//===--- PropertyMap.cpp - Collects properties of type parameters ---------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2021 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // In the rewrite system, a conformance requirement 'T : P' is represented as // rewrite rule of the form: // // T.[P] => T // // Similarly, layout, superclass, and concrete-type requirements are represented // by a rewrite rule of the form: // // T.[p] => T // // Where [p] is a "property symbol": [layout: L], [superclass: Foo], // [concrete: Bar]. // // Given an arbitrary type T and a property [p], we can check if T satisfies the // property by checking if the two terms T.[p] and T reduce to the same term T'. // That is, if our rewrite rules allow us to eliminate the [p] suffix, we know // the type satisfies [p]. // // However, the question then becomes, given an arbitrary type T, how do we find // *all* properties [p] satisfied by T? // // The trick is that we can take advantage of confluence here. // // If T.[p] => T', and T => T'', then it must follow that T''.[p] => T'. // Furthermore, since T'' is fully reduced, T'' == T'. So T'' == UV for some // terms U and V, and there exist be a rewrite rule V.[p] => V' in the system. // // Therefore, in order to find all [p] satisfied by T, we start by fully reducing // T, then we look for rules of the form V.[p] => V' where V is fully reduced, // and a suffix of T. // // This is the idea behind the property map. We collect all rules of the form // V.[p] => V into a multi-map keyed by V. Then given an arbitrary type T, // we can reduce it and look up successive suffixes to find all properties [p] // satisfied by T. // //===----------------------------------------------------------------------===// #include "swift/AST/Decl.h" #include "swift/AST/ProtocolConformance.h" #include "swift/AST/Types.h" #include "llvm/Support/raw_ostream.h" #include #include #include "PropertyMap.h" using namespace swift; using namespace rewriting; /// This papers over a behavioral difference between /// GenericSignature::getRequiredProtocols() and ArchetypeType::getConformsTo(); /// the latter drops any protocols to which the superclass requirement /// conforms to concretely. llvm::TinyPtrVector PropertyBag::getConformsToExcludingSuperclassConformances() const { llvm::TinyPtrVector result; if (SuperclassConformances.empty()) { result = ConformsTo; return result; } // The conformances in SuperclassConformances should appear in the same order // as the protocols in ConformsTo. auto conformanceIter = SuperclassConformances.begin(); for (const auto *proto : ConformsTo) { if (conformanceIter == SuperclassConformances.end()) { result.push_back(proto); continue; } if (proto == (*conformanceIter)->getProtocol()) { ++conformanceIter; continue; } result.push_back(proto); } assert(conformanceIter == SuperclassConformances.end()); return result; } void PropertyBag::dump(llvm::raw_ostream &out) const { out << Key << " => {"; if (!ConformsTo.empty()) { out << " conforms_to: ["; bool first = true; for (const auto *proto : ConformsTo) { if (first) first = false; else out << " "; out << proto->getName(); } out << "]"; } if (Layout) { out << " layout: " << Layout; } if (Superclass) { out << " superclass: " << *Superclass; } if (ConcreteType) { out << " concrete_type: " << *ConcreteType; } out << " }"; } /// Given a term \p lookupTerm whose suffix must equal this property bag's /// key, return a new term with that suffix stripped off. Will be empty if /// \p lookupTerm exactly equals the key. MutableTerm PropertyBag::getPrefixAfterStrippingKey(const MutableTerm &lookupTerm) const { assert(lookupTerm.size() >= Key.size()); auto prefixBegin = lookupTerm.begin(); auto prefixEnd = lookupTerm.end() - Key.size(); assert(std::equal(prefixEnd, lookupTerm.end(), Key.begin()) && "This is not the bag you're looking for"); return MutableTerm(prefixBegin, prefixEnd); } /// Get the superclass bound for \p lookupTerm, whose suffix must be the term /// represented by this property bag. /// /// The original \p lookupTerm is important in case the concrete type has /// substitutions. For example, if \p lookupTerm is [P:A].[U:B], and this /// property bag records that the suffix [U:B] has a superclass symbol /// [superclass: Cache<τ_0_0> with <[U:C]>], then we actually need to /// apply the substitution τ_0_0 := [P:A].[U:C] to the type 'Cache<τ_0_0>'. /// /// Asserts if this property bag does not have a superclass bound. Type PropertyBag::getSuperclassBound( TypeArrayView genericParams, const MutableTerm &lookupTerm, RewriteContext &ctx) const { MutableTerm prefix = getPrefixAfterStrippingKey(lookupTerm); return ctx.getTypeFromSubstitutionSchema(Superclass->getSuperclass(), Superclass->getSubstitutions(), genericParams, prefix); } /// Get the concrete type of the term represented by this property bag. /// /// The original \p lookupTerm is important in case the concrete type has /// substitutions. For example, if \p lookupTerm is [P:A].[U:B], and this /// property bag records that the suffix [U:B] has a concrete type symbol /// [concrete: Array<τ_0_0> with <[U:C]>], then we actually need to /// apply the substitution τ_0_0 := [P:A].[U:C] to the type 'Array<τ_0_0>'. /// /// Asserts if this property bag is not concrete. Type PropertyBag::getConcreteType( TypeArrayView genericParams, const MutableTerm &lookupTerm, RewriteContext &ctx) const { MutableTerm prefix = getPrefixAfterStrippingKey(lookupTerm); return ctx.getTypeFromSubstitutionSchema(ConcreteType->getConcreteType(), ConcreteType->getSubstitutions(), genericParams, prefix); } void PropertyBag::copyPropertiesFrom(const PropertyBag *next, RewriteContext &ctx) { // If this is the property bag of T and 'next' is the // property bag of V, then T := UV for some non-empty U. int prefixLength = Key.size() - next->Key.size(); assert(prefixLength > 0); assert(std::equal(Key.begin() + prefixLength, Key.end(), next->Key.begin())); // Conformances and the layout constraint, if any, can be copied over // unmodified. ConformsTo = next->ConformsTo; ConformsToRules = next->ConformsToRules; Layout = next->Layout; LayoutRule = next->LayoutRule; // If the property bag of V has superclass or concrete type // substitutions {X1, ..., Xn}, then the property bag of // T := UV should have substitutions {UX1, ..., UXn}. MutableTerm prefix(Key.begin(), Key.begin() + prefixLength); if (next->Superclass) { Superclass = next->Superclass->prependPrefixToConcreteSubstitutions( prefix, ctx); SuperclassRule = next->SuperclassRule; } if (next->ConcreteType) { ConcreteType = next->ConcreteType->prependPrefixToConcreteSubstitutions( prefix, ctx); ConcreteTypeRule = next->ConcreteTypeRule; } } void PropertyBag::verify(const RewriteSystem &system) const { #ifndef NDEBUG assert(ConformsTo.size() == ConformsToRules.size()); for (unsigned i : indices(ConformsTo)) { auto symbol = system.getRule(ConformsToRules[i]).getLHS().back(); assert(symbol.getKind() == Symbol::Kind::Protocol); assert(symbol.getProtocol() == ConformsTo[i]); } // FIXME: Once unification introduces new rules, add asserts requiring // that the layout, superclass and concrete type symbols match, as above assert(!Layout.isNull() == LayoutRule.hasValue()); assert(Superclass.hasValue() == SuperclassRule.hasValue()); assert(ConcreteType.hasValue() == ConcreteTypeRule.hasValue()); #endif } PropertyMap::~PropertyMap() { Trie.updateHistograms(Context.PropertyTrieHistogram, Context.PropertyTrieRootHistogram); clear(); } /// Look for a property bag corresponding to a suffix of the given key. /// /// Returns nullptr if no information is known about this key. PropertyBag * PropertyMap::lookUpProperties(const MutableTerm &key) const { if (auto result = Trie.find(key.rbegin(), key.rend())) return *result; return nullptr; } /// Look for a property bag corresponding to the given key, creating a new /// property bag if necessary. /// /// This must be called in monotonically non-decreasing key order. PropertyBag * PropertyMap::getOrCreateProperties(Term key) { auto next = Trie.find(key.rbegin(), key.rend()); if (next && (*next)->getKey() == key) return *next; auto *props = new PropertyBag(key); // Look for the longest suffix of the key that has a property bag, // recording it as the next property bag if we find one. // // For example, if our rewrite system contains the following three rules: // // A.[P] => A // B.A.[Q] => B.A // C.A.[R] => C.A // // Then we have three property bags: // // A => { [P] } // B.A => { [Q] } // C.A => { [R] } // // The next property bag of both 'B.A' and 'C.A' is 'A'; conceptually, // the set of properties satisfied by 'B.A' is a superset of the properties // satisfied by 'A'; analogously for 'C.A'. // // Since 'A' has no proper suffix with additional properties, the next // property bag of 'A' is nullptr. if (next) props->copyPropertiesFrom(*next, Context); Entries.push_back(props); auto oldProps = Trie.insert(key.rbegin(), key.rend(), props); if (oldProps) { llvm::errs() << "Duplicate property map entry for " << key << "\n"; llvm::errs() << "Old:\n"; (*oldProps)->dump(llvm::errs()); llvm::errs() << "\n"; llvm::errs() << "New:\n"; props->dump(llvm::errs()); llvm::errs() << "\n"; abort(); } return props; } void PropertyMap::clear() { for (auto *props : Entries) delete props; Trie.clear(); Entries.clear(); ConcreteTypeInDomainMap.clear(); } /// Record a protocol conformance, layout or superclass constraint on the given /// key. Must be called in monotonically non-decreasing key order. void PropertyMap::addProperty( Term key, Symbol property, unsigned ruleID, SmallVectorImpl &inducedRules) { assert(property.isProperty()); assert(*System.getRule(ruleID).isPropertyRule() == property); auto *props = getOrCreateProperties(key); props->addProperty(property, ruleID, Context, inducedRules, Debug.contains(DebugFlags::ConcreteUnification)); } /// Build the property map from all rules of the form T.[p] => T, where /// [p] is a property symbol. /// /// Returns a pair consisting of a status and number of iterations executed. /// /// The status is CompletionResult::MaxIterations if we exceed \p maxIterations /// iterations. /// /// The status is CompletionResult::MaxDepth if we produce a rewrite rule whose /// left hand side has a length exceeding \p maxDepth. /// /// Otherwise, the status is CompletionResult::Success. std::pair PropertyMap::buildPropertyMap(unsigned maxIterations, unsigned maxDepth) { clear(); struct Property { Term key; Symbol symbol; unsigned ruleID; }; // PropertyMap::addRule() requires that shorter rules are added // before longer rules, so that it can perform lookups on suffixes and call // PropertyBag::copyPropertiesFrom(). However, we don't have to perform a // full sort by term order here; a bucket sort by term length suffices. SmallVector, 4> properties; for (const auto &rule : System.getRules()) { if (rule.isSimplified()) continue; if (rule.isPermanent()) continue; // Collect all rules of the form T.[p] => T where T is canonical. auto property = rule.isPropertyRule(); if (!property) continue; auto rhs = rule.getRHS(); unsigned length = rhs.size(); if (length >= properties.size()) properties.resize(length + 1); unsigned ruleID = System.getRuleID(rule); properties[length].push_back({rhs, *property, ruleID}); } // Merging multiple superclass or concrete type rules can induce new rules // to unify concrete type constructor arguments. SmallVector inducedRules; for (const auto &bucket : properties) { for (auto property : bucket) { addProperty(property.key, property.symbol, property.ruleID, inducedRules); } } // We collect terms with fully concrete types so that we can re-use them // to tie off recursion in the next step. computeConcreteTypeInDomainMap(); // Now, we merge concrete type rules with conformance rules, by adding // relations between associated type members of type parameters with // the concrete type witnesses in the concrete type's conformance. concretizeNestedTypesFromConcreteParents(inducedRules); // Finally, introduce concrete conformance rules, relating conformance rules // to concrete type and superclass rules. recordConcreteConformanceRules(inducedRules); // Some of the induced rules might be trivial; only count the induced rules // where the left hand side is not already equivalent to the right hand side. unsigned addedNewRules = 0; for (auto pair : inducedRules) { // FIXME: Eventually, all induced rules will have a rewrite path. if (System.addRule(pair.LHS, pair.RHS, pair.Path.empty() ? nullptr : &pair.Path)) { ++addedNewRules; const auto &newRule = System.getRules().back(); if (newRule.getDepth() > maxDepth) return std::make_pair(CompletionResult::MaxDepth, addedNewRules); } } // Check invariants of the constructed property map. verify(); if (System.getRules().size() > maxIterations) return std::make_pair(CompletionResult::MaxIterations, addedNewRules); return std::make_pair(CompletionResult::Success, addedNewRules); } void PropertyMap::dump(llvm::raw_ostream &out) const { out << "Property map: {\n"; for (const auto &props : Entries) { out << " "; props->dump(out); out << "\n"; } out << "}\n"; } void PropertyMap::verify() const { #ifndef NDEBUG for (const auto &props : Entries) props->verify(System); #endif }