ParseState && Id.str() == "globalaccessor") { Kind = SILDeclRef::Kind::GlobalAccessor; ParseState = 1; } else if (Id.str() == "objc") { IsObjC = true; break; } else break; } else if (ParseState < 2 && P.Tok.is(tok::integer_literal)) { P.Tok.getText().getAsInteger(0, uncurryLevel); P.consumeToken(tok::integer_literal); ParseState = 2; } else break; } while (P.consumeIf(tok::period)); // Construct SILDeclRef. Result = SILDeclRef(VD, Kind, uncurryLevel, IsObjC); return false; } /// parseValueName - Parse a value name without a type available yet. /// /// sil-value-name: /// sil-local-name ('#' integer_literal)? /// bool SILParser::parseValueName(UnresolvedValueName &Result) { Result.Name = P.Tok.getText(); // Parse the local-name. if (P.parseToken(tok::sil_local_name, Result.NameLoc, diag::expected_sil_value_name)) return true; // If the result value specifier is present, parse it. if (P.consumeIf(tok::sil_pound)) { unsigned Value = 0; if (P.Tok.isNot(tok::integer_literal) || P.Tok.getText().getAsInteger(10, Value)) { P.diagnose(P.Tok, diag::expected_sil_value_name_result_number); return true; } P.consumeToken(tok::integer_literal); Result.ResultVal = Value; } else { Result.ResultVal = ~0U; } return false; } /// parseValueRef - Parse a value, given a contextual type. /// /// sil-value-ref: /// sil-local-name /// bool SILParser::parseValueRef(SILValue &Result, SILType Ty, SILLocation Loc) { UnresolvedValueName Name; if (parseValueName(Name)) return true; Result = getLocalValue(Name, Ty, Loc); return false; } /// parseTypedValueRef - Parse a type/value reference pair. /// /// sil-typed-valueref: /// sil-value-ref ':' sil-type /// bool SILParser::parseTypedValueRef(SILValue &Result, SourceLoc &Loc) { Loc = P.Tok.getLoc(); UnresolvedValueName Name; SILType Ty; if (parseValueName(Name) || P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) || parseSILType(Ty)) return true; Result = getLocalValue(Name, Ty, SILFileLocation(Loc)); return false; } /// getInstructionKind - This method maps the string form of a SIL instruction /// opcode to an enum. bool SILParser::parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc, StringRef &OpcodeName) { OpcodeLoc = P.Tok.getLoc(); OpcodeName = P.Tok.getText(); // Parse this textually to avoid Swift keywords (like 'return') from // interfering with opcode recognition. Opcode = llvm::StringSwitch(OpcodeName) .Case("alloc_box", ValueKind::AllocBoxInst) .Case("alloc_array", ValueKind::AllocArrayInst) .Case("address_to_pointer", ValueKind::AddressToPointerInst) .Case("alloc_stack", ValueKind::AllocStackInst) .Case("alloc_ref", ValueKind::AllocRefInst) .Case("archetype_metatype", ValueKind::ArchetypeMetatypeInst) .Case("archetype_method", ValueKind::ArchetypeMethodInst) .Case("archetype_ref_to_super", ValueKind::ArchetypeRefToSuperInst) .Case("apply", ValueKind::ApplyInst) .Case("assign", ValueKind::AssignInst) .Case("autorelease_return", ValueKind::AutoreleaseReturnInst) .Case("br", ValueKind::BranchInst) .Case("bridge_to_block", ValueKind::BridgeToBlockInst) .Case("builtin_function_ref", ValueKind::BuiltinFunctionRefInst) .Case("builtin_zero", ValueKind::BuiltinZeroInst) .Case("class_metatype", ValueKind::ClassMetatypeInst) .Case("class_method", ValueKind::ClassMethodInst) .Case("coerce", ValueKind::CoerceInst) .Case("condbranch", ValueKind::CondBranchInst) .Case("convert_cc", ValueKind::ConvertCCInst) .Case("convert_function", ValueKind::ConvertFunctionInst) .Case("copy_addr", ValueKind::CopyAddrInst) .Case("dealloc_box", ValueKind::DeallocBoxInst) .Case("dealloc_ref", ValueKind::DeallocRefInst) .Case("dealloc_stack", ValueKind::DeallocStackInst) .Case("deinit_existential", ValueKind::DeinitExistentialInst) .Case("destroy_addr", ValueKind::DestroyAddrInst) .Case("destructive_switch_union_addr", ValueKind::DestructiveSwitchUnionAddrInst) .Case("downcast", ValueKind::DowncastInst) .Case("downcast_archetype_addr", ValueKind::DowncastArchetypeAddrInst) .Case("downcast_archetype_ref", ValueKind::DowncastArchetypeRefInst) .Case("downcast_existential_ref", ValueKind::DowncastExistentialRefInst) .Case("dynamic_method", ValueKind::DynamicMethodInst) .Case("dynamic_method_br", ValueKind::DynamicMethodBranchInst) .Case("float_literal", ValueKind::FloatLiteralInst) .Case("global_addr", ValueKind::GlobalAddrInst) .Case("index_addr", ValueKind::IndexAddrInst) .Case("index_raw_pointer", ValueKind::IndexRawPointerInst) .Case("init_existential", ValueKind::InitExistentialInst) .Case("init_existential_ref", ValueKind::InitExistentialRefInst) .Case("initialize_var", ValueKind::InitializeVarInst) .Case("inject_union_addr", ValueKind::InjectUnionAddrInst) .Case("integer_literal", ValueKind::IntegerLiteralInst) .Case("is_nonnull", ValueKind::IsNonnullInst) .Case("function_ref", ValueKind::FunctionRefInst) .Case("load", ValueKind::LoadInst) .Case("load_weak", ValueKind::LoadWeakInst) .Case("mark_uninitialized", ValueKind::MarkUninitializedInst) .Case("mark_function_escape", ValueKind::MarkFunctionEscapeInst) .Case("metatype", ValueKind::MetatypeInst) .Case("module", ValueKind::ModuleInst) .Case("object_pointer_to_ref", ValueKind::ObjectPointerToRefInst) .Case("partial_apply", ValueKind::PartialApplyInst) .Case("pointer_to_address", ValueKind::PointerToAddressInst) .Case("project_downcast_existential_addr", ValueKind::ProjectDowncastExistentialAddrInst) .Case("project_existential", ValueKind::ProjectExistentialInst) .Case("project_existential_ref", ValueKind::ProjectExistentialRefInst) .Case("protocol_metatype", ValueKind::ProtocolMetatypeInst) .Case("protocol_method", ValueKind::ProtocolMethodInst) .Case("raw_pointer_to_ref", ValueKind::RawPointerToRefInst) .Case("ref_element_addr", ValueKind::RefElementAddrInst) .Case("ref_to_object_pointer", ValueKind::RefToObjectPointerInst) .Case("ref_to_raw_pointer", ValueKind::RefToRawPointerInst) .Case("ref_to_unowned", ValueKind::RefToUnownedInst) .Case("strong_release", ValueKind::StrongReleaseInst) .Case("strong_retain", ValueKind::StrongRetainInst) .Case("strong_retain_autoreleased", ValueKind::StrongRetainAutoreleasedInst) .Case("strong_retain_unowned", ValueKind::StrongRetainUnownedInst) .Case("return", ValueKind::ReturnInst) .Case("specialize", ValueKind::SpecializeInst) .Case("store", ValueKind::StoreInst) .Case("store_weak", ValueKind::StoreWeakInst) .Case("string_literal", ValueKind::StringLiteralInst) .Case("struct", ValueKind::StructInst) .Case("struct_element_addr", ValueKind::StructElementAddrInst) .Case("struct_extract", ValueKind::StructExtractInst) .Case("super_method", ValueKind::SuperMethodInst) .Case("super_to_archetype_ref", ValueKind::SuperToArchetypeRefInst) .Case("switch_int", ValueKind::SwitchIntInst) .Case("switch_union", ValueKind::SwitchUnionInst) .Case("thin_to_thick_function", ValueKind::ThinToThickFunctionInst) .Case("tuple", ValueKind::TupleInst) .Case("tuple_element_addr", ValueKind::TupleElementAddrInst) .Case("tuple_extract", ValueKind::TupleExtractInst) .Case("union", ValueKind::UnionInst) .Case("union_data_addr", ValueKind::UnionDataAddrInst) .Case("unreachable", ValueKind::UnreachableInst) .Case("upcast", ValueKind::UpcastInst) .Case("upcast_existential", ValueKind::UpcastExistentialInst) .Case("upcast_existential_ref", ValueKind::UpcastExistentialRefInst) .Case("unowned_retain", ValueKind::UnownedRetainInst) .Case("unowned_release", ValueKind::UnownedReleaseInst) .Case("unowned_to_ref", ValueKind::UnownedToRefInst) .Default(ValueKind::SILArgument); if (Opcode != ValueKind::SILArgument) { P.consumeToken(); return false; } P.diagnose(OpcodeLoc, diag::expected_sil_instr_opcode); return true; } bool SILParser::parseSILBBArgsAtBranch(SmallVector &Args) { if (P.Tok.is(tok::l_paren)) { SourceLoc LParenLoc = P.consumeToken(tok::l_paren); SourceLoc RParenLoc; if (P.parseList(tok::r_paren, LParenLoc, RParenLoc, tok::comma, false, diag::sil_basicblock_arg_rparen, [&] () -> bool { SILValue Arg; SourceLoc ArgLoc; if (parseTypedValueRef(Arg, ArgLoc)) return true; Args.push_back(Arg); return false; })) return true; } return false; } /// sil-instruction: /// (sil_local_name '=')? identifier ... bool SILParser::parseSILInstruction(SILBasicBlock *BB) { // We require SIL instructions to be at the start of a line to assist // recovery. if (!P.Tok.isAtStartOfLine()) { P.diagnose(P.Tok, diag::expected_sil_instr_start_of_line); return true; } StringRef ResultName; SourceLoc ResultNameLoc; // If the instruction has a name '%foo =', parse it. if (P.Tok.is(tok::sil_local_name)) { ResultName = P.Tok.getText(); ResultNameLoc = P.Tok.getLoc(); P.consumeToken(tok::sil_local_name); if (P.parseToken(tok::equal, diag::expected_equal_in_sil_instr)) return true; } ValueKind Opcode; SourceLoc OpcodeLoc; StringRef OpcodeName; // Parse the opcode name. if (parseSILOpcode(Opcode, OpcodeLoc, OpcodeName)) return true; SILBuilder B(BB); SmallVector OpList; SILValue Val; SILLocation InstLoc = SILFileLocation(OpcodeLoc); // Validate the opcode name, and do opcode-specific parsing logic based on the // opcode we find. ValueBase *ResultVal; switch (Opcode) { case ValueKind::SILArgument: llvm_unreachable("not an instruction"); case ValueKind::AllocBoxInst: { SILType Ty; if (parseSILType(Ty)) return true; ResultVal = B.createAllocBox(InstLoc, Ty); break; } case ValueKind::AllocArrayInst: { SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseTypedValueRef(Val)) return true; ResultVal = B.createAllocArray(InstLoc, Ty, Val); break; } case ValueKind::ApplyInst: case ValueKind::PartialApplyInst: if (parseCallInstruction(InstLoc, Opcode, B, ResultVal)) return true; break; case ValueKind::IntegerLiteralInst: { SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")) return true; if (P.Tok.getKind() != tok::integer_literal) { P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer"); return true; } auto intTy = Ty.getAs(); if (!intTy) { P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type); return true; } APInt value(intTy->getBitWidth(), 0); bool error = P.Tok.getText().getAsInteger(0, value); assert(!error && "integer_literal token did not parse as APInt?!"); (void)error; if (value.getBitWidth() != intTy->getBitWidth()) value = value.zextOrTrunc(intTy->getBitWidth()); ResultVal = B.createIntegerLiteral(InstLoc, Ty, value); P.consumeToken(tok::integer_literal); break; } case ValueKind::FloatLiteralInst: { SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")) return true; // The value is expressed as bits. if (P.Tok.getKind() != tok::integer_literal) { P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer"); return true; } auto floatTy = Ty.getAs(); if (!floatTy) { P.diagnose(P.Tok, diag::sil_float_literal_not_float_type); return true; } APInt bits(floatTy->getBitWidth(), 0); bool error = P.Tok.getText().getAsInteger(0, bits); assert(!error && "float_literal token did not parse as APInt?!"); (void)error; if (bits.getBitWidth() != floatTy->getBitWidth()) bits = bits.zextOrTrunc(floatTy->getBitWidth()); APFloat value(floatTy->getAPFloatSemantics(), bits); ResultVal = B.createFloatLiteral(InstLoc, Ty, value); P.consumeToken(tok::integer_literal); break; } case ValueKind::StringLiteralInst: { SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")) return true; if (P.Tok.getKind() != tok::string_literal) { P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string"); return true; } // We should remove '"' from token. StringRef Str = P.Tok.getText(); if (Str.size() < 2 || Str[0] != '"' || Str[Str.size()-1] != '"') { P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string"); return true; } ResultVal = B.createStringLiteral(InstLoc, Ty, Str.substr(1, Str.size()-2)); P.consumeToken(tok::string_literal); break; } case ValueKind::FunctionRefInst: if (parseSILFunctionRef(InstLoc, B, ResultVal)) return true; break; case ValueKind::BuiltinFunctionRefInst: { SILType Ty; SILDeclRef FuncRef; if (parseSILDeclRef(FuncRef) || P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") || parseSILType(Ty)) return true; ResultVal = B.createBuiltinFunctionRef(InstLoc, cast(FuncRef.getDecl()), Ty); break; } case ValueKind::ProjectExistentialInst: { SILType Ty; Identifier ToToken; SourceLoc ToLoc; if (parseTypedValueRef(Val) || parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr, "to") || parseSILType(Ty)) return true; if (ToToken.str() != "to") { P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to"); return true; } ResultVal = B.createProjectExistential(InstLoc, Val, Ty); break; } case ValueKind::ProjectExistentialRefInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createProjectExistentialRef(InstLoc, Val); break; case ValueKind::StrongRetainInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createStrongRetainInst(InstLoc, Val); break; case ValueKind::StrongReleaseInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createStrongReleaseInst(InstLoc, Val); break; case ValueKind::StrongRetainAutoreleasedInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createStrongRetainAutoreleased(InstLoc, Val); break; case ValueKind::AutoreleaseReturnInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createAutoreleaseReturn(InstLoc, Val); break; case ValueKind::StrongRetainUnownedInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createStrongRetainUnowned(InstLoc, Val); break; case ValueKind::UnownedRetainInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createUnownedRetain(InstLoc, Val); break; case ValueKind::UnownedReleaseInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createUnownedRelease(InstLoc, Val); break; case ValueKind::DestroyAddrInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createDestroyAddr(InstLoc, Val); break; case ValueKind::LoadInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createLoad(InstLoc, Val); break; case ValueKind::LoadWeakInst: { bool isTake = false; if (parseSILOptional(isTake, *this, "take") || parseTypedValueRef(Val)) return true; ResultVal = B.createLoadWeak(InstLoc, Val, IsTake_t(isTake)); break; } // Conversion instructions. case ValueKind::RefToObjectPointerInst: case ValueKind::UpcastInst: case ValueKind::CoerceInst: case ValueKind::AddressToPointerInst: case ValueKind::PointerToAddressInst: case ValueKind::ObjectPointerToRefInst: case ValueKind::RefToRawPointerInst: case ValueKind::RawPointerToRefInst: case ValueKind::RefToUnownedInst: case ValueKind::UnownedToRefInst: case ValueKind::ConvertCCInst: case ValueKind::ThinToThickFunctionInst: case ValueKind::BridgeToBlockInst: case ValueKind::ArchetypeRefToSuperInst: case ValueKind::ConvertFunctionInst: case ValueKind::UpcastExistentialRefInst: { SILType Ty; Identifier ToToken; SourceLoc ToLoc; if (parseTypedValueRef(Val) || parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr, "to") || parseSILType(Ty)) return true; if (ToToken.str() != "to") { P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to"); return true; } switch (Opcode) { default: assert(0 && "Out of sync with parent switch"); case ValueKind::RefToObjectPointerInst: ResultVal = B.createRefToObjectPointer(InstLoc, Val, Ty); break; case ValueKind::UpcastInst: ResultVal = B.createUpcast(InstLoc, Val, Ty); break; case ValueKind::ConvertFunctionInst: ResultVal = B.createConvertFunction(InstLoc, Val, Ty); break; case ValueKind::CoerceInst: ResultVal = B.createCoerce(InstLoc, Val, Ty); break; case ValueKind::AddressToPointerInst: ResultVal = B.createAddressToPointer(InstLoc, Val, Ty); break; case ValueKind::PointerToAddressInst: ResultVal = B.createPointerToAddress(InstLoc, Val, Ty); break; case ValueKind::ObjectPointerToRefInst: ResultVal = B.createObjectPointerToRef(InstLoc, Val, Ty); break; case ValueKind::RefToRawPointerInst: ResultVal = B.createRefToRawPointer(InstLoc, Val, Ty); break; case ValueKind::RawPointerToRefInst: ResultVal = B.createRawPointerToRef(InstLoc, Val, Ty); break; case ValueKind::RefToUnownedInst: ResultVal = B.createRefToUnowned(InstLoc, Val, Ty); break; case ValueKind::UnownedToRefInst: ResultVal = B.createUnownedToRef(InstLoc, Val, Ty); break; case ValueKind::ConvertCCInst: ResultVal = B.createConvertCC(InstLoc, Val, Ty); break; case ValueKind::ThinToThickFunctionInst: ResultVal = B.createThinToThickFunction(InstLoc, Val, Ty); break; case ValueKind::BridgeToBlockInst: ResultVal = B.createBridgeToBlock(InstLoc, Val, Ty); break; case ValueKind::ArchetypeRefToSuperInst: ResultVal = B.createArchetypeRefToSuper(InstLoc, Val, Ty); break; case ValueKind::UpcastExistentialRefInst: ResultVal = B.createUpcastExistentialRef(InstLoc, Val, Ty); break; } break; } // Checked Conversion instructions. case ValueKind::DowncastInst: case ValueKind::SuperToArchetypeRefInst: case ValueKind::DowncastArchetypeAddrInst: case ValueKind::DowncastArchetypeRefInst: case ValueKind::ProjectDowncastExistentialAddrInst: case ValueKind::DowncastExistentialRefInst: { SILType Ty; Identifier CheckedToken, ToToken; SourceLoc CheckedLoc, ToLoc; if (parseSILIdentifier(CheckedToken, CheckedLoc, diag::expected_tok_in_sil_instr, "conditional or unconditional") || parseTypedValueRef(Val) || parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr, "to") || parseSILType(Ty)) return true; CheckedCastMode Mode; if (CheckedToken.str() == "conditional") Mode = CheckedCastMode::Conditional; else if (CheckedToken.str() == "unconditional") Mode = CheckedCastMode::Unconditional; else { P.diagnose(CheckedLoc, diag::expected_tok_in_sil_instr, "conditional or unconditional"); return true; } if (ToToken.str() != "to") { P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to"); return true; } switch (Opcode) { default: assert(0 && "Out of sync with parent switch"); case ValueKind::DowncastInst: ResultVal = B.createDowncast(InstLoc, Val, Ty, Mode); break; case ValueKind::SuperToArchetypeRefInst: ResultVal = B.createSuperToArchetypeRef(InstLoc, Val, Ty, Mode); break; case ValueKind::DowncastArchetypeAddrInst: ResultVal = B.createDowncastArchetypeAddr(InstLoc, Val, Ty, Mode); break; case ValueKind::DowncastArchetypeRefInst: ResultVal = B.createDowncastArchetypeRef(InstLoc, Val, Ty, Mode); break; case ValueKind::ProjectDowncastExistentialAddrInst: ResultVal = B.createProjectDowncastExistentialAddr(InstLoc, Val, Ty, Mode); break; case ValueKind::DowncastExistentialRefInst: ResultVal = B.createDowncastExistentialRef(InstLoc, Val, Ty, Mode); break; } break; } case ValueKind::MarkUninitializedInst: if (parseTypedValueRef(Val)) return true; ResultVal = B.createMarkUninitialized(InstLoc, Val); break; case ValueKind::MarkFunctionEscapeInst: { SmallVector OpList; do { if (parseTypedValueRef(Val)) return true; OpList.push_back(Val); } while (P.consumeIf(tok::comma)); ResultVal = B.createMarkFunctionEscape(InstLoc, OpList); break; } case ValueKind::AssignInst: case ValueKind::StoreInst: case ValueKind::StoreWeakInst: { UnresolvedValueName from; SourceLoc toLoc, addrLoc; Identifier toToken; SILValue addrVal; bool isInit = false; if (parseValueName(from) || parseSILIdentifier(toToken, toLoc, diag::expected_tok_in_sil_instr, "to") || (Opcode == ValueKind::StoreWeakInst && parseSILOptional(isInit, *this, "initialization")) || parseTypedValueRef(addrVal, addrLoc)) return true; if (toToken.str() != "to") { P.diagnose(toLoc, diag::expected_tok_in_sil_instr, "to"); return true; } if (!addrVal.getType().isAddress()) { P.diagnose(addrLoc, diag::sil_operand_not_address, "destination", OpcodeName); return true; } if (Opcode == ValueKind::StoreWeakInst) { auto refType = addrVal.getType().getAs(); if (!refType) { P.diagnose(addrLoc, diag::sil_operand_not_weak_address, "destination", OpcodeName); return true; } auto valueTy = SILType::getPrimitiveObjectType(refType.getReferentType()); ResultVal = B.createStoreWeak(InstLoc, getLocalValue(from, valueTy, InstLoc), addrVal, IsInitialization_t(isInit)); break; } SILType ValType = addrVal.getType().getObjectType(); if (Opcode == ValueKind::StoreInst) { ResultVal = B.createStore(InstLoc, getLocalValue(from, ValType, InstLoc), addrVal); break; } assert(Opcode == ValueKind::AssignInst); ResultVal = B.createAssign(InstLoc, getLocalValue(from, ValType, InstLoc), addrVal); break; } case ValueKind::AllocStackInst: case ValueKind::AllocRefInst: case ValueKind::MetatypeInst: { SILType Ty; if (parseSILType(Ty)) return true; if (Opcode == ValueKind::AllocStackInst) ResultVal = B.createAllocStack(InstLoc, Ty); else if (Opcode == ValueKind::AllocRefInst) { ResultVal = B.createAllocRef(InstLoc, Ty); } else { assert(Opcode == ValueKind::MetatypeInst); ResultVal = B.createMetatype(InstLoc, Ty); } break; } case ValueKind::DeallocStackInst: case ValueKind::DeallocRefInst: if (parseTypedValueRef(Val)) return true; if (Opcode == ValueKind::DeallocStackInst) { ResultVal = B.createDeallocStack(InstLoc, Val); } else { assert(Opcode == ValueKind::DeallocRefInst); ResultVal = B.createDeallocRef(InstLoc, Val); } break; case ValueKind::DeallocBoxInst: case ValueKind::ArchetypeMetatypeInst: case ValueKind::ClassMetatypeInst: case ValueKind::ProtocolMetatypeInst: { SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseTypedValueRef(Val)) return true; switch (Opcode) { default: assert(0 && "Out of sync with parent switch"); case ValueKind::ArchetypeMetatypeInst: ResultVal = B.createArchetypeMetatype(InstLoc, Ty, Val); break; case ValueKind::ClassMetatypeInst: ResultVal = B.createClassMetatype(InstLoc, Ty, Val); break; case ValueKind::ProtocolMetatypeInst: ResultVal = B.createProtocolMetatype(InstLoc, Ty, Val); break; case ValueKind::DeallocBoxInst: ResultVal = B.createDeallocBox(InstLoc, Ty, Val); break; } break; } case ValueKind::TupleInst: { // Tuple instructions have two different syntaxes, one for simple tuple // types, one for complicated ones. if (P.Tok.isNot(tok::sil_dollar)) { // If there is no type, parse the simple form. if (P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")) return true; // TODO: Check for a type here. This is how tuples with "interesting" // types are described. // This form is used with tuples that have elements with no names or // default values. SmallVector TypeElts; if (P.Tok.isNot(tok::r_paren)) { do { if (parseTypedValueRef(Val)) return true; OpList.push_back(Val); TypeElts.push_back(Val.getType().getSwiftRValueType()); } while (P.consumeIf(tok::comma)); } HadError |= P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr,")"); auto Ty = TupleType::get(TypeElts, P.Context); auto Ty2 = SILType::getPrimitiveObjectType(Ty->getCanonicalType()); ResultVal = B.createTuple(InstLoc, Ty2, OpList); break; } // Otherwise, parse the fully general form. SILType Ty; if (parseSILType(Ty) || P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")) return true; TupleType *TT = Ty.getAs(); if (TT == nullptr) { P.diagnose(OpcodeLoc, diag::expected_tuple_type_in_tuple); return true; } SmallVector TypeElts; if (P.Tok.isNot(tok::r_paren)) { do { if (TypeElts.size() > TT->getFields().size()) { P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_value_count, TT->getFields().size()); return true; } Type EltTy = TT->getFields()[TypeElts.size()].getType(); if (parseValueRef(Val, SILType::getPrimitiveObjectType(EltTy->getCanonicalType()), SILFileLocation(P.Tok.getLoc()))) return true; OpList.push_back(Val); TypeElts.push_back(Val.getType().getSwiftRValueType()); } while (P.consumeIf(tok::comma)); } HadError |= P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr,")"); if (TypeElts.size() != TT->getFields().size()) { P.diagnose(OpcodeLoc, diag::sil_tuple_inst_wrong_value_count, TT->getFields().size()); return true; } ResultVal = B.createTuple(InstLoc, Ty, OpList); break; } case ValueKind::UnionInst: { SILType Ty; SILDeclRef Elt; SILValue Operand; if (parseSILType(Ty) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(Elt)) return true; if (P.Tok.is(tok::comma)) { P.consumeToken(tok::comma); if (parseTypedValueRef(Operand)) return true; } ResultVal = B.createUnion(InstLoc, Operand, cast(Elt.getDecl()), Ty); break; } case ValueKind::UnionDataAddrInst: { SILValue Operand; SILDeclRef EltRef; if (parseTypedValueRef(Operand) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(EltRef)) return true; UnionElementDecl *Elt = cast(EltRef.getDecl()); // FIXME: substitution means this needs to be explicit. auto ResultTy = Elt->getArgumentType()->getCanonicalType(); ResultVal = B.createUnionDataAddr(InstLoc, Operand, Elt, SILType::getPrimitiveAddressType(ResultTy)); break; } case ValueKind::InjectUnionAddrInst: { SILValue Operand; SILDeclRef EltRef; if (parseTypedValueRef(Operand) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(EltRef)) return true; UnionElementDecl *Elt = cast(EltRef.getDecl()); ResultVal = B.createInjectUnionAddr(InstLoc, Operand, Elt); break; } case ValueKind::TupleElementAddrInst: case ValueKind::TupleExtractInst: { Identifier ElemId; SourceLoc NameLoc; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")) return true; unsigned Field = 0; TupleType *TT = Val.getType().getAs(); if (P.Tok.isNot(tok::integer_literal) || P.Tok.getText().getAsInteger(10, Field) || Field >= TT->getFields().size()) { P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_field); return true; } P.consumeToken(tok::integer_literal); auto ResultTy = TT->getFields()[Field].getType()->getCanonicalType(); if (Opcode == ValueKind::TupleElementAddrInst) ResultVal = B.createTupleElementAddr(InstLoc, Val, Field, SILType::getPrimitiveAddressType(ResultTy)); else ResultVal = B.createTupleExtract(InstLoc, Val, Field, SILType::getPrimitiveObjectType(ResultTy)).getDef(); break; } case ValueKind::ReturnInst: { if (parseTypedValueRef(Val)) return true; ResultVal = B.createReturn(InstLoc, Val); break; } case ValueKind::BranchInst: { Identifier BBName; SourceLoc NameLoc; if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name)) return true; SmallVector Args; if (parseSILBBArgsAtBranch(Args)) return true; // Note, the basic block here could be a reference to an undefined // basic block, which will be parsed later on. ResultVal = B.createBranch(InstLoc, getBBForReference(BBName, NameLoc), Args); break; } case ValueKind::CondBranchInst: { UnresolvedValueName Cond; Identifier BBName, BBName2; SourceLoc NameLoc, NameLoc2; SmallVector Args, Args2; if (parseValueName(Cond) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) || parseSILBBArgsAtBranch(Args) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILIdentifier(BBName2, NameLoc2, diag::expected_sil_block_name) || parseSILBBArgsAtBranch(Args2)) return true; auto I1Ty = SILType::getBuiltinIntegerType(1, BB->getParent()->getASTContext()); SILValue CondVal = getLocalValue(Cond, I1Ty, InstLoc); ResultVal = B.createCondBranch(InstLoc, CondVal, getBBForReference(BBName, NameLoc), Args, getBBForReference(BBName2, NameLoc2), Args2); break; } case ValueKind::UnreachableInst: ResultVal = B.createUnreachable(InstLoc); break; case ValueKind::ProtocolMethodInst: case ValueKind::ClassMethodInst: case ValueKind::SuperMethodInst: case ValueKind::DynamicMethodInst: { bool IsVolatile = false; if (parseSILOptional(IsVolatile, *this, "volatile")) return true; SILDeclRef Member; SILType MethodTy; SourceLoc TyLoc; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(Member) || P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") || parseSILType(MethodTy, TyLoc) ) return true; switch (Opcode) { default: assert(0 && "Out of sync with parent switch"); case ValueKind::ProtocolMethodInst: ResultVal = B.createProtocolMethod(InstLoc, Val, Member, MethodTy, IsVolatile); break; case ValueKind::ClassMethodInst: ResultVal = B.createClassMethod(InstLoc, Val, Member, MethodTy, IsVolatile); break; case ValueKind::SuperMethodInst: ResultVal = B.createSuperMethod(InstLoc, Val, Member, MethodTy, IsVolatile); break; case ValueKind::DynamicMethodInst: ResultVal = B.createDynamicMethod(InstLoc, Val, Member, MethodTy, IsVolatile); break; } break; } case ValueKind::ArchetypeMethodInst: { bool IsVolatile = false; if (parseSILOptional(IsVolatile, *this, "volatile")) return true; SILType LookupTy; SILDeclRef Member; SILType MethodTy; SourceLoc TyLoc; if (parseSILType(LookupTy, TyLoc) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(Member) || P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") || parseSILType(MethodTy, TyLoc) ) return true; ResultVal = B.createArchetypeMethod(InstLoc, LookupTy, Member, MethodTy, IsVolatile); break; } case ValueKind::CopyAddrInst: { bool IsTake = false, IsInit = false; UnresolvedValueName SrcLName; SILValue DestLVal; SourceLoc ToLoc, DestLoc; Identifier ToToken; if (parseSILOptional(IsTake, *this, "take") || parseValueName(SrcLName) || parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr, "to") || parseSILOptional(IsInit, *this, "initialization") || parseTypedValueRef(DestLVal, DestLoc)) return true; if (ToToken.str() != "to") { P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to"); return true; } if (!DestLVal.getType().isAddress()) { P.diagnose(DestLoc, diag::sil_invalid_instr_operands); return true; } SILValue SrcLVal = getLocalValue(SrcLName, DestLVal.getType(), InstLoc); ResultVal = B.createCopyAddr(InstLoc, SrcLVal, DestLVal, IsTake_t(IsTake), IsInitialization_t(IsInit)); break; } case ValueKind::UpcastExistentialInst: { SILValue DestVal; SourceLoc SrcLoc, DestLoc, ToLoc; Identifier ToToken; bool IsTake = false; if (parseSILOptional(IsTake, *this, "take") || parseTypedValueRef(Val, SrcLoc) || parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr, "to") || parseTypedValueRef(DestVal, DestLoc)) return true; if (ToToken.str() != "to") { P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to"); return true; } ResultVal = B.createUpcastExistential(InstLoc, Val, DestVal, IsTake_t(IsTake)); break; } case ValueKind::InitializeVarInst: { bool NoDefault = false; if (parseSILOptional(NoDefault, *this, "no_default_construct") || parseTypedValueRef(Val)) return true; ResultVal = B.createInitializeVar(InstLoc, Val, !NoDefault); break; } case ValueKind::StructInst: { SILType StructTy; if (parseSILType(StructTy) || P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")) return true; // Parse a list of SILValue. if (P.Tok.isNot(tok::r_paren)) { do { if (parseTypedValueRef(Val)) return true; OpList.push_back(Val); } while (P.consumeIf(tok::comma)); } if (P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr,")")) return true; ResultVal = B.createStruct(InstLoc, StructTy, OpList); break; } case ValueKind::StructElementAddrInst: case ValueKind::StructExtractInst: { Identifier ElemId; SourceLoc NameLoc; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || P.parseToken(tok::sil_pound, diag::expected_sil_constant) || parseSILIdentifier(ElemId, NameLoc, diag::expected_sil_constant)) return true; ValueDecl *FieldV = lookupMember(P, Val.getType().getSwiftRValueType(), ElemId); if (!FieldV || !isa(FieldV)) { P.diagnose(NameLoc, diag::sil_struct_inst_wrong_field); return true; } VarDecl *Field = cast(FieldV); // FIXME: substitution means this needs to be explicit. auto ResultTy = Field->getType()->getCanonicalType(); if (Opcode == ValueKind::StructElementAddrInst) ResultVal = B.createStructElementAddr(InstLoc, Val, Field, SILType::getPrimitiveAddressType(ResultTy)); else ResultVal = B.createStructExtract(InstLoc, Val, Field, SILType::getPrimitiveObjectType(ResultTy)); break; } case ValueKind::BuiltinZeroInst: { SILType Ty; if (parseSILType(Ty)) return true; ResultVal = B.createBuiltinZero(InstLoc, Ty); break; } case ValueKind::RefElementAddrInst: { Identifier ElemId; SourceLoc NameLoc; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || P.parseToken(tok::sil_pound, diag::expected_sil_constant) || parseSILIdentifier(ElemId, NameLoc, diag::expected_sil_constant)) return true; ValueDecl *FieldV = lookupMember(P, Val.getType().getSwiftRValueType(), ElemId); if (!FieldV || !isa(FieldV)) { P.diagnose(NameLoc, diag::sil_ref_inst_wrong_field); return true; } VarDecl *Field = cast(FieldV); auto ResultTy = SILType::getPrimitiveAddressType( Field->getType()->getCanonicalType()); ResultVal = B.createRefElementAddr(InstLoc, Val, Field, ResultTy); break; } case ValueKind::IsNonnullInst: { SourceLoc Loc; if (parseTypedValueRef(Val, Loc)) return true; ResultVal = B.createIsNonnull(InstLoc, Val); break; } case ValueKind::IndexAddrInst: { SILValue IndexVal; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseTypedValueRef(IndexVal)) return true; ResultVal = B.createIndexAddr(InstLoc, Val, IndexVal); break; } case ValueKind::IndexRawPointerInst: { SILValue IndexVal; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseTypedValueRef(IndexVal)) return true; ResultVal = B.createIndexRawPointer(InstLoc, Val, IndexVal); break; } case ValueKind::GlobalAddrInst: { Identifier GlobalName; SILType Ty; if (P.parseToken(tok::sil_pound, diag::expected_sil_constant) || parseSILIdentifier(GlobalName, diag::expected_sil_constant) || P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") || parseSILType(Ty)) return true; // Find VarDecl for GlobalName. ValueDecl *VD; SmallVector CurModuleResults; // Perform a module level lookup on the first component of the fully-qualified // name. P.TU->lookupValue(Module::AccessPathTy(), GlobalName, NLKind::UnqualifiedLookup, CurModuleResults); assert(CurModuleResults.size() == 1); VD = CurModuleResults[0]; ResultVal = B.createGlobalAddr(InstLoc, cast(VD), Ty); break; } case ValueKind::SwitchUnionInst: case ValueKind::DestructiveSwitchUnionAddrInst: { if (parseTypedValueRef(Val)) return true; SmallVector, 4> CaseBBs; SILBasicBlock *DefaultBB = nullptr; while (P.consumeIf(tok::comma)) { Identifier BBName; SourceLoc BBLoc; // Parse 'default' sil-identifier. if (P.consumeIf(tok::kw_default)) { parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name); DefaultBB = getBBForReference(BBName, BBLoc); break; } // Parse 'case' sil-decl-ref ':' sil-identifier. if (P.consumeIf(tok::kw_case)) { SILDeclRef ElemRef; if (parseSILDeclRef(ElemRef)) return true; assert(ElemRef.hasDecl() && isa(ElemRef.getDecl())); P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":"); parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name); CaseBBs.push_back( {cast(ElemRef.getDecl()), getBBForReference(BBName, BBLoc)} ); continue; } P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default"); return true; } if (Opcode == ValueKind::SwitchUnionInst) ResultVal = B.createSwitchUnion(InstLoc, Val, DefaultBB, CaseBBs); else ResultVal = B.createDestructiveSwitchUnionAddr( InstLoc, Val, DefaultBB, CaseBBs); break; } case ValueKind::SwitchIntInst: { if (parseTypedValueRef(Val)) return true; SmallVector, 4> CaseBBs; SILBasicBlock *DefaultBB = nullptr; while (P.consumeIf(tok::comma)) { Identifier BBName; SourceLoc BBLoc; // Parse 'default' sil-identifier. if (P.consumeIf(tok::kw_default)) { parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name); DefaultBB = getBBForReference(BBName, BBLoc); break; } // Parse 'case' int-literal ':' sil-identifier. if (P.consumeIf(tok::kw_case)) { // Parse int-literal. if (P.Tok.getKind() != tok::integer_literal) { P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer"); return true; } auto intTy = Val.getType().getAs(); if (!intTy) { P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type); return true; } APInt value(intTy->getBitWidth(), 0); bool error = P.Tok.getText().getAsInteger(0, value); assert(!error && "integer_literal token did not parse as APInt?!"); (void)error; if (value.getBitWidth() != intTy->getBitWidth()) value = value.zextOrTrunc(intTy->getBitWidth()); P.consumeToken(tok::integer_literal); P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":"); parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name); CaseBBs.push_back( {value, getBBForReference(BBName, BBLoc)} ); continue; } P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default"); return true; } ResultVal = B.createSwitchInt(InstLoc, Val, DefaultBB, CaseBBs); break; } case ValueKind::DeinitExistentialInst: { if (parseTypedValueRef(Val)) return true; ResultVal = B.createDeinitExistential(InstLoc, Val); break; } case ValueKind::InitExistentialInst: { SILType Ty; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILType(Ty)) return true; // FIXME: Conformances in InitExistentialInst is currently not included in // SIL.rst. ResultVal = B.createInitExistential(InstLoc, Val, Ty, ArrayRef()); break; } case ValueKind::InitExistentialRefInst: { SILType Ty; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILType(Ty)) return true; // FIXME: Conformances in InitExistentialRefInst is currently not included // in SIL.rst. ResultVal = B.createInitExistentialRef(InstLoc, Ty, Val, ArrayRef()); break; } case ValueKind::ModuleInst: { Identifier ModuleName; SourceLoc ModuleLoc; // Parse reference to a module. if (P.parseToken(tok::sil_pound, diag::expected_sil_constant) || parseSILIdentifier(ModuleName, ModuleLoc, diag::expected_sil_constant)) return true; llvm::PointerUnion Res = lookupTopDecl(P, ModuleName); assert(Res.is() && "Expect a module name in ModuleInst"); auto Mod = Res.get(); ResultVal = B.createModule(InstLoc, SILType::getPrimitiveObjectType( ModuleType::get(Mod)->getCanonicalType())); break; } case ValueKind::SpecializeInst: { SILType DestTy; SourceLoc Loc; if (parseTypedValueRef(Val, Loc) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILType(DestTy) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")) return true; // Make sure Type of Val is PolymorphicFunctionType. if (!Val.getType().getSwiftType()->is()) { P.diagnose(Loc, diag::expected_sil_type_kind, "be a polymorphic function"); return true; } PolymorphicFunctionType *PTy = cast( Val.getType().getSwiftType().getPointer()); // Parse a list of Substitutions: Archetype = Replacement. SmallVector Substitutions; do { Substitution Sub; SILType Replace; Identifier ArcheId; if (parseSILIdentifier(ArcheId, diag::expected_sil_type) || P.parseToken(tok::equal, diag::expected_tok_in_sil_instr, "=") || parseSILType(Replace)) return true; // Find the corresponding ArchetypeType for ArcheId in PTy. ArrayRef AllArchetypes = PTy->getAllArchetypes(); for (auto ArcheTy : AllArchetypes) if (ArcheTy->getName() == ArcheId) { Sub.Archetype = ArcheTy; break; } Sub.Replacement = Replace.getSwiftType(); Substitutions.push_back(Sub); } while (P.consumeIf(tok::comma)); ResultVal = B.createSpecialize(InstLoc, Val, P.Context.AllocateCopy(Substitutions), DestTy); break; } case ValueKind::DynamicMethodBranchInst: { SILDeclRef Member; Identifier BBName, BBName2; SourceLoc NameLoc, NameLoc2; if (parseTypedValueRef(Val) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILDeclRef(Member) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) || P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") || parseSILIdentifier(BBName2, NameLoc2, diag::expected_sil_block_name)) return true; ResultVal = B.createDynamicMethodBranch(InstLoc, Val, Member, getBBForReference(BBName, NameLoc), getBBForReference(BBName2, NameLoc2)); break; } } // Store the named value if we had a name. if (ResultNameLoc.isValid()) setLocalValue(ResultVal, ResultName, ResultNameLoc); return false; } bool SILParser::parseCallInstruction(SILLocation InstLoc, ValueKind Opcode, SILBuilder &B, ValueBase *&ResultVal) { UnresolvedValueName FnName; SmallVector ArgNames; bool Transparent = false; if ((Opcode == ValueKind::ApplyInst && parseSILOptional(Transparent, *this, "transparent")) || parseValueName(FnName) || P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")) return true; if (P.Tok.isNot(tok::r_paren)) { do { UnresolvedValueName Arg; if (parseValueName(Arg)) return true; ArgNames.push_back(Arg); } while (P.consumeIf(tok::comma)); } SILType Ty; SourceLoc TypeLoc; if (P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")") || P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") || parseSILType(Ty, TypeLoc)) return true; CanType ShTy = Ty.getSwiftType(); if (!ShTy->is() && !ShTy->is()) { P.diagnose(TypeLoc, diag::expected_sil_type_kind, "be a function"); return true; } SILFunctionTypeInfo *FTI = Ty.getFunctionTypeInfo(SILMod); auto ArgTys = FTI->getInputTypes(); switch (Opcode) { default: assert(0 && "Unexpected case"); case ValueKind::ApplyInst : { if (ArgTys.size() != ArgNames.size()) { P.diagnose(TypeLoc, diag::expected_sil_type_kind, "have the right argument types"); return true; } SILValue FnVal = getLocalValue(FnName, Ty, InstLoc); unsigned ArgNo = 0; SmallVector Args; for (auto &ArgName : ArgNames) Args.push_back(getLocalValue(ArgName, ArgTys[ArgNo++], InstLoc)); ResultVal = B.createApply(InstLoc, FnVal, FTI->getResultType(), Args, Transparent); break; } case ValueKind::PartialApplyInst: { if (ArgTys.size() < ArgNames.size()) { P.diagnose(TypeLoc, diag::expected_sil_type_kind, "have the right argument types"); return true; } // Compute the result type of the partial_apply, based on which arguments // are getting applied. SILValue FnVal = getLocalValue(FnName, Ty, InstLoc); SmallVector Args; unsigned ArgNo = ArgTys.size() - ArgNames.size(); for (auto &ArgName : ArgNames) Args.push_back(getLocalValue(ArgName, ArgTys[ArgNo++], InstLoc)); SILType closureTy = SILBuilder::getPartialApplyResultType(Ty, ArgNames.size(), SILMod); // FIXME: Why the arbitrary order difference in IRBuilder type argument? ResultVal = B.createPartialApply(InstLoc, FnVal, Args, closureTy); break; } } return false; } bool SILParser::parseSILFunctionRef(SILLocation InstLoc, SILBuilder &B, ValueBase *&ResultVal) { Identifier Name; SILType Ty; SourceLoc Loc = P.Tok.getLoc(); if (parseGlobalName(Name) || P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) || parseSILType(Ty)) return true; ResultVal = B.createFunctionRef(InstLoc, getGlobalNameForReference(Name, Ty, Loc)); return false; } /// True if the current token sequence looks like the start of a SIL /// instruction, either: /// %name /// or: /// identifier | keyword /// where identifier is not followed by a '(' or ':', which would indicate /// a basic block. bool SILParser::isStartOfSILInstruction() { if (P.Tok.is(tok::sil_local_name)) return true; if (P.Tok.is(tok::identifier) || P.Tok.isKeyword()) { auto &peek = P.peekToken(); return !peek.is(tok::l_paren) && !peek.is(tok::colon); } return false; } /// sil-basic-block: /// sil-instruction+ /// identifier sil-bb-argument-list? ':' sil-instruction+ /// sil-bb-argument-list: /// '(' sil-typed-valueref (',' sil-typed-valueref)+ ')' bool SILParser::parseSILBasicBlock() { SILBasicBlock *BB; // The basic block name is optional. if (P.Tok.is(tok::sil_local_name)) { BB = getBBForDefinition(Identifier(), SourceLoc()); } else { Identifier BBName; SourceLoc NameLoc; if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name)) return true; BB = getBBForDefinition(BBName, NameLoc); // If there is a basic block argument list, process it. if (P.consumeIf(tok::l_paren)) { do { SILType Ty; SourceLoc NameLoc; StringRef Name = P.Tok.getText(); if (P.parseToken(tok::sil_local_name, NameLoc, diag::expected_sil_value_name) || P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) || parseSILType(Ty)) return true; auto Arg = new (SILMod) SILArgument(Ty, BB); setLocalValue(Arg, Name, NameLoc); } while (P.consumeIf(tok::comma)); if (P.parseToken(tok::r_paren, diag::sil_basicblock_arg_rparen)) return true; } if (P.parseToken(tok::colon, diag::expected_sil_block_colon)) return true; } // Make sure the block is at the end of the function so that forward // references don't affect block layout. F->getBlocks().remove(BB); F->getBlocks().push_back(BB); do { if (parseSILInstruction(BB)) return true; } while (isStartOfSILInstruction()); return false; } /// decl-sil: [[only in SIL mode]] /// 'sil' sil-linkage '@' identifier ':' sil-type decl-sil-body /// decl-sil-body: /// '{' sil-basic-block+ '}' bool Parser::parseDeclSIL() { // Inform the lexer that we're lexing the body of the SIL declaration. Do // this before we consume the 'sil' token so that all later tokens are // properly handled. Lexer::SILBodyRAII Tmp(*L); consumeToken(tok::kw_sil); SILParser FunctionState(*this); SILLinkage FnLinkage; Identifier FnName; SILType FnType; SourceLoc FnNameLoc; Scope S(this, ScopeKind::TopLevel); if (parseSILLinkage(FnLinkage, *this) || parseToken(tok::sil_at_sign, diag::expected_sil_function_name) || parseIdentifier(FnName, FnNameLoc, diag::expected_sil_function_name) || parseToken(tok::colon, diag::expected_sil_type)) return true; { // Construct a Scope for the function body so TypeAliasDecl can be added to // the scope. Scope Body(this, ScopeKind::FunctionBody); if (FunctionState.parseSILType(FnType)) return true; // TODO: Verify it is a function type. FunctionState.F = FunctionState.getGlobalNameForDefinition(FnName, FnType, FnNameLoc); FunctionState.F->setLinkage(FnLinkage); // Now that we have a SILFunction parse the body, if present. SourceLoc LBraceLoc = Tok.getLoc(); if (consumeIf(tok::l_brace)) { // Parse the basic block list. do { if (FunctionState.parseSILBasicBlock()) return true; } while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)); SourceLoc RBraceLoc; parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace, LBraceLoc); } } if (FunctionState.diagnoseProblems()) return true; // If SIL prsing succeeded, verify the generated SIL. if (!FunctionState.P.Diags.hadAnyError()) FunctionState.F->verify(); return false; } /// decl-sil-stage: [[only in SIL mode]] /// 'sil_stage' ('raw' | 'canonical') bool Parser::parseDeclSILStage() { SourceLoc stageLoc = consumeToken(tok::kw_sil_stage); if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_sil_stage_name); return true; } SILStage stage; if (Tok.isContextualKeyword("raw")) { stage = SILStage::Raw; consumeToken(); } else if (Tok.isContextualKeyword("canonical")) { stage = SILStage::Canonical; consumeToken(); } else { diagnose(Tok, diag::expected_sil_stage_name); consumeToken(); return true; } if (SIL->S->DidParseSILStage) { diagnose(stageLoc, diag::multiple_sil_stage_decls); return false; } SIL->M->setStage(stage); SIL->S->DidParseSILStage = true; return false; }