//===--- ParseableInterfaceSupport.cpp - swiftinterface files ------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "textual-module-interface" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/DiagnosticsFrontend.h" #include "swift/AST/FileSystem.h" #include "swift/AST/Module.h" #include "swift/Frontend/Frontend.h" #include "swift/Frontend/ParseableInterfaceSupport.h" #include "swift/Frontend/PrintingDiagnosticConsumer.h" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/Serialization/SerializationOptions.h" #include "clang/Basic/Module.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "llvm/ADT/Hashing.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/Path.h" #include "llvm/Support/Regex.h" #include "llvm/Support/StringSaver.h" using namespace swift; #define SWIFT_TOOLS_VERSION_KEY "swift-tools-version" #define SWIFT_MODULE_FLAGS_KEY "swift-module-flags" static bool extractSwiftInterfaceVersionAndArgs(DiagnosticEngine &Diags, clang::vfs::FileSystem &FS, StringRef SwiftInterfacePathIn, swift::version::Version &Vers, llvm::StringSaver &SubArgSaver, SmallVectorImpl &SubArgs) { auto FileOrError = swift::vfs::getFileOrSTDIN(FS, SwiftInterfacePathIn); if (!FileOrError) { Diags.diagnose(SourceLoc(), diag::error_open_input_file, SwiftInterfacePathIn, FileOrError.getError().message()); return true; } auto SB = FileOrError.get()->getBuffer(); auto VersRe = getSwiftInterfaceToolsVersionRegex(); auto FlagRe = getSwiftInterfaceModuleFlagsRegex(); SmallVector VersMatches, FlagMatches; if (!VersRe.match(SB, &VersMatches)) { Diags.diagnose(SourceLoc(), diag::error_extracting_version_from_parseable_interface); return true; } if (!FlagRe.match(SB, &FlagMatches)) { Diags.diagnose(SourceLoc(), diag::error_extracting_flags_from_parseable_interface); return true; } assert(VersMatches.size() == 2); assert(FlagMatches.size() == 2); Vers = swift::version::Version(VersMatches[1], SourceLoc(), &Diags); llvm::cl::TokenizeGNUCommandLine(FlagMatches[1], SubArgSaver, SubArgs); return false; } /// Construct a cache key for the .swiftmodule being generated. There is a /// balance to be struck here between things that go in the cache key and /// things that go in the "up to date" check of the cache entry. We want to /// avoid fighting over a single cache entry too much when (say) running /// different compiler versions on the same machine or different inputs /// that happen to have the same short module name, so we will disambiguate /// those in the key. But we want to invalidate and rebuild a cache entry /// -- rather than making a new one and potentially filling up the cache /// with dead entries -- when other factors change, such as the contents of /// the .swiftinterface input or its dependencies. std::string getCacheHash(ASTContext &Ctx, CompilerInvocation &SubInvocation, StringRef InPath) { // Start with the compiler version (which will be either tag names or revs). std::string vers = swift::version::getSwiftFullVersion( Ctx.LangOpts.EffectiveLanguageVersion); llvm::hash_code H = llvm::hash_value(vers); // Simplest representation of input "identity" (not content) is just a // pathname, and probably all we can get from the VFS in this regard anyways. H = llvm::hash_combine(H, InPath); // ClangImporterOpts does include the target CPU, which is redundant: we // already have separate .swiftinterface files per target due to expanding // preprocessing directives, but further specializing the cache key to that // target is harmless and will not make any extra cache entries, so allow it. H = llvm::hash_combine( H, SubInvocation.getClangImporterOptions().getPCHHashComponents()); return llvm::APInt(64, H).toString(36, /*Signed=*/false); } void ParseableInterfaceModuleLoader::configureSubInvocationAndOutputPaths( CompilerInvocation &SubInvocation, StringRef InPath, llvm::SmallString<128> &OutPath) { auto &SearchPathOpts = Ctx.SearchPathOpts; auto &LangOpts = Ctx.LangOpts; // Start with a SubInvocation that copies various state from our // invoking ASTContext. SubInvocation.setImportSearchPaths(SearchPathOpts.ImportSearchPaths); SubInvocation.setFrameworkSearchPaths(SearchPathOpts.FrameworkSearchPaths); SubInvocation.setSDKPath(SearchPathOpts.SDKPath); SubInvocation.setInputKind(InputFileKind::SwiftModuleInterface); SubInvocation.setRuntimeResourcePath(SearchPathOpts.RuntimeResourcePath); SubInvocation.setTargetTriple(LangOpts.Target); if (auto ClangLoader = Ctx.getClangModuleLoader()) { auto const &Clang = ClangLoader->getClangInstance(); std::string ModuleCachePath = getModuleCachePathFromClang(Clang); SubInvocation.setClangModuleCachePath(ModuleCachePath); } // Calculate an output filename that includes a hash of relevant key data, and // wire up the SubInvocation's InputsAndOutputs to contain both input and // output filenames. OutPath = CacheDir; llvm::sys::path::append(OutPath, llvm::sys::path::stem(InPath)); OutPath.append("-"); OutPath.append(getCacheHash(Ctx, SubInvocation, InPath)); OutPath.append("."); auto OutExt = file_types::getExtension(file_types::TY_SwiftModuleFile); OutPath.append(OutExt); auto &FEOpts = SubInvocation.getFrontendOptions(); FEOpts.RequestedAction = FrontendOptions::ActionType::EmitModuleOnly; FEOpts.EnableParseableModuleInterface = true; FEOpts.InputsAndOutputs.addPrimaryInputFile(InPath); SupplementaryOutputPaths SOPs; SOPs.ModuleOutputPath = OutPath.str(); StringRef MainOut = "/dev/null"; FEOpts.InputsAndOutputs.setMainAndSupplementaryOutputs({MainOut}, {SOPs}); } // Check that the output .swiftmodule file is at least as new as all the // dependencies it read when it was built last time. static bool swiftModuleIsUpToDate(clang::vfs::FileSystem &FS, StringRef InPath, StringRef OutPath) { if (!FS.exists(OutPath)) return false; auto OutStatus = FS.status(OutPath); if (!OutStatus) return false; auto OutBuf = FS.getBufferForFile(OutPath); if (!OutBuf) return false; SmallVector AllDeps; auto VI = serialization::validateSerializedAST( OutBuf.get()->getBuffer(), /*ExtendedValidationInfo=*/nullptr, &AllDeps); if (VI.status != serialization::Status::Valid) return false; for (auto In : AllDeps) { auto InStatus = FS.status(In.Path); if (!InStatus || (InStatus.get().getSize() != In.Size) || (InStatus.get().getLastModificationTime() != In.LastModTime)) { return false; } } return true; } static bool buildSwiftModuleFromSwiftInterface( clang::vfs::FileSystem &FS, DiagnosticEngine &Diags, CompilerInvocation &SubInvocation, StringRef InPath, StringRef OutPath) { bool SubError = false; bool RunSuccess = llvm::CrashRecoveryContext().RunSafelyOnThread([&] { llvm::BumpPtrAllocator SubArgsAlloc; llvm::StringSaver SubArgSaver(SubArgsAlloc); SmallVector SubArgs; swift::version::Version Vers; if (extractSwiftInterfaceVersionAndArgs(Diags, FS, InPath, Vers, SubArgSaver, SubArgs)) { SubError = true; return; } if (SubInvocation.parseArgs(SubArgs, Diags)) { SubError = true; return; } // Build the .swiftmodule; this is a _very_ abridged version of the logic in // performCompile in libFrontendTool, specialized, to just the one // module-serialization task we're trying to do here. LLVM_DEBUG(llvm::dbgs() << "Setting up instance\n"); CompilerInstance SubInstance; // FIXME: Temporary: this should forward to the outer Diags somehow. PrintingDiagnosticConsumer PDC; SubInstance.addDiagnosticConsumer(&PDC); SubInstance.createDependencyTracker(/*TrackSystemDeps=*/false); if (SubInstance.setup(SubInvocation)) { SubError = true; return; } LLVM_DEBUG(llvm::dbgs() << "Performing sema\n"); SubInstance.performSema(); if (SubInstance.getASTContext().hadError()) { SubError = true; return; } SILOptions &SILOpts = SubInvocation.getSILOptions(); auto Mod = SubInstance.getMainModule(); auto SILMod = performSILGeneration(Mod, SILOpts); if (SILMod) { LLVM_DEBUG(llvm::dbgs() << "Running SIL diagnostic passes\n"); if (runSILDiagnosticPasses(*SILMod)) { SubError = true; return; } SILMod->verify(); } LLVM_DEBUG(llvm::dbgs() << "Serializing " << OutPath << "\n"); SerializationOptions serializationOpts; std::string OutPathStr = OutPath; serializationOpts.OutputPath = OutPathStr.c_str(); serializationOpts.SerializeAllSIL = true; auto DTDeps = SubInstance.getDependencyTracker()->getDependencies(); SmallVector DepNames(DTDeps.begin(), DTDeps.end()); DepNames.push_back(InPath); SmallVector Deps; for (auto const &Dep : DepNames) { auto DepStatus = FS.status(Dep); if (!DepStatus) { SubError = true; return; } Deps.push_back(SerializationOptions::FileDependency{ DepStatus.get().getSize(), DepStatus.get().getLastModificationTime(), Dep}); } serializationOpts.Dependencies = Deps; SILMod->setSerializeSILAction([&]() { serialize(Mod, serializationOpts, SILMod.get()); }); SILMod->serialize(); SubError = Diags.hadAnyError(); }); return !RunSuccess || SubError; } /// Load a .swiftmodule associated with a .swiftinterface either from a /// cache or by converting it in a subordinate \c CompilerInstance, caching /// the results. std::error_code ParseableInterfaceModuleLoader::openModuleFiles( StringRef DirName, StringRef ModuleFilename, StringRef ModuleDocFilename, std::unique_ptr *ModuleBuffer, std::unique_ptr *ModuleDocBuffer, llvm::SmallVectorImpl &Scratch) { auto &FS = *Ctx.SourceMgr.getFileSystem(); auto &Diags = Ctx.Diags; llvm::SmallString<128> InPath, OutPath; // First check to see if the .swiftinterface exists at all. Bail if not. InPath = DirName; llvm::sys::path::append(InPath, ModuleFilename); auto Ext = file_types::getExtension(file_types::TY_SwiftParseableInterfaceFile); llvm::sys::path::replace_extension(InPath, Ext); if (!FS.exists(InPath)) return std::make_error_code(std::errc::no_such_file_or_directory); // Set up a _potential_ sub-invocation to consume the .swiftinterface and emit // the .swiftmodule. CompilerInvocation SubInvocation; configureSubInvocationAndOutputPaths(SubInvocation, InPath, OutPath); // Evaluate if we need to run this sub-invocation, and if so run it. if (!swiftModuleIsUpToDate(FS, InPath, OutPath)) { if (buildSwiftModuleFromSwiftInterface(FS, Diags, SubInvocation, InPath, OutPath)) return std::make_error_code(std::errc::invalid_argument); } // Finish off by delegating back up to the SerializedModuleLoaderBase // routine that can load the recently-manufactured serialized module. LLVM_DEBUG(llvm::dbgs() << "Loading " << OutPath << " via normal module loader\n"); auto ErrorCode = SerializedModuleLoaderBase::openModuleFiles( CacheDir, llvm::sys::path::filename(OutPath), ModuleDocFilename, ModuleBuffer, ModuleDocBuffer, Scratch); LLVM_DEBUG(llvm::dbgs() << "Loaded " << OutPath << " via normal module loader with error: " << ErrorCode.message() << "\n"); return ErrorCode; } /// Diagnose any scoped imports in \p imports, i.e. those with a non-empty /// access path. These are not yet supported by parseable interfaces, since the /// information about the declaration kind is not preserved through the binary /// serialization that happens as an intermediate step in non-whole-module /// builds. /// /// These come from declarations like `import class FooKit.MainFooController`. static void diagnoseScopedImports(DiagnosticEngine &diags, ArrayRef imports){ for (const ModuleDecl::ImportedModule &importPair : imports) { if (importPair.first.empty()) continue; diags.diagnose(importPair.first.front().second, diag::parseable_interface_scoped_import_unsupported); } } /// Prints to \p out a comment containing a tool-versions identifier as well /// as any relevant command-line flags in \p Opts used to construct \p M. static void printToolVersionAndFlagsComment(raw_ostream &out, ParseableInterfaceOptions const &Opts, ModuleDecl *M) { auto &Ctx = M->getASTContext(); out << "// " SWIFT_TOOLS_VERSION_KEY ": " << Ctx.LangOpts.EffectiveLanguageVersion << "\n"; out << "// " SWIFT_MODULE_FLAGS_KEY ": " << Opts.ParseableInterfaceFlags << "\n"; } llvm::Regex swift::getSwiftInterfaceToolsVersionRegex() { return llvm::Regex("^// " SWIFT_TOOLS_VERSION_KEY ": ([0-9\\.]+)$", llvm::Regex::Newline); } llvm::Regex swift::getSwiftInterfaceModuleFlagsRegex() { return llvm::Regex("^// " SWIFT_MODULE_FLAGS_KEY ": (.*)$", llvm::Regex::Newline); } /// Extract the specified-or-defaulted -module-cache-path that winds up in /// the clang importer, for reuse as the .swiftmodule cache path when /// building a ParseableInterfaceModuleLoader. std::string swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) { if (!Clang.hasPreprocessor()) return ""; std::string SpecificModuleCachePath = Clang.getPreprocessor() .getHeaderSearchInfo() .getModuleCachePath(); // The returned-from-clang module cache path includes a suffix directory // that is specific to the clang version and invocation; we want the // directory above that. return llvm::sys::path::parent_path(SpecificModuleCachePath); } /// Prints the imported modules in \p M to \p out in the form of \c import /// source declarations. static void printImports(raw_ostream &out, ModuleDecl *M) { // FIXME: This is very similar to what's in Serializer::writeInputBlock, but // it's not obvious what higher-level optimization would be factored out here. SmallVector allImports; M->getImportedModules(allImports, ModuleDecl::ImportFilter::All); ModuleDecl::removeDuplicateImports(allImports); diagnoseScopedImports(M->getASTContext().Diags, allImports); // Collect the public imports as a subset so that we can mark them with // '@_exported'. SmallVector publicImports; M->getImportedModules(publicImports, ModuleDecl::ImportFilter::Public); llvm::SmallSet publicImportSet; publicImportSet.insert(publicImports.begin(), publicImports.end()); for (auto import : allImports) { if (import.second->isStdlibModule() || import.second->isOnoneSupportModule() || import.second->isBuiltinModule()) { continue; } if (publicImportSet.count(import)) out << "@_exported "; out << "import "; import.second->getReverseFullModuleName().printForward(out); // Write the access path we should be honoring but aren't. // (See diagnoseScopedImports above.) if (!import.first.empty()) { out << "/*"; for (const auto &accessPathElem : import.first) out << "." << accessPathElem.first; out << "*/"; } out << "\n"; } } bool swift::emitParseableInterface(raw_ostream &out, ParseableInterfaceOptions const &Opts, ModuleDecl *M) { assert(M); printToolVersionAndFlagsComment(out, Opts, M); printImports(out, M); const PrintOptions printOptions = PrintOptions::printParseableInterfaceFile(); SmallVector topLevelDecls; M->getTopLevelDecls(topLevelDecls); for (const Decl *D : topLevelDecls) { if (!D->shouldPrintInContext(printOptions)) continue; D->print(out, printOptions); out << "\n"; } return false; }