//===--- CSDiagnostics.cpp - Constraint Diagnostics -----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements diagnostics for constraint system. // //===----------------------------------------------------------------------===// #include "CSDiagnostics.h" #include "ConstraintSystem.h" #include "MiscDiagnostics.h" #include "TypoCorrection.h" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/Expr.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/ParameterList.h" #include "swift/AST/Pattern.h" #include "swift/AST/ProtocolConformance.h" #include "swift/AST/ProtocolConformanceRef.h" #include "swift/AST/Types.h" #include "swift/Basic/SourceLoc.h" #include "swift/Parse/Lexer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" using namespace swift; using namespace constraints; FailureDiagnostic::~FailureDiagnostic() {} bool FailureDiagnostic::diagnose(bool asNote) { return asNote ? diagnoseAsNote() : diagnoseAsError(); } bool FailureDiagnostic::diagnoseAsNote() { return false; } std::pair FailureDiagnostic::computeAnchor() const { auto &cs = getConstraintSystem(); auto *locator = getLocator(); // Resolve the locator to a specific expression. SourceRange range; bool isSubscriptMember = (!locator->getPath().empty() && locator->getPath().back().getKind() == ConstraintLocator::SubscriptMember); ConstraintLocator *resolved = simplifyLocator(cs, locator, range); if (!resolved || !resolved->getAnchor()) return {locator->getAnchor(), true}; Expr *anchor = resolved->getAnchor(); // FIXME: Work around an odd locator representation that doesn't separate the // base of a subscript member from the member access. if (isSubscriptMember) { if (auto subscript = dyn_cast(anchor)) anchor = subscript->getBase(); } return {anchor, !resolved->getPath().empty()}; } Type FailureDiagnostic::getType(Expr *expr) const { return resolveType(CS.getType(expr)); } template InFlightDiagnostic FailureDiagnostic::emitDiagnostic(ArgTypes &&... Args) const { auto &cs = getConstraintSystem(); return cs.TC.diagnose(std::forward(Args)...); } Expr *FailureDiagnostic::findParentExpr(Expr *subExpr) const { return E ? E->getParentMap()[subExpr] : nullptr; } Type RequirementFailure::getOwnerType() const { return getType(getRawAnchor()) ->getInOutObjectType() ->getMetatypeInstanceType(); } const GenericContext *RequirementFailure::getGenericContext() const { if (auto *genericCtx = AffectedDecl->getAsGenericContext()) return genericCtx; return AffectedDecl->getDeclContext()->getAsDecl()->getAsGenericContext(); } const Requirement &RequirementFailure::getRequirement() const { // If this is a conditional requirement failure we need to // fetch conformance from constraint system associated with // type requirement this conditional conformance belongs to. auto requirements = isConditional() ? Conformance->getConditionalRequirements() : Signature->getRequirements(); return requirements[getRequirementIndex()]; } ProtocolConformance *RequirementFailure::getConformanceForConditionalReq( ConstraintLocator *locator) { auto &cs = getConstraintSystem(); auto path = locator->getPath(); assert(!path.empty()); if (!path.back().isConditionalRequirement()) { assert(path.back().isTypeParameterRequirement()); return nullptr; } auto *typeReqLoc = cs.getConstraintLocator(getRawAnchor(), path.drop_back(), /*summaryFlags=*/0); auto result = llvm::find_if( cs.CheckedConformances, [&](const std::pair &conformance) { return conformance.first == typeReqLoc; }); assert(result != cs.CheckedConformances.end()); auto conformance = result->second; assert(conformance.isConcrete()); return conformance.getConcrete(); } ValueDecl *RequirementFailure::getDeclRef() const { auto &cs = getConstraintSystem(); auto *anchor = getRawAnchor(); auto *locator = cs.getConstraintLocator(anchor); if (auto *AE = dyn_cast(anchor)) { assert(isa(AE->getFn())); ConstraintLocatorBuilder ctor(locator); locator = cs.getConstraintLocator( ctor.withPathElement(PathEltKind::ApplyFunction) .withPathElement(PathEltKind::ConstructorMember)); } else if (auto *UDE = dyn_cast(anchor)) { ConstraintLocatorBuilder member(locator); if (UDE->getName().isSimpleName(DeclBaseName::createConstructor())) { member = member.withPathElement(PathEltKind::ConstructorMember); } else { member = member.withPathElement(PathEltKind::Member); } locator = cs.getConstraintLocator(member); } else if (auto *UME = dyn_cast(anchor)) { locator = cs.getConstraintLocator(locator, PathEltKind::UnresolvedMember); } else if (isa(anchor)) { ConstraintLocatorBuilder subscript(locator); locator = cs.getConstraintLocator( subscript.withPathElement(PathEltKind::SubscriptMember)); } else if (isa(anchor)) { ConstraintLocatorBuilder memberRef(locator); locator = cs.getConstraintLocator(memberRef.withPathElement(PathEltKind::Member)); } auto overload = getOverloadChoiceIfAvailable(locator); if (overload) return overload->choice.getDecl(); auto ownerType = getOwnerType(); if (auto *NA = dyn_cast(ownerType.getPointer())) return NA->getDecl(); return ownerType->getAnyGeneric(); } GenericSignature *RequirementFailure::getSignature(ConstraintLocator *locator) { if (isConditional()) return Conformance->getGenericSignature(); auto path = locator->getPath(); for (auto iter = path.rbegin(); iter != path.rend(); ++iter) { const auto &elt = *iter; if (elt.getKind() == ConstraintLocator::OpenedGeneric) return elt.getGenericSignature(); } llvm_unreachable("Type requirement failure should always have signature"); } const DeclContext *RequirementFailure::getRequirementDC() const { // In case of conditional requirement failure, we don't // have to guess where the it comes from. if (isConditional()) return Conformance->getDeclContext(); const auto &req = getRequirement(); auto *DC = AffectedDecl->getDeclContext(); do { if (auto *sig = DC->getGenericSignatureOfContext()) { if (sig->isRequirementSatisfied(req)) return DC; } } while ((DC = DC->getParent())); return AffectedDecl->getAsGenericContext(); } bool RequirementFailure::isStaticOrInstanceMember(const ValueDecl *decl) { if (decl->isInstanceMember()) return true; if (auto *AFD = dyn_cast(decl)) return AFD->isStatic() && !AFD->isOperator(); return decl->isStatic(); } bool RequirementFailure::diagnoseAsError() { if (!canDiagnoseFailure()) return false; auto *anchor = getRawAnchor(); const auto *reqDC = getRequirementDC(); auto *genericCtx = getGenericContext(); auto lhs = resolveType(getLHS()); auto rhs = resolveType(getRHS()); if (genericCtx != reqDC && (genericCtx->isChildContextOf(reqDC) || isStaticOrInstanceMember(AffectedDecl))) { auto *NTD = reqDC->getSelfNominalTypeDecl(); emitDiagnostic(anchor->getLoc(), getDiagnosticInRereference(), AffectedDecl->getDescriptiveKind(), AffectedDecl->getFullName(), NTD->getDeclaredType(), lhs, rhs); } else { emitDiagnostic(anchor->getLoc(), getDiagnosticOnDecl(), AffectedDecl->getDescriptiveKind(), AffectedDecl->getFullName(), lhs, rhs); } emitRequirementNote(reqDC->getAsDecl(), lhs, rhs); return true; } bool RequirementFailure::diagnoseAsNote() { const auto &req = getRequirement(); const auto *reqDC = getRequirementDC(); emitDiagnostic(reqDC->getAsDecl(), getDiagnosticAsNote(), getLHS(), getRHS(), req.getFirstType(), req.getSecondType(), ""); return true; } void RequirementFailure::emitRequirementNote(const Decl *anchor, Type lhs, Type rhs) const { auto &req = getRequirement(); if (isConditional()) { emitDiagnostic(anchor, diag::requirement_implied_by_conditional_conformance, resolveType(Conformance->getType()), Conformance->getProtocol()->getDeclaredInterfaceType()); return; } if (rhs->isEqual(req.getSecondType())) { emitDiagnostic(anchor, diag::where_requirement_failure_one_subst, req.getFirstType(), lhs); return; } if (lhs->isEqual(req.getFirstType())) { emitDiagnostic(anchor, diag::where_requirement_failure_one_subst, req.getSecondType(), rhs); return; } emitDiagnostic(anchor, diag::where_requirement_failure_both_subst, req.getFirstType(), lhs, req.getSecondType(), rhs); } bool MissingConformanceFailure::diagnoseAsError() { if (!canDiagnoseFailure()) return false; auto *anchor = getAnchor(); auto ownerType = getOwnerType(); auto nonConformingType = getLHS(); auto protocolType = getRHS(); auto getArgumentAt = [](const ApplyExpr *AE, unsigned index) -> Expr * { assert(AE); auto *arg = AE->getArg(); if (auto *TE = dyn_cast(arg)) return TE->getElement(index); assert(index == 0); if (auto *PE = dyn_cast(arg)) return PE->getSubExpr(); return arg; }; Optional atParameterPos; // Sometimes fix is recorded by type-checking sub-expression // during normal diagnostics, in such case call expression // is unavailable. if (Apply) { if (auto *fnType = ownerType->getAs()) { auto parameters = fnType->getParams(); for (auto index : indices(parameters)) { if (parameters[index].getOldType()->isEqual(nonConformingType)) { atParameterPos = index; break; } } } } if (nonConformingType->isExistentialType()) { auto diagnostic = diag::protocol_does_not_conform_objc; if (nonConformingType->isObjCExistentialType()) diagnostic = diag::protocol_does_not_conform_static; emitDiagnostic(anchor->getLoc(), diagnostic, nonConformingType, protocolType); return true; } if (atParameterPos) { // Requirement comes from one of the parameter types, // let's try to point diagnostic to the argument expression. auto *argExpr = getArgumentAt(Apply, *atParameterPos); emitDiagnostic(argExpr->getLoc(), diag::cannot_convert_argument_value_protocol, nonConformingType, protocolType); return true; } // If none of the special cases could be diagnosed, // let's fallback to the most general diagnostic. return RequirementFailure::diagnoseAsError(); } bool LabelingFailure::diagnoseAsError() { auto &cs = getConstraintSystem(); auto *call = cast(getAnchor()); return diagnoseArgumentLabelError(cs.getASTContext(), call->getArg(), CorrectLabels, isa(call->getFn())); } bool NoEscapeFuncToTypeConversionFailure::diagnoseAsError() { auto *anchor = getAnchor(); if (ConvertTo) { emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type, ConvertTo); return true; } auto path = getLocator()->getPath(); if (path.empty()) return false; auto &last = path.back(); if (last.getKind() != ConstraintLocator::GenericParameter) return false; auto *paramTy = last.getGenericParameter(); emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type, paramTy); return true; } bool MissingForcedDowncastFailure::diagnoseAsError() { if (hasComplexLocator()) return false; auto &TC = getTypeChecker(); auto *expr = getAnchor(); if (auto *assignExpr = dyn_cast(expr)) expr = assignExpr->getSrc(); auto *coerceExpr = dyn_cast(expr); if (!coerceExpr) return false; auto *subExpr = coerceExpr->getSubExpr(); auto fromType = getType(subExpr)->getRValueType(); auto toType = resolveType(coerceExpr->getCastTypeLoc().getType()); auto castKind = TC.typeCheckCheckedCast(fromType, toType, CheckedCastContextKind::None, getDC(), coerceExpr->getLoc(), subExpr, coerceExpr->getCastTypeLoc().getSourceRange()); switch (castKind) { // Invalid cast. case CheckedCastKind::Unresolved: // Fix didn't work, let diagnoseFailureForExpr handle this. return false; case CheckedCastKind::Coercion: case CheckedCastKind::BridgingCoercion: llvm_unreachable("Coercions handled in other disjunction branch"); // Valid casts. case CheckedCastKind::ArrayDowncast: case CheckedCastKind::DictionaryDowncast: case CheckedCastKind::SetDowncast: case CheckedCastKind::ValueCast: emitDiagnostic(coerceExpr->getLoc(), diag::missing_forced_downcast, fromType, toType) .highlight(coerceExpr->getSourceRange()) .fixItReplace(coerceExpr->getLoc(), "as!"); return true; } llvm_unreachable("unhandled cast kind"); } bool MissingAddressOfFailure::diagnoseAsError() { if (hasComplexLocator()) return false; auto *anchor = getAnchor(); auto type = getType(anchor)->getRValueType(); emitDiagnostic(anchor->getLoc(), diag::missing_address_of, type) .fixItInsert(anchor->getStartLoc(), "&"); return true; } bool MissingExplicitConversionFailure::diagnoseAsError() { if (hasComplexLocator()) return false; auto *DC = getDC(); auto &TC = getTypeChecker(); auto *anchor = getAnchor(); if (auto *assign = dyn_cast(anchor)) anchor = assign->getSrc(); if (auto *paren = dyn_cast(anchor)) anchor = paren->getSubExpr(); auto fromType = getType(anchor)->getRValueType(); Type toType = resolveType(ConvertingTo); bool useAs = TC.isExplicitlyConvertibleTo(fromType, toType, DC); bool useAsBang = !useAs && TC.checkedCastMaySucceed(fromType, toType, DC); if (!useAs && !useAsBang) return false; auto *expr = getParentExpr(); // If we're performing pattern matching, // "as" means something completely different... if (auto binOpExpr = dyn_cast(expr)) { auto overloadedFn = dyn_cast(binOpExpr->getFn()); if (overloadedFn && !overloadedFn->getDecls().empty()) { ValueDecl *decl0 = overloadedFn->getDecls()[0]; if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator) return false; } } bool needsParensInside = exprNeedsParensBeforeAddingAs(anchor); bool needsParensOutside = exprNeedsParensAfterAddingAs(anchor, expr); llvm::SmallString<2> insertBefore; llvm::SmallString<32> insertAfter; if (needsParensOutside) { insertBefore += "("; } if (needsParensInside) { insertBefore += "("; insertAfter += ")"; } insertAfter += useAs ? " as " : " as! "; insertAfter += toType->getWithoutParens()->getString(); if (needsParensOutside) insertAfter += ")"; auto diagID = useAs ? diag::missing_explicit_conversion : diag::missing_forced_downcast; auto diag = emitDiagnostic(anchor->getLoc(), diagID, fromType, toType); if (!insertBefore.empty()) { diag.fixItInsert(anchor->getStartLoc(), insertBefore); } diag.fixItInsertAfter(anchor->getEndLoc(), insertAfter); return true; } bool MemberAccessOnOptionalBaseFailure::diagnoseAsError() { if (hasComplexLocator()) return false; auto *anchor = getAnchor(); auto type = getType(anchor)->getRValueType(); bool resultIsOptional = ResultTypeIsOptional; // If we've resolved the member overload to one that returns an optional // type, then the result of the expression is optional (and we want to offer // only a '?' fixit) even though the constraint system didn't need to add any // additional optionality. auto overload = getResolvedOverload(getLocator()); if (overload && overload->ImpliedType->getOptionalObjectType()) resultIsOptional = true; return diagnoseBaseUnwrapForMemberAccess(anchor, type, Member, resultIsOptional, SourceRange()); } // Suggest a default value via ?? static void offerDefaultValueUnwrapFixit(TypeChecker &TC, DeclContext *DC, Expr *expr) { auto diag = TC.diagnose(expr->getLoc(), diag::unwrap_with_default_value); // Figure out what we need to parenthesize. bool needsParensInside = exprNeedsParensBeforeAddingNilCoalescing(TC, DC, expr); bool needsParensOutside = exprNeedsParensAfterAddingNilCoalescing(TC, DC, expr, expr); llvm::SmallString<2> insertBefore; llvm::SmallString<32> insertAfter; if (needsParensOutside) { insertBefore += "("; } if (needsParensInside) { insertBefore += "("; insertAfter += ")"; } insertAfter += " ?? <" "#default value#" ">"; if (needsParensOutside) insertAfter += ")"; if (!insertBefore.empty()) { diag.fixItInsert(expr->getStartLoc(), insertBefore); } diag.fixItInsertAfter(expr->getEndLoc(), insertAfter); } // Suggest a force-unwrap. static void offerForceUnwrapFixit(ConstraintSystem &CS, Expr *expr) { auto diag = CS.TC.diagnose(expr->getLoc(), diag::unwrap_with_force_value); // If expr is optional as the result of an optional chain and this last // dot isn't a member returning optional, then offer to force the last // link in the chain, rather than an ugly parenthesized postfix force. if (auto optionalChain = dyn_cast(expr)) { if (auto dotExpr = dyn_cast(optionalChain->getSubExpr())) { auto bind = dyn_cast(dotExpr->getBase()); if (bind && !CS.getType(dotExpr)->getOptionalObjectType()) { diag.fixItReplace(SourceRange(bind->getLoc()), "!"); return; } } } if (expr->canAppendPostfixExpression(true)) { diag.fixItInsertAfter(expr->getEndLoc(), "!"); } else { diag.fixItInsert(expr->getStartLoc(), "(") .fixItInsertAfter(expr->getEndLoc(), ")!"); } } class VarDeclMultipleReferencesChecker : public ASTWalker { VarDecl *varDecl; int count; std::pair walkToExprPre(Expr *E) { if (auto *DRE = dyn_cast(E)) { if (DRE->getDecl() == varDecl) count++; } return { true, E }; } public: VarDeclMultipleReferencesChecker(VarDecl *varDecl) : varDecl(varDecl),count(0) {} int referencesCount() { return count; } }; static bool diagnoseUnwrap(ConstraintSystem &CS, Expr *expr, Type baseType, Type unwrappedType) { assert(!baseType->hasTypeVariable() && "Base type must not be a type variable"); assert(!unwrappedType->hasTypeVariable() && "Unwrapped type must not be a type variable"); if (!baseType->getOptionalObjectType()) return false; CS.TC.diagnose(expr->getLoc(), diag::optional_not_unwrapped, baseType, unwrappedType); // If the expression we're unwrapping is the only reference to a // local variable whose type isn't explicit in the source, then // offer unwrapping fixits on the initializer as well. if (auto declRef = dyn_cast(expr)) { if (auto varDecl = dyn_cast(declRef->getDecl())) { bool singleUse = false; AbstractFunctionDecl *AFD = nullptr; if (auto contextDecl = varDecl->getDeclContext()->getAsDecl()) { if ((AFD = dyn_cast(contextDecl))) { auto checker = VarDeclMultipleReferencesChecker(varDecl); AFD->getBody()->walk(checker); singleUse = checker.referencesCount() == 1; } } PatternBindingDecl *binding = varDecl->getParentPatternBinding(); if (singleUse && binding && binding->getNumPatternEntries() == 1 && varDecl->getTypeSourceRangeForDiagnostics().isInvalid()) { Expr *initializer = varDecl->getParentInitializer(); if (auto declRefExpr = dyn_cast(initializer)) { if (declRefExpr->getDecl()->getAttrs().hasAttribute()) { CS.TC.diagnose(declRefExpr->getLoc(), diag::unwrap_iuo_initializer, baseType); } } auto fnTy = AFD->getInterfaceType()->castTo(); bool voidReturn = fnTy->getResult()->isEqual(TupleType::getEmpty(CS.DC->getASTContext())); auto diag = CS.TC.diagnose(varDecl->getLoc(), diag::unwrap_with_guard); diag.fixItInsert(binding->getStartLoc(), "guard "); if (voidReturn) { diag.fixItInsertAfter(binding->getEndLoc(), " else { return }"); } else { diag.fixItInsertAfter(binding->getEndLoc(), " else { return <" "#default value#" "> }"); } diag.flush(); offerDefaultValueUnwrapFixit(CS.TC, varDecl->getDeclContext(), initializer); offerForceUnwrapFixit(CS, initializer); } } } offerDefaultValueUnwrapFixit(CS.TC, CS.DC, expr); offerForceUnwrapFixit(CS, expr); return true; } bool MissingOptionalUnwrapFailure::diagnoseAsError() { if (hasComplexLocator()) return false; auto *anchor = getAnchor(); if (auto assignExpr = dyn_cast(anchor)) anchor = assignExpr->getSrc(); auto *unwrapped = anchor->getValueProvidingExpr(); auto type = getType(anchor)->getRValueType(); auto *tryExpr = dyn_cast(unwrapped); if (!tryExpr) { return diagnoseUnwrap(getConstraintSystem(), unwrapped, getBaseType(), getUnwrappedType()); } bool isSwift5OrGreater = getTypeChecker().getLangOpts().isSwiftVersionAtLeast(5); auto subExprType = getType(tryExpr->getSubExpr()); bool subExpressionIsOptional = (bool)subExprType->getOptionalObjectType(); if (isSwift5OrGreater && subExpressionIsOptional) { // Using 'try!' won't change the type for a 'try?' with an optional sub-expr // under Swift 5+, so just report that a missing unwrap can't be handled here. return false; } emitDiagnostic(tryExpr->getTryLoc(), diag::missing_unwrap_optional_try, type) .fixItReplace({tryExpr->getTryLoc(), tryExpr->getQuestionLoc()}, "try!"); return true; } bool RValueTreatedAsLValueFailure::diagnoseAsError() { Diag subElementDiagID; Diag rvalueDiagID = diag::assignment_lhs_not_lvalue; Expr *diagExpr = getLocator()->getAnchor(); SourceLoc loc = diagExpr->getLoc(); if (auto assignExpr = dyn_cast(diagExpr)) { diagExpr = assignExpr->getDest(); } if (auto callExpr = dyn_cast(diagExpr)) { Expr *argExpr = callExpr->getArg(); loc = callExpr->getFn()->getLoc(); if (isa(callExpr) || isa(callExpr)) { subElementDiagID = diag::cannot_apply_lvalue_unop_to_subelement; rvalueDiagID = diag::cannot_apply_lvalue_unop_to_rvalue; diagExpr = argExpr; } else if (isa(callExpr)) { subElementDiagID = diag::cannot_apply_lvalue_binop_to_subelement; rvalueDiagID = diag::cannot_apply_lvalue_binop_to_rvalue; auto argTuple = dyn_cast(argExpr); diagExpr = argTuple->getElement(0); } else if (getLocator()->getPath().size() > 0) { auto lastPathElement = getLocator()->getPath().back(); assert(lastPathElement.getKind() == ConstraintLocator::PathElementKind::ApplyArgToParam); subElementDiagID = diag::cannot_pass_rvalue_inout_subelement; rvalueDiagID = diag::cannot_pass_rvalue_inout; if (auto argTuple = dyn_cast(argExpr)) diagExpr = argTuple->getElement(lastPathElement.getValue()); else if (auto parens = dyn_cast(argExpr)) diagExpr = parens->getSubExpr(); } else { subElementDiagID = diag::assignment_lhs_is_apply_expression; } } else if (auto inoutExpr = dyn_cast(diagExpr)) { if (auto restriction = getRestrictionForType(getType(inoutExpr))) { PointerTypeKind pointerKind; if (restriction->second == ConversionRestrictionKind::ArrayToPointer && restriction->first->getAnyPointerElementType(pointerKind) && (pointerKind == PTK_UnsafePointer || pointerKind == PTK_UnsafeRawPointer)) { // If we're converting to an UnsafePointer, then the programmer // specified an & unnecessarily. Produce a fixit hint to remove it. emitDiagnostic(inoutExpr->getLoc(), diag::extra_address_of_unsafepointer, restriction->first) .highlight(inoutExpr->getSourceRange()) .fixItRemove(inoutExpr->getStartLoc()); return true; } } subElementDiagID = diag::cannot_pass_rvalue_inout_subelement; rvalueDiagID = diag::cannot_pass_rvalue_inout; diagExpr = inoutExpr->getSubExpr(); } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_variable; } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_bang_has_immutable_subcomponent; } else if (isa(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_property; } else if (auto member = dyn_cast(diagExpr)) { subElementDiagID = diag::assignment_lhs_is_immutable_property; if (auto *ctor = dyn_cast(getDC())) { if (auto *baseRef = dyn_cast(member->getBase())) { if (baseRef->getDecl() == ctor->getImplicitSelfDecl() && ctor->getDelegatingOrChainedInitKind(nullptr) == ConstructorDecl::BodyInitKind::Delegating) { emitDiagnostic(loc, diag::assignment_let_property_delegating_init, member->getName()); if (auto *ref = getResolvedMemberRef(member)) { emitDiagnostic(ref, diag::decl_declared_here, member->getName()); } return true; } } } if (auto resolvedOverload = getResolvedOverload(getLocator())) if (resolvedOverload->Choice.getKind() == OverloadChoiceKind::DynamicMemberLookup) subElementDiagID = diag::assignment_dynamic_property_has_immutable_base; } else if (auto sub = dyn_cast(diagExpr)) { subElementDiagID = diag::assignment_subscript_has_immutable_base; } else { subElementDiagID = diag::assignment_lhs_is_immutable_variable; } AssignmentFailure failure(diagExpr, getConstraintSystem(), loc, subElementDiagID, rvalueDiagID); return failure.diagnose(); } bool TrailingClosureAmbiguityFailure::diagnoseAsNote() { const auto *expr = getParentExpr(); auto *callExpr = dyn_cast(expr); if (!callExpr) return false; if (!callExpr->hasTrailingClosure()) return false; if (callExpr->getFn() != getAnchor()) return false; llvm::SmallMapVector choicesByLabel; for (const auto &choice : Choices) { auto *callee = dyn_cast(choice.getDecl()); if (!callee) return false; const ParameterList *paramList = callee->getParameters(); const ParamDecl *param = paramList->getArray().back(); // Sanity-check that the trailing closure corresponds to this parameter. if (!param->hasValidSignature() || !param->getInterfaceType()->is()) return false; Identifier trailingClosureLabel = param->getArgumentName(); auto &choiceForLabel = choicesByLabel[trailingClosureLabel]; // FIXME: Cargo-culted from diagnoseAmbiguity: apparently the same decl can // appear more than once? if (choiceForLabel == callee) continue; // If just providing the trailing closure label won't solve the ambiguity, // don't bother offering the fix-it. if (choiceForLabel != nullptr) return false; choiceForLabel = callee; } // If we got here, then all of the choices have unique labels. Offer them in // order. for (const auto &choicePair : choicesByLabel) { auto diag = emitDiagnostic( expr->getLoc(), diag::ambiguous_because_of_trailing_closure, choicePair.first.empty(), choicePair.second->getFullName()); swift::fixItEncloseTrailingClosure(getTypeChecker(), diag, callExpr, choicePair.first); } return true; } AssignmentFailure::AssignmentFailure(Expr *destExpr, ConstraintSystem &cs, SourceLoc diagnosticLoc) : FailureDiagnostic(destExpr, cs, cs.getConstraintLocator(destExpr)), Loc(diagnosticLoc), DeclDiagnostic(findDeclDiagonstic(cs.getASTContext(), destExpr)), TypeDiagnostic(diag::assignment_lhs_not_lvalue) {} bool AssignmentFailure::diagnoseAsError() { auto &cs = getConstraintSystem(); auto *DC = getDC(); auto *destExpr = getParentExpr(); // Walk through the destination expression, resolving what the problem is. If // we find a node in the lvalue path that is problematic, this returns it. auto immInfo = resolveImmutableBase(destExpr); // Otherwise, we cannot resolve this because the available setter candidates // are all mutating and the base must be mutating. If we dug out a // problematic decl, we can produce a nice tailored diagnostic. if (auto *VD = dyn_cast_or_null(immInfo.second)) { std::string message = "'"; message += VD->getName().str().str(); message += "'"; auto type = getType(immInfo.first); auto bgt = type ? type->getAs() : nullptr; if (bgt && bgt->getDecl() == getASTContext().getKeyPathDecl()) message += " is a read-only key path"; else if (VD->isCaptureList()) message += " is an immutable capture"; else if (VD->isImplicit()) message += " is immutable"; else if (VD->isLet()) message += " is a 'let' constant"; else if (!VD->isSettable(DC)) message += " is a get-only property"; else if (!VD->isSetterAccessibleFrom(DC)) message += " setter is inaccessible"; else { message += " is immutable"; } emitDiagnostic(Loc, DeclDiagnostic, message) .highlight(immInfo.first->getSourceRange()); // If there is a masked instance variable of the same type, emit a // note to fixit prepend a 'self.'. if (auto typeContext = DC->getInnermostTypeContext()) { UnqualifiedLookup lookup(VD->getFullName(), typeContext, getASTContext().getLazyResolver()); for (auto &result : lookup.Results) { const VarDecl *typeVar = dyn_cast(result.getValueDecl()); if (typeVar && typeVar != VD && typeVar->isSettable(DC) && typeVar->isSetterAccessibleFrom(DC) && typeVar->getType()->isEqual(VD->getType())) { // But not in its own accessor. auto AD = dyn_cast_or_null(DC->getInnermostMethodContext()); if (!AD || AD->getStorage() != typeVar) { emitDiagnostic(Loc, diag::masked_instance_variable, typeContext->getSelfTypeInContext()) .fixItInsert(Loc, "self."); } } } } // If this is a simple variable marked with a 'let', emit a note to fixit // hint it to 'var'. VD->emitLetToVarNoteIfSimple(DC); return true; } // If the underlying expression was a read-only subscript, diagnose that. if (auto *SD = dyn_cast_or_null(immInfo.second)) { StringRef message; if (!SD->isSettable()) message = "subscript is get-only"; else if (!SD->isSetterAccessibleFrom(DC)) message = "subscript setter is inaccessible"; else message = "subscript is immutable"; emitDiagnostic(Loc, DeclDiagnostic, message) .highlight(immInfo.first->getSourceRange()); return true; } // If we're trying to set an unapplied method, say that. if (auto *VD = immInfo.second) { std::string message = "'"; message += VD->getBaseName().getIdentifier().str(); message += "'"; auto diagID = DeclDiagnostic; if (auto *AFD = dyn_cast(VD)) { if (AFD->hasImplicitSelfDecl()) { message += " is a method"; diagID = diag::assignment_lhs_is_immutable_variable; } else { message += " is a function"; } } else message += " is not settable"; emitDiagnostic(Loc, diagID, message) .highlight(immInfo.first->getSourceRange()); return true; } // If a keypath was the problem but wasn't resolved into a vardecl // it is ambiguous or unable to be used for setting. if (auto *KPE = dyn_cast_or_null(immInfo.first)) { emitDiagnostic(Loc, DeclDiagnostic, "immutable key path") .highlight(KPE->getSourceRange()); return true; } if (auto LE = dyn_cast(immInfo.first)) { emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable") .highlight(LE->getSourceRange()); return true; } // If the expression is the result of a call, it is an rvalue, not a mutable // lvalue. if (auto *AE = dyn_cast(immInfo.first)) { // Handle literals, which are a call to the conversion function. auto argsTuple = dyn_cast(AE->getArg()->getSemanticsProvidingExpr()); if (isa(AE) && AE->isImplicit() && argsTuple && argsTuple->getNumElements() == 1) { if (auto LE = dyn_cast( argsTuple->getElement(0)->getSemanticsProvidingExpr())) { emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable") .highlight(LE->getSourceRange()); return true; } } std::string name = "call"; if (isa(AE) || isa(AE)) name = "unary operator"; else if (isa(AE)) name = "binary operator"; else if (isa(AE)) name = "function call"; else if (isa(AE) || isa(AE)) name = "method call"; if (auto *DRE = dyn_cast(AE->getFn()->getValueProvidingExpr())) name = std::string("'") + DRE->getDecl()->getBaseName().getIdentifier().str().str() + "'"; emitDiagnostic(Loc, DeclDiagnostic, name + " returns immutable value") .highlight(AE->getSourceRange()); return true; } if (auto contextualType = cs.getContextualType(immInfo.first)) { Type neededType = contextualType->getInOutObjectType(); Type actualType = getType(immInfo.first)->getInOutObjectType(); if (!neededType->isEqual(actualType)) { if (DeclDiagnostic.ID == diag::cannot_pass_rvalue_inout_subelement.ID) { // We have a special diagnostic with tailored wording for this // common case. emitDiagnostic(Loc, diag::cannot_pass_rvalue_inout_converted, actualType, neededType) .highlight(immInfo.first->getSourceRange()); if (auto inoutExpr = dyn_cast(immInfo.first)) fixItChangeInoutArgType(inoutExpr->getSubExpr(), actualType, neededType); } else { emitDiagnostic(Loc, DeclDiagnostic, "implicit conversion from '" + actualType->getString() + "' to '" + neededType->getString() + "' requires a temporary") .highlight(immInfo.first->getSourceRange()); } return true; } } if (auto IE = dyn_cast(immInfo.first)) { if (isLoadedLValue(IE)) { emitDiagnostic(Loc, DeclDiagnostic, "result of conditional operator '? :' is never mutable") .highlight(IE->getQuestionLoc()) .highlight(IE->getColonLoc()); return true; } } emitDiagnostic(Loc, TypeDiagnostic, getType(destExpr)) .highlight(immInfo.first->getSourceRange()); return true; } void AssignmentFailure::fixItChangeInoutArgType(const Expr *arg, Type actualType, Type neededType) const { auto *DC = getDC(); auto *DRE = dyn_cast(arg); if (!DRE) return; auto *VD = dyn_cast_or_null(DRE->getDecl()); if (!VD) return; // Don't emit for non-local variables. // (But in script-mode files, we consider module-scoped // variables in the same file to be local variables.) auto VDC = VD->getDeclContext(); bool isLocalVar = VDC->isLocalContext(); if (!isLocalVar && VDC->isModuleScopeContext()) { auto argFile = DC->getParentSourceFile(); auto varFile = VDC->getParentSourceFile(); isLocalVar = (argFile == varFile && argFile->isScriptMode()); } if (!isLocalVar) return; SmallString<32> scratch; SourceLoc endLoc; // Filled in if we decide to diagnose this SourceLoc startLoc; // Left invalid if we're inserting auto isSimpleTypelessPattern = [](Pattern *P) -> bool { if (auto VP = dyn_cast_or_null(P)) P = VP->getSubPattern(); return P && isa(P); }; auto typeRange = VD->getTypeSourceRangeForDiagnostics(); if (typeRange.isValid()) { startLoc = typeRange.Start; endLoc = typeRange.End; } else if (isSimpleTypelessPattern(VD->getParentPattern())) { endLoc = VD->getNameLoc(); scratch += ": "; } if (endLoc.isInvalid()) return; scratch += neededType.getString(); // Adjust into the location where we actually want to insert endLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, endLoc); // Since we already adjusted endLoc, this will turn an insertion // into a zero-character replacement. if (!startLoc.isValid()) startLoc = endLoc; emitDiagnostic(VD->getLoc(), diag::inout_change_var_type_if_possible, actualType, neededType) .fixItReplaceChars(startLoc, endLoc, scratch); } std::pair AssignmentFailure::resolveImmutableBase(Expr *expr) const { auto &cs = getConstraintSystem(); auto *DC = getDC(); expr = expr->getValueProvidingExpr(); // Provide specific diagnostics for assignment to subscripts whose base expr // is known to be an rvalue. if (auto *SE = dyn_cast(expr)) { // If we found a decl for the subscript, check to see if it is a set-only // subscript decl. SubscriptDecl *member = nullptr; if (SE->hasDecl()) member = dyn_cast_or_null(SE->getDecl().getDecl()); if (!member) { auto loc = cs.getConstraintLocator(SE, ConstraintLocator::SubscriptMember); member = dyn_cast_or_null(cs.findResolvedMemberRef(loc)); } // If it isn't settable, return it. if (member) { if (!member->isSettable() || !member->isSetterAccessibleFrom(DC)) return {expr, member}; } if (auto tupleExpr = dyn_cast(SE->getIndex())) { if (tupleExpr->getNumElements() == 1 && tupleExpr->getElementName(0).str() == "keyPath") { auto indexType = getType(tupleExpr->getElement(0)); if (auto bgt = indexType->getAs()) { if (bgt->getDecl() == getASTContext().getKeyPathDecl()) return resolveImmutableBase(tupleExpr->getElement(0)); } } } // If it is settable, then the base must be the problem, recurse. return resolveImmutableBase(SE->getBase()); } // Look through property references. if (auto *UDE = dyn_cast(expr)) { // If we found a decl for the UDE, check it. auto loc = cs.getConstraintLocator(UDE, ConstraintLocator::Member); // If we can resolve a member, we can determine whether it is settable in // this context. if (auto *member = cs.findResolvedMemberRef(loc)) { auto *memberVD = dyn_cast(member); // If the member isn't a vardecl (e.g. its a funcdecl), or it isn't // settable, then it is the problem: return it. if (!memberVD || !member->isSettable(nullptr) || !memberVD->isSetterAccessibleFrom(DC)) return {expr, member}; } // If we weren't able to resolve a member or if it is mutable, then the // problem must be with the base, recurse. return resolveImmutableBase(UDE->getBase()); } if (auto *MRE = dyn_cast(expr)) { // If the member isn't settable, then it is the problem: return it. if (auto member = dyn_cast(MRE->getMember().getDecl())) if (!member->isSettable(nullptr) || !member->isSetterAccessibleFrom(DC)) return {expr, member}; // If we weren't able to resolve a member or if it is mutable, then the // problem must be with the base, recurse. return resolveImmutableBase(MRE->getBase()); } if (auto *DRE = dyn_cast(expr)) return {expr, DRE->getDecl()}; // Look through x! if (auto *FVE = dyn_cast(expr)) return resolveImmutableBase(FVE->getSubExpr()); // Look through x? if (auto *BOE = dyn_cast(expr)) return resolveImmutableBase(BOE->getSubExpr()); // Look through implicit conversions if (auto *ICE = dyn_cast(expr)) if (!isa(ICE->getSubExpr())) return resolveImmutableBase(ICE->getSubExpr()); if (auto *SAE = dyn_cast(expr)) return resolveImmutableBase(SAE->getFn()); return {expr, nullptr}; } Diag AssignmentFailure::findDeclDiagonstic(ASTContext &ctx, Expr *destExpr) { if (isa(destExpr) || isa(destExpr)) return diag::assignment_lhs_is_apply_expression; if (isa(destExpr) || isa(destExpr)) return diag::assignment_lhs_is_immutable_property; if (auto *subscript = dyn_cast(destExpr)) { auto diagID = diag::assignment_subscript_has_immutable_base; // If the destination is a subscript with a 'dynamicLookup:' label and if // the tuple is implicit, then this was actually a @dynamicMemberLookup // access. Emit a more specific diagnostic. if (subscript->getIndex()->isImplicit() && subscript->getArgumentLabels().size() == 1 && subscript->getArgumentLabels().front() == ctx.Id_dynamicMember) diagID = diag::assignment_dynamic_property_has_immutable_base; return diagID; } return diag::assignment_lhs_is_immutable_variable; } bool ContextualFailure::diagnoseAsError() { auto *anchor = getAnchor(); auto path = getLocator()->getPath(); assert(!path.empty()); if (diagnoseMissingFunctionCall()) return true; Diag diagnostic; switch (path.back().getKind()) { case ConstraintLocator::ClosureResult: { diagnostic = diag::cannot_convert_closure_result; break; } default: return false; } auto diag = emitDiagnostic(anchor->getLoc(), diagnostic, FromType, ToType); diag.highlight(anchor->getSourceRange()); (void)trySequenceSubsequenceFixIts(diag, getConstraintSystem(), FromType, ToType, anchor); return true; } bool ContextualFailure::diagnoseMissingFunctionCall() const { auto &TC = getTypeChecker(); auto *srcFT = FromType->getAs(); if (!srcFT || !srcFT->getParams().empty()) return false; if (ToType->is() || !TC.isConvertibleTo(srcFT->getResult(), ToType, getDC())) return false; auto *anchor = getAnchor(); emitDiagnostic(anchor->getLoc(), diag::missing_nullary_call, srcFT->getResult()) .highlight(anchor->getSourceRange()) .fixItInsertAfter(anchor->getEndLoc(), "()"); return true; } bool ContextualFailure::trySequenceSubsequenceFixIts(InFlightDiagnostic &diag, ConstraintSystem &CS, Type fromType, Type toType, Expr *expr) { if (!CS.TC.Context.getStdlibModule()) return false; auto String = CS.TC.getStringType(CS.DC); auto Substring = CS.TC.getSubstringType(CS.DC); if (!String || !Substring) return false; /// FIXME: Remove this flag when void subscripts are implemented. /// Make this unconditional and remove the if statement. if (CS.TC.getLangOpts().FixStringToSubstringConversions) { // String -> Substring conversion // Add '[]' void subscript call to turn the whole String into a Substring if (fromType->isEqual(String)) { if (toType->isEqual(Substring)) { diag.fixItInsertAfter(expr->getEndLoc(), "[]"); return true; } } } // Substring -> String conversion // Wrap in String.init if (fromType->isEqual(Substring)) { if (toType->isEqual(String)) { auto range = expr->getSourceRange(); diag.fixItInsert(range.Start, "String("); diag.fixItInsertAfter(range.End, ")"); return true; } } return false; } bool AutoClosureForwardingFailure::diagnoseAsError() { auto path = getLocator()->getPath(); assert(!path.empty()); auto &last = path.back(); assert(last.getKind() == ConstraintLocator::ApplyArgToParam); // We need a raw anchor here because `getAnchor()` is simplified // to the argument expression. auto *argExpr = getArgumentExpr(getRawAnchor(), last.getValue()); emitDiagnostic(argExpr->getLoc(), diag::invalid_autoclosure_forwarding) .highlight(argExpr->getSourceRange()) .fixItInsertAfter(argExpr->getEndLoc(), "()"); return true; } bool NonOptionalUnwrapFailure::diagnoseAsError() { auto *anchor = getAnchor(); auto diagnostic = diag::invalid_optional_chain; if (isa(anchor)) diagnostic = diag::invalid_force_unwrap; emitDiagnostic(anchor->getLoc(), diagnostic, BaseType) .highlight(anchor->getSourceRange()) .fixItRemove(anchor->getEndLoc()); return true; } bool MissingCallFailure::diagnoseAsError() { auto *baseExpr = getAnchor(); SourceLoc insertLoc = baseExpr->getEndLoc(); if (auto *FVE = dyn_cast(baseExpr)) baseExpr = FVE->getSubExpr(); if (auto *DRE = dyn_cast(baseExpr)) { emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function, DRE->getDecl()->getBaseName().getIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } if (auto *UDE = dyn_cast(baseExpr)) { emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method, UDE->getName().getBaseIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } if (auto *DSCE = dyn_cast(baseExpr)) { if (auto *DRE = dyn_cast(DSCE->getFn())) { emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method, DRE->getDecl()->getBaseName().getIdentifier()) .fixItInsertAfter(insertLoc, "()"); return true; } } emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function_value) .fixItInsertAfter(insertLoc, "()"); return true; } bool SubscriptMisuseFailure::diagnoseAsError() { auto &sourceMgr = getASTContext().SourceMgr; auto *memberExpr = cast(getRawAnchor()); auto *baseExpr = getAnchor(); auto memberRange = baseExpr->getSourceRange(); (void)simplifyLocator(getConstraintSystem(), getLocator(), memberRange); auto nameLoc = DeclNameLoc(memberRange.Start); auto diag = emitDiagnostic(baseExpr->getLoc(), diag::could_not_find_subscript_member_did_you_mean, getType(baseExpr)); diag.highlight(memberRange).highlight(nameLoc.getSourceRange()); auto *parentExpr = findParentExpr(memberExpr); assert(parentExpr && "Couldn't find a parent expression for a member call?!"); auto *argExpr = cast(parentExpr)->getArg(); auto toCharSourceRange = Lexer::getCharSourceRangeFromSourceRange; auto lastArgSymbol = toCharSourceRange(sourceMgr, argExpr->getEndLoc()); diag.fixItReplace(SourceRange(argExpr->getStartLoc()), getTokenText(tok::l_square)); diag.fixItRemove(nameLoc.getSourceRange()); diag.fixItRemove(SourceRange(memberExpr->getDotLoc())); if (sourceMgr.extractText(lastArgSymbol) == getTokenText(tok::r_paren)) diag.fixItReplace(SourceRange(argExpr->getEndLoc()), getTokenText(tok::r_square)); else diag.fixItInsertAfter(argExpr->getEndLoc(), getTokenText(tok::r_square)); diag.flush(); if (auto overload = getOverloadChoiceIfAvailable(getLocator())) { emitDiagnostic(overload->choice.getDecl(), diag::kind_declared_here, DescriptiveDeclKind::Subscript); } return true; } bool SubscriptMisuseFailure::diagnoseAsNote() { if (auto overload = getOverloadChoiceIfAvailable(getLocator())) { emitDiagnostic(overload->choice.getDecl(), diag::found_candidate); return true; } return false; } /// When a user refers a enum case with a wrong member name, we try to find a /// enum element whose name differs from the wrong name only in convention; /// meaning their lower case counterparts are identical. /// - DeclName is valid when such a correct case is found; invalid otherwise. DeclName MissingMemberFailure::findCorrectEnumCaseName( Type Ty, TypoCorrectionResults &corrections, DeclName memberName) { if (memberName.isSpecial() || !memberName.isSimpleName()) return DeclName(); if (!Ty->getEnumOrBoundGenericEnum()) return DeclName(); auto candidate = corrections.getUniqueCandidateMatching([&](ValueDecl *candidate) { return (isa(candidate) && candidate->getFullName().getBaseIdentifier().str().equals_lower( memberName.getBaseIdentifier().str())); }); return (candidate ? candidate->getFullName() : DeclName()); } bool MissingMemberFailure::diagnoseAsError() { auto &TC = getTypeChecker(); auto *anchor = getRawAnchor(); auto *baseExpr = getAnchor(); if (!anchor || !baseExpr) return false; if (auto *typeVar = BaseType->getAs()) { auto &CS = getConstraintSystem(); auto *memberLoc = typeVar->getImpl().getLocator(); // Don't try to diagnose anything besides first missing // member in the chain. e.g. `x.foo().bar()` let's make // sure to diagnose only `foo()` as missing because we // don't really know much about what `bar()` is supposed // to be. if (CS.MissingMembers.count(memberLoc)) return false; } auto baseType = resolveType(BaseType)->getWithoutSpecifierType(); DeclNameLoc nameLoc(anchor->getStartLoc()); if (auto *UDE = dyn_cast(anchor)) { nameLoc = UDE->getNameLoc(); } else if (auto *UME = dyn_cast(anchor)) { nameLoc = UME->getNameLoc(); } auto emitBasicError = [&](Type baseType) { auto diagnostic = diag::could_not_find_value_member; if (auto *metatype = baseType->getAs()) { baseType = metatype->getInstanceType(); diagnostic = diag::could_not_find_type_member; } if (baseType->is()) diagnostic = diag::could_not_find_tuple_member; emitDiagnostic(anchor->getLoc(), diagnostic, baseType, Name) .highlight(baseExpr->getSourceRange()) .highlight(nameLoc.getSourceRange()); }; TypoCorrectionResults corrections(TC, Name, nameLoc); auto tryTypoCorrection = [&] { TC.performTypoCorrection(getDC(), DeclRefKind::Ordinary, baseType, defaultMemberLookupOptions, corrections); }; if (Name.getBaseName().getKind() == DeclBaseName::Kind::Subscript) { emitDiagnostic(anchor->getLoc(), diag::could_not_find_value_subscript, baseType) .highlight(baseExpr->getSourceRange()); } else if (Name.getBaseName() == "deinit") { // Specialised diagnostic if trying to access deinitialisers emitDiagnostic(anchor->getLoc(), diag::destructor_not_accessible) .highlight(baseExpr->getSourceRange()); } else if (auto metatypeTy = baseType->getAs()) { auto instanceTy = metatypeTy->getInstanceType(); tryTypoCorrection(); if (DeclName rightName = findCorrectEnumCaseName(instanceTy, corrections, Name)) { emitDiagnostic(anchor->getLoc(), diag::could_not_find_enum_case, instanceTy, Name, rightName) .fixItReplace(nameLoc.getBaseNameLoc(), rightName.getBaseIdentifier().str()); return true; } if (auto correction = corrections.claimUniqueCorrection()) { auto diagnostic = emitDiagnostic( anchor->getLoc(), diag::could_not_find_type_member_corrected, instanceTy, Name, correction->CorrectedName); diagnostic.highlight(baseExpr->getSourceRange()) .highlight(nameLoc.getSourceRange()); correction->addFixits(diagnostic); } else { emitBasicError(baseType); } } else if (auto moduleTy = baseType->getAs()) { emitDiagnostic(baseExpr->getLoc(), diag::no_member_of_module, moduleTy->getModule()->getName(), Name) .highlight(baseExpr->getSourceRange()) .highlight(nameLoc.getSourceRange()); return true; } else { // Check for a few common cases that can cause missing members. auto *ED = baseType->getEnumOrBoundGenericEnum(); if (ED && Name.isSimpleName("rawValue")) { auto loc = ED->getNameLoc(); if (loc.isValid()) { emitBasicError(baseType); emitDiagnostic(loc, diag::did_you_mean_raw_type); return true; } } else if (baseType->isAny()) { emitBasicError(baseType); emitDiagnostic(anchor->getLoc(), diag::any_as_anyobject_fixit) .fixItInsert(baseExpr->getStartLoc(), "(") .fixItInsertAfter(baseExpr->getEndLoc(), " as AnyObject)"); return true; } tryTypoCorrection(); if (auto correction = corrections.claimUniqueCorrection()) { auto diagnostic = emitDiagnostic( anchor->getLoc(), diag::could_not_find_value_member_corrected, baseType, Name, correction->CorrectedName); diagnostic.highlight(baseExpr->getSourceRange()) .highlight(nameLoc.getSourceRange()); correction->addFixits(diagnostic); } else { emitBasicError(baseType); } } // Note all the correction candidates. corrections.noteAllCandidates(); return true; } bool PartialApplicationFailure::diagnoseAsError() { auto &cs = getConstraintSystem(); auto *anchor = cast(getRawAnchor()); RefKind kind = RefKind::MutatingMethod; // If this is initializer delegation chain, we have a tailored message. if (getOverloadChoiceIfAvailable(cs.getConstraintLocator( anchor, ConstraintLocator::ConstructorMember))) { kind = anchor->getBase()->isSuperExpr() ? RefKind::SuperInit : RefKind::SelfInit; } auto diagnostic = CompatibilityWarning ? diag::partial_application_of_function_invalid_swift4 : diag::partial_application_of_function_invalid; emitDiagnostic(anchor->getNameLoc(), diagnostic, kind); return true; } bool InvalidDynamicInitOnMetatypeFailure::diagnoseAsError() { auto *anchor = getRawAnchor(); emitDiagnostic(anchor->getLoc(), diag::dynamic_construct_class, BaseType->getMetatypeInstanceType()) .highlight(BaseRange); emitDiagnostic(Init, diag::note_nonrequired_initializer, Init->isImplicit(), Init->getFullName()); return true; } bool InitOnProtocolMetatypeFailure::diagnoseAsError() { auto *anchor = getRawAnchor(); if (IsStaticallyDerived) { emitDiagnostic(anchor->getLoc(), diag::construct_protocol_by_name, BaseType->getMetatypeInstanceType()) .highlight(BaseRange); } else { emitDiagnostic(anchor->getLoc(), diag::construct_protocol_value, BaseType) .highlight(BaseRange); } return true; } bool ImplicitInitOnNonConstMetatypeFailure::diagnoseAsError() { auto *apply = cast(getRawAnchor()); auto loc = apply->getArg()->getStartLoc(); emitDiagnostic(loc, diag::missing_init_on_metatype_initialization) .fixItInsert(loc, ".init"); return true; }