//===--- Metadata.cpp - Swift Language ABI Metdata Support ----------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Implementations of the metadata ABI functions. // //===----------------------------------------------------------------------===// #include "llvm/Support/MathExtras.h" #include "swift/Basic/LLVM.h" #include "swift/Basic/Range.h" #include "swift/Runtime/HeapObject.h" #include "swift/Runtime/Metadata.h" #include "swift/Strings.h" #include #include #include #include #include #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Hashing.h" #include "ExistentialMetadataImpl.h" #include "Debug.h" #ifndef SWIFT_DEBUG_RUNTIME #define SWIFT_DEBUG_RUNTIME 0 #endif using namespace swift; using namespace metadataimpl; namespace { template class MetadataCache; template struct CacheEntryHeader { /// LLDB walks this list. const Impl *Next; }; /// A CRTP class for defining entries in a metadata cache. template > class alignas(void*) CacheEntry : public Header { CacheEntry(const CacheEntry &other) = delete; void operator=(const CacheEntry &other) = delete; Impl *asImpl() { return static_cast(this); } const Impl *asImpl() const { return static_cast(this); } protected: CacheEntry() = default; public: static Impl *allocate(const void * const *arguments, size_t numArguments, size_t payloadSize) { void *buffer = operator new(sizeof(Impl) + numArguments * sizeof(void*) + payloadSize); void *resultPtr = (char*)buffer + numArguments * sizeof(void*); auto result = new (resultPtr) Impl(numArguments); // Copy the arguments into the right place for the key. memcpy(buffer, arguments, numArguments * sizeof(void*)); return result; } void **getArgumentsBuffer() { return reinterpret_cast(this) - asImpl()->getNumArguments(); } void * const *getArgumentsBuffer() const { return reinterpret_cast(this) - asImpl()->getNumArguments(); } template T *getData() { return reinterpret_cast(asImpl() + 1); } template const T *getData() const { return const_cast(this)->getData(); } static const Impl *fromArgumentsBuffer(const void * const *argsBuffer, unsigned numArguments) { return reinterpret_cast(argsBuffer + numArguments); } }; // A wrapper around a pointer to a metadata cache entry that provides // DenseMap semantics that compare values in the key vector for the metadata // instance. // // This is stored as a pointer to the arguments buffer, so that we can save // an offset while looking for the matching argument given a key. template class EntryRef { const void * const *args; unsigned length; EntryRef(const void * const *args, unsigned length) : args(args), length(length) {} friend struct llvm::DenseMapInfo; public: static EntryRef forEntry(const Entry *e, unsigned numArguments) { return EntryRef(e->getArgumentsBuffer(), numArguments); } static EntryRef forArguments(const void * const *args, unsigned numArguments) { return EntryRef(args, numArguments); } const Entry *getEntry() const { return Entry::fromArgumentsBuffer(args, length); } const void * const *begin() const { return args; } const void * const *end() const { return args + length; } unsigned size() const { return length; } }; } namespace llvm { template struct DenseMapInfo> { static inline EntryRef getEmptyKey() { // {nullptr, 0} is a legitimate "no arguments" representation. return {(const void * const *)UINTPTR_MAX, 1}; } static inline EntryRef getTombstoneKey() { return {(const void * const *)UINTPTR_MAX, 2}; } static inline unsigned getHashValue(EntryRef val) { llvm::hash_code hash = llvm::hash_combine_range(val.begin(), val.end()); return (unsigned)hash; } static inline bool isEqual(EntryRef a, EntryRef b) { unsigned asize = a.size(), bsize = b.size(); if (asize != bsize) return false; auto abegin = a.begin(), bbegin = b.begin(); if (abegin == (const void * const *)UINTPTR_MAX || bbegin == (const void * const *)UINTPTR_MAX) return abegin == bbegin; for (unsigned i = 0; i < asize; ++i) { if (abegin[i] != bbegin[i]) return false; } return true; } }; } namespace { struct MetadataCacheLock { std::mutex Mutex; std::condition_variable Queue; }; /// The implementation of a metadata cache. Note that all-zero must /// be a valid state for the cache. template class MetadataCache { /// Thread safety MetadataCacheLock *Lock; /// The head of a linked list connecting all the metadata cache entries. /// TODO: Remove this when LLDB is able to understand the final data /// structure for the metadata cache. const Entry *Head; enum class EntryState : uint8_t { Complete, Building, BuildingWithWaiters }; /// The lookup table for cached entries. /// /// The EntryRef may be to temporary memory lacking a full backing /// Entry unless the value is Complete. However, if there is an /// entry with a non-Complete value, there will eventually be a /// notification to the lock's queue. /// /// TODO: Consider a more tuned hashtable implementation. llvm::DenseMap, EntryState> Entries; public: MetadataCache() : Lock(new MetadataCacheLock()) { } ~MetadataCache() { delete Lock; } /// Caches are not copyable. MetadataCache(const MetadataCache &other) = delete; MetadataCache &operator=(const MetadataCache &other) = delete; /// Try to find an existing entry in this cache. If this returns /// null, it is the caller's responsibility to eventually call add. const Entry *find(const void * const *arguments, size_t numArguments) { std::unique_lock lockGuard(Lock->Mutex); auto key = EntryRef::forArguments(arguments, numArguments); // Try to insert 'false' as the map value. Note that this is // inserting auto found = Entries.insert({key, EntryState::Building}); // If that succeeded, we're in charge of creating the entry now. if (found.second) return nullptr; // If it failed, there's an existing entry. auto it = found.first; // Wait until the entry's state goes to Complete. while (it->second != EntryState::Complete) { // Make sure the adder knows to notify us. it->second = EntryState::BuildingWithWaiters; // Wait. Lock->Queue.wait(lockGuard); // Don't trust the existing iterator. it = Entries.find(key); assert(it != Entries.end()); // We need to check again because (1) wait() is allowed to // return spuriously and (2) we share one condition variable // for all the entries. } return it->first.getEntry(); } /// Add the given entry to the cache, taking responsibility for /// it. Returns the entry that should be used, which might not be /// the same as the argument if we lost a race to instantiate it. /// Regardless, the argument should be considered potentially /// invalid after this call. const Entry *add(Entry *entry) { // Grab the lock. std::unique_lock lockGuard(Lock->Mutex); // Maintain the linked list. // TODO: Remove this when LLDB is able to understand the final data // structure for the metadata cache. entry->Next = Head; Head = entry; // Find the existing entry, which should always exist. auto key = EntryRef::forEntry(entry, entry->getNumArguments()); auto it = Entries.find(key); assert(it != Entries.end()); // The existing key is a reference to the (probably stack-based) // arguments array, so overwrite it. Maps don't normally allow // their keys to be overwritten, and doing so isn't officially // allowed, but supposedly it is unofficially guaranteed to // work, at least with the standard containers. const_cast&>(it->first) = key; assert(it->second != EntryState::Complete); bool shouldNotify = (it->second == EntryState::BuildingWithWaiters); it->second = EntryState::Complete; // Drop the lock before notifying the queue. lockGuard.unlock(); // Notify anybody who was waiting for us (or really, anybody who // was waiting on the queue at all). if (shouldNotify) Lock->Queue.notify_all(); return entry; } }; /// A template for lazily-constructed, zero-initialized global objects. template class Lazy { T Value; dispatch_once_t OnceToken; public: T &get() { dispatch_once_f(&OnceToken, this, lazyInitCallback); return Value; } private: static void lazyInitCallback(void *argument) { auto self = reinterpret_cast(argument); ::new (&self->Value) T(); } }; } namespace { struct GenericCacheEntry; // The cache entries in a generic cache are laid out like this: struct GenericCacheEntryHeader : CacheEntry { const Metadata *Value; size_t NumArguments; }; struct GenericCacheEntry : CacheEntry { GenericCacheEntry(unsigned numArguments) { NumArguments = numArguments; } size_t getNumArguments() const { return NumArguments; } static GenericCacheEntry *getFromMetadata(GenericMetadata *pattern, Metadata *metadata) { char *bytes = (char*) metadata; if (auto classType = dyn_cast(metadata)) { assert(classType->isTypeMetadata()); bytes -= classType->getClassAddressPoint(); } else { bytes -= pattern->AddressPoint; } bytes -= sizeof(GenericCacheEntry); return reinterpret_cast(bytes); } }; } using GenericMetadataCache = MetadataCache; using LazyGenericMetadataCache = Lazy; /// Fetch the metadata cache for a generic metadata structure. static GenericMetadataCache &getCache(GenericMetadata *metadata) { // Keep this assert even if you change the representation above. static_assert(sizeof(LazyGenericMetadataCache) <= sizeof(GenericMetadata::PrivateData), "metadata cache is larger than the allowed space"); auto lazyCache = reinterpret_cast(metadata->PrivateData); return lazyCache->get(); } template static const T *adjustAddressPoint(const T *raw, uint32_t offset) { return reinterpret_cast(reinterpret_cast(raw) + offset); } ClassMetadata * swift::swift_allocateGenericClassMetadata(GenericMetadata *pattern, const void *arguments, ClassMetadata *superclass) { void * const *argumentsAsArray = reinterpret_cast(arguments); size_t numGenericArguments = pattern->NumKeyArguments; // Right now, we only worry about there being a difference in prefix matter. size_t metadataSize = pattern->MetadataSize; size_t prefixSize = pattern->AddressPoint; size_t extraPrefixSize = 0; if (superclass && superclass->isTypeMetadata()) { if (superclass->getClassAddressPoint() > prefixSize) { extraPrefixSize = (superclass->getClassAddressPoint() - prefixSize); prefixSize += extraPrefixSize; metadataSize += extraPrefixSize; } } assert(metadataSize == pattern->MetadataSize + extraPrefixSize); assert(prefixSize == pattern->AddressPoint + extraPrefixSize); char *bytes = GenericCacheEntry::allocate(argumentsAsArray, numGenericArguments, metadataSize)->getData(); // Copy any extra prefix bytes in from the superclass. if (extraPrefixSize) { memcpy(bytes, (const char*) superclass - prefixSize, extraPrefixSize); bytes += extraPrefixSize; } // Copy in the metadata template. memcpy(bytes, pattern->getMetadataTemplate(), pattern->MetadataSize); // Okay, move to the address point. bytes += pattern->AddressPoint; ClassMetadata *metadata = reinterpret_cast(bytes); assert(metadata->isTypeMetadata()); // Overwrite the superclass field. metadata->SuperClass = superclass; // Adjust the class object extents. if (extraPrefixSize) { metadata->setClassSize(metadata->getClassSize() + extraPrefixSize); metadata->setClassAddressPoint(prefixSize); } assert(metadata->getClassAddressPoint() == prefixSize); return metadata; } Metadata * swift::swift_allocateGenericValueMetadata(GenericMetadata *pattern, const void *arguments) { void * const *argumentsAsArray = reinterpret_cast(arguments); size_t numGenericArguments = pattern->NumKeyArguments; char *bytes = GenericCacheEntry::allocate(argumentsAsArray, numGenericArguments, pattern->MetadataSize)->getData(); // Copy in the metadata template. memcpy(bytes, pattern->getMetadataTemplate(), pattern->MetadataSize); // Okay, move to the address point. bytes += pattern->AddressPoint; Metadata *metadata = reinterpret_cast(bytes); return metadata; } static const Metadata * instantiateGenericMetadata(GenericMetadata *pattern, const void *arguments) { // Create the metadata. Metadata *metadata = pattern->CreateFunction(pattern, arguments); // The metadata is now valid. Add to the cache list. auto entry = GenericCacheEntry::getFromMetadata(pattern, metadata); entry->Value = metadata; auto canonFullMetadata = getCache(pattern).add(entry)->Value; return canonFullMetadata; } /// The primary entrypoint. const Metadata * swift::swift_getGenericMetadata(GenericMetadata *pattern, const void *arguments) { auto genericArgs = (const void * const *) arguments; size_t numGenericArgs = pattern->NumKeyArguments; #if SWIFT_DEBUG_RUNTIME printf("swift_getGenericMetadata(%p):\n", pattern); for (unsigned i = 0; i != numGenericArgs; ++i) { printf(" %p\n", genericArgs[i]); } #endif if (auto entry = getCache(pattern).find(genericArgs, numGenericArgs)) { #if SWIFT_DEBUG_RUNTIME printf("found in cache!\n"); #endif auto metadata = adjustAddressPoint(entry->getData(), pattern->AddressPoint); #if SWIFT_DEBUG_RUNTIME printf(" -> %p\n", metadata); #endif return metadata; } // Otherwise, instantiate a new one. #if SWIFT_DEBUG_RUNTIME printf("not found in cache!\n"); #endif auto metadata = instantiateGenericMetadata(pattern, arguments); #if SWIFT_DEBUG_RUNTIME printf(" -> %p\n", metadata); #endif return metadata; } /// Fast entry points. const Metadata * swift::swift_getGenericMetadata1(GenericMetadata *pattern, const void*argument){ return swift_getGenericMetadata(pattern, &argument); } const Metadata * swift::swift_getGenericMetadata2(GenericMetadata *pattern, const void *arg0, const void *arg1) { const void *args[] = {arg0, arg1}; return swift_getGenericMetadata(pattern, args); } const Metadata * swift::swift_getGenericMetadata3(GenericMetadata *pattern, const void *arg0, const void *arg1, const void *arg2) { const void *args[] = {arg0, arg1, arg2}; return swift_getGenericMetadata(pattern, args); } const Metadata * swift::swift_getGenericMetadata4(GenericMetadata *pattern, const void *arg0, const void *arg1, const void *arg2, const void *arg3) { const void *args[] = {arg0, arg1, arg2, arg3}; return swift_getGenericMetadata(pattern, args); } namespace { class ObjCClassCacheEntry : public CacheEntry { FullMetadata Metadata; public: ObjCClassCacheEntry(size_t numArguments) {} static constexpr size_t getNumArguments() { return 1; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for ObjC class-wrapper metadata. static MetadataCache ObjCClassWrappers; const Metadata * swift::swift_getObjCClassMetadata(const ClassMetadata *theClass) { // If the class pointer is valid as metadata, no translation is required. if (theClass->isTypeMetadata()) { return theClass; } // Look for an existing entry. const size_t numGenericArgs = 1; const void *args[] = { theClass }; if (auto entry = ObjCClassWrappers.find(args, numGenericArgs)) { return entry->getData(); } auto entry = ObjCClassCacheEntry::allocate(args, numGenericArgs, 0); auto metadata = entry->getData(); metadata->setKind(MetadataKind::ObjCClassWrapper); metadata->ValueWitnesses = &_TWVBO; metadata->Class = theClass; return ObjCClassWrappers.add(entry)->getData(); } namespace { class FunctionCacheEntry : public CacheEntry { FullMetadata Metadata; public: FunctionCacheEntry(size_t numArguments) {} static constexpr size_t getNumArguments() { return 2; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for function type metadata. namespace { MetadataCache FunctionTypes; MetadataCache BlockTypes; const FunctionTypeMetadata * _getFunctionTypeMetadata(const Metadata *argMetadata, const Metadata *resultMetadata, MetadataKind Kind, MetadataCache &Cache, const ValueWitnessTable &ValueWitnesses) { const size_t numGenericArgs = 2; typedef FullMetadata FullFunctionTypeMetadata; const void *args[] = { argMetadata, resultMetadata }; if (auto entry = Cache.find(args, numGenericArgs)) { return entry->getData(); } auto entry = FunctionCacheEntry::allocate(args, numGenericArgs, 0); auto metadata = entry->getData(); metadata->setKind(Kind); metadata->ValueWitnesses = &ValueWitnesses; metadata->ArgumentType = argMetadata; metadata->ResultType = resultMetadata; return Cache.add(entry)->getData(); } } const FunctionTypeMetadata * swift::swift_getFunctionTypeMetadata(const Metadata *argMetadata, const Metadata *resultMetadata) { return _getFunctionTypeMetadata(argMetadata, resultMetadata, MetadataKind::Function, FunctionTypes, _TWVFT_T_); } const FunctionTypeMetadata * swift::swift_getBlockTypeMetadata(const Metadata *argMetadata, const Metadata *resultMetadata) { return _getFunctionTypeMetadata(argMetadata, resultMetadata, MetadataKind::Block, BlockTypes, _TWVBO); } /*** Tuples ****************************************************************/ namespace { class TupleCacheEntry; struct TupleCacheEntryHeader : CacheEntryHeader { size_t NumArguments; }; class TupleCacheEntry : public CacheEntry { public: // NOTE: if you change the layout of this type, you'll also need // to update tuple_getValueWitnesses(). ExtraInhabitantsValueWitnessTable Witnesses; FullMetadata Metadata; TupleCacheEntry(size_t numArguments) { NumArguments = numArguments; } size_t getNumArguments() const { return Metadata.NumElements; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for tuple type metadata. static MetadataCache TupleTypes; /// Given a metatype pointer, produce the value-witness table for it. /// This is equivalent to metatype->ValueWitnesses but more efficient. static const ValueWitnessTable *tuple_getValueWitnesses(const Metadata *metatype) { return ((const ExtraInhabitantsValueWitnessTable*) asFullMetadata(metatype)) - 1; } /// Generic tuple value witness for 'projectBuffer'. template static OpaqueValue *tuple_projectBuffer(ValueBuffer *buffer, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsInline) return reinterpret_cast(buffer); else return *reinterpret_cast(buffer); } /// Generic tuple value witness for 'allocateBuffer' template static OpaqueValue *tuple_allocateBuffer(ValueBuffer *buffer, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsInline) return reinterpret_cast(buffer); auto wtable = tuple_getValueWitnesses(metatype); auto value = (OpaqueValue*) swift_slowAlloc(wtable->size, wtable->getAlignmentMask(), 0); *reinterpret_cast(buffer) = value; return value; } /// Generic tuple value witness for 'deallocateBuffer'. template static void tuple_deallocateBuffer(ValueBuffer *buffer, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsInline) return; auto wtable = tuple_getValueWitnesses(metatype); auto value = *reinterpret_cast(buffer); swift_slowDealloc(value, wtable->size, wtable->getAlignmentMask()); } /// Generic tuple value witness for 'destroy'. template static void tuple_destroy(OpaqueValue *tuple, const Metadata *_metadata) { auto &metadata = *(const TupleTypeMetadata*) _metadata; assert(IsPOD == tuple_getValueWitnesses(&metadata)->isPOD()); assert(IsInline == tuple_getValueWitnesses(&metadata)->isValueInline()); if (IsPOD) return; for (size_t i = 0, e = metadata.NumElements; i != e; ++i) { auto &eltInfo = metadata.getElements()[i]; OpaqueValue *elt = eltInfo.findIn(tuple); auto eltWitnesses = eltInfo.Type->getValueWitnesses(); eltWitnesses->destroy(elt, eltInfo.Type); } } /// Generic tuple value witness for 'destroyArray'. template static void tuple_destroyArray(OpaqueValue *array, size_t n, const Metadata *_metadata) { auto &metadata = *(const TupleTypeMetadata*) _metadata; assert(IsPOD == tuple_getValueWitnesses(&metadata)->isPOD()); assert(IsInline == tuple_getValueWitnesses(&metadata)->isValueInline()); if (IsPOD) return; size_t stride = tuple_getValueWitnesses(&metadata)->stride; char *bytes = (char*)array; while (n--) { tuple_destroy((OpaqueValue*)bytes, _metadata); bytes += stride; } } /// Generic tuple value witness for 'destroyBuffer'. template static void tuple_destroyBuffer(ValueBuffer *buffer, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); auto tuple = tuple_projectBuffer(buffer, metatype); tuple_destroy(tuple, metatype); tuple_deallocateBuffer(buffer, metatype); } // The operation doesn't have to be initializeWithCopy, but they all // have basically the same type. typedef value_witness_types::initializeWithCopy * ValueWitnessTable::*forEachOperation; /// Perform an operation for each field of two tuples. static OpaqueValue *tuple_forEachField(OpaqueValue *destTuple, OpaqueValue *srcTuple, const Metadata *_metatype, forEachOperation member) { auto &metatype = *(const TupleTypeMetadata*) _metatype; for (size_t i = 0, e = metatype.NumElements; i != e; ++i) { auto &eltInfo = metatype.getElements()[i]; auto eltValueWitnesses = eltInfo.Type->getValueWitnesses(); OpaqueValue *destElt = eltInfo.findIn(destTuple); OpaqueValue *srcElt = eltInfo.findIn(srcTuple); (eltValueWitnesses->*member)(destElt, srcElt, eltInfo.Type); } return destTuple; } /// Perform a naive memcpy of src into dest. static OpaqueValue *tuple_memcpy(OpaqueValue *dest, OpaqueValue *src, const Metadata *metatype) { assert(metatype->getValueWitnesses()->isPOD()); return (OpaqueValue*) memcpy(dest, src, metatype->getValueWitnesses()->getSize()); } /// Perform a naive memcpy of n tuples from src into dest. static OpaqueValue *tuple_memcpy_array(OpaqueValue *dest, OpaqueValue *src, size_t n, const Metadata *metatype) { assert(metatype->getValueWitnesses()->isPOD()); return (OpaqueValue*) memcpy(dest, src, metatype->getValueWitnesses()->stride * n); } /// Perform a naive memmove of n tuples from src into dest. static OpaqueValue *tuple_memmove_array(OpaqueValue *dest, OpaqueValue *src, size_t n, const Metadata *metatype) { assert(metatype->getValueWitnesses()->isPOD()); return (OpaqueValue*) memmove(dest, src, metatype->getValueWitnesses()->stride * n); } /// Generic tuple value witness for 'initializeWithCopy'. template static OpaqueValue *tuple_initializeWithCopy(OpaqueValue *dest, OpaqueValue *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memcpy(dest, src, metatype); return tuple_forEachField(dest, src, metatype, &ValueWitnessTable::initializeWithCopy); } /// Generic tuple value witness for 'initializeArrayWithCopy'. template static OpaqueValue *tuple_initializeArrayWithCopy(OpaqueValue *dest, OpaqueValue *src, size_t n, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memcpy_array(dest, src, n, metatype); char *destBytes = (char*)dest; char *srcBytes = (char*)src; size_t stride = tuple_getValueWitnesses(metatype)->stride; while (n--) { tuple_initializeWithCopy((OpaqueValue*)destBytes, (OpaqueValue*)srcBytes, metatype); destBytes += stride; srcBytes += stride; } return dest; } /// Generic tuple value witness for 'initializeWithTake'. template static OpaqueValue *tuple_initializeWithTake(OpaqueValue *dest, OpaqueValue *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memcpy(dest, src, metatype); return tuple_forEachField(dest, src, metatype, &ValueWitnessTable::initializeWithTake); } /// Generic tuple value witness for 'initializeArrayWithTakeFrontToBack'. template static OpaqueValue *tuple_initializeArrayWithTakeFrontToBack( OpaqueValue *dest, OpaqueValue *src, size_t n, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memmove_array(dest, src, n, metatype); char *destBytes = (char*)dest; char *srcBytes = (char*)src; size_t stride = tuple_getValueWitnesses(metatype)->stride; while (n--) { tuple_initializeWithTake((OpaqueValue*)destBytes, (OpaqueValue*)srcBytes, metatype); destBytes += stride; srcBytes += stride; } return dest; } /// Generic tuple value witness for 'initializeArrayWithTakeBackToFront'. template static OpaqueValue *tuple_initializeArrayWithTakeBackToFront( OpaqueValue *dest, OpaqueValue *src, size_t n, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memmove_array(dest, src, n, metatype); size_t stride = tuple_getValueWitnesses(metatype)->stride; char *destBytes = (char*)dest + n * stride; char *srcBytes = (char*)src + n * stride; while (n--) { destBytes -= stride; srcBytes -= stride; tuple_initializeWithTake((OpaqueValue*)destBytes, (OpaqueValue*)srcBytes, metatype); } return dest; } /// Generic tuple value witness for 'assignWithCopy'. template static OpaqueValue *tuple_assignWithCopy(OpaqueValue *dest, OpaqueValue *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsPOD) return tuple_memcpy(dest, src, metatype); return tuple_forEachField(dest, src, metatype, &ValueWitnessTable::assignWithCopy); } /// Generic tuple value witness for 'assignWithTake'. template static OpaqueValue *tuple_assignWithTake(OpaqueValue *dest, OpaqueValue *src, const Metadata *metatype) { if (IsPOD) return tuple_memcpy(dest, src, metatype); return tuple_forEachField(dest, src, metatype, &ValueWitnessTable::assignWithTake); } /// Generic tuple value witness for 'initializeBufferWithCopy'. template static OpaqueValue *tuple_initializeBufferWithCopy(ValueBuffer *dest, OpaqueValue *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); return tuple_initializeWithCopy( tuple_allocateBuffer(dest, metatype), src, metatype); } /// Generic tuple value witness for 'initializeBufferWithTake'. template static OpaqueValue *tuple_initializeBufferWithTake(ValueBuffer *dest, OpaqueValue *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); return tuple_initializeWithTake( tuple_allocateBuffer(dest, metatype), src, metatype); } /// Generic tuple value witness for 'initializeBufferWithCopyOfBuffer'. template static OpaqueValue *tuple_initializeBufferWithCopyOfBuffer(ValueBuffer *dest, ValueBuffer *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); return tuple_initializeBufferWithCopy( dest, tuple_projectBuffer(src, metatype), metatype); } /// Generic tuple value witness for 'initializeBufferWithTakeOfBuffer'. template static OpaqueValue *tuple_initializeBufferWithTakeOfBuffer(ValueBuffer *dest, ValueBuffer *src, const Metadata *metatype) { assert(IsPOD == tuple_getValueWitnesses(metatype)->isPOD()); assert(IsInline == tuple_getValueWitnesses(metatype)->isValueInline()); if (IsInline) { return tuple_initializeWithTake( tuple_projectBuffer(dest, metatype), tuple_projectBuffer(src, metatype), metatype); } else { dest->PrivateData[0] = src->PrivateData[0]; return (OpaqueValue*) dest->PrivateData[0]; } } static void tuple_storeExtraInhabitant(OpaqueValue *tuple, int index, const Metadata *_metatype) { auto &metatype = *(const TupleTypeMetadata*) _metatype; auto &eltInfo = metatype.getElements()[0]; assert(eltInfo.Offset == 0); OpaqueValue *elt = tuple; eltInfo.Type->vw_storeExtraInhabitant(elt, index); } static int tuple_getExtraInhabitantIndex(const OpaqueValue *tuple, const Metadata *_metatype) { auto &metatype = *(const TupleTypeMetadata*) _metatype; auto &eltInfo = metatype.getElements()[0]; assert(eltInfo.Offset == 0); const OpaqueValue *elt = tuple; return eltInfo.Type->vw_getExtraInhabitantIndex(elt); } /// Various standard witness table for tuples. static const ValueWitnessTable tuple_witnesses_pod_inline = { #define TUPLE_WITNESS(NAME) &tuple_##NAME, FOR_ALL_FUNCTION_VALUE_WITNESSES(TUPLE_WITNESS) #undef TUPLE_WITNESS 0, ValueWitnessFlags(), 0 }; static const ValueWitnessTable tuple_witnesses_nonpod_inline = { #define TUPLE_WITNESS(NAME) &tuple_##NAME, FOR_ALL_FUNCTION_VALUE_WITNESSES(TUPLE_WITNESS) #undef TUPLE_WITNESS 0, ValueWitnessFlags(), 0 }; static const ValueWitnessTable tuple_witnesses_pod_noninline = { #define TUPLE_WITNESS(NAME) &tuple_##NAME, FOR_ALL_FUNCTION_VALUE_WITNESSES(TUPLE_WITNESS) #undef TUPLE_WITNESS 0, ValueWitnessFlags(), 0 }; static const ValueWitnessTable tuple_witnesses_nonpod_noninline = { #define TUPLE_WITNESS(NAME) &tuple_##NAME, FOR_ALL_FUNCTION_VALUE_WITNESSES(TUPLE_WITNESS) #undef TUPLE_WITNESS 0, ValueWitnessFlags(), 0 }; namespace { struct BasicLayout { size_t size; ValueWitnessFlags flags; size_t stride; static constexpr BasicLayout initialForValueType() { return {0, ValueWitnessFlags().withAlignment(1).withPOD(true), 0}; } static constexpr BasicLayout initialForHeapObject() { return {sizeof(HeapObject), ValueWitnessFlags().withAlignment(alignof(HeapObject)), sizeof(HeapObject)}; } }; /// Perform basic sequential layout given a vector of metadata pointers, /// calling a functor with the offset of each field, and returning the /// final layout characteristics of the type. /// FUNCTOR should have signature: /// void (size_t index, const Metadata *type, size_t offset) template void performBasicLayout(BasicLayout &layout, const Metadata * const *elements, size_t numElements, FUNCTOR &&f) { size_t size = layout.size; size_t alignment = layout.flags.getAlignment(); bool isPOD = layout.flags.isPOD(); bool isBitwiseTakable = layout.flags.isBitwiseTakable(); for (unsigned i = 0; i != numElements; ++i) { auto elt = elements[i]; // Lay out this element. auto eltVWT = elt->getValueWitnesses(); size = llvm::RoundUpToAlignment(size, eltVWT->getAlignment()); // Report this record to the functor. f(i, elt, size); // Update the size and alignment of the aggregate.. size += eltVWT->size; alignment = std::max(alignment, eltVWT->getAlignment()); if (!eltVWT->isPOD()) isPOD = false; if (!eltVWT->isBitwiseTakable()) isBitwiseTakable = false; } bool isInline = ValueWitnessTable::isValueInline(size, alignment); layout.size = size; layout.flags = ValueWitnessFlags().withAlignment(alignment) .withPOD(isPOD) .withBitwiseTakable(isBitwiseTakable) .withInlineStorage(isInline); layout.stride = llvm::RoundUpToAlignment(size, alignment); } } // end anonymous namespace const TupleTypeMetadata * swift::swift_getTupleTypeMetadata(size_t numElements, const Metadata * const *elements, const char *labels, const ValueWitnessTable *proposedWitnesses) { #if SWIFT_DEBUG_RUNTIME printf("looking up tuple type metadata\n"); for (unsigned i = 0; i < numElements; ++i) printf(" %p\n", elements[0]); #endif // FIXME: include labels when uniquing! auto genericArgs = (const void * const *) elements; if (auto entry = TupleTypes.find(genericArgs, numElements)) { #if SWIFT_DEBUG_RUNTIME printf("found in cache! %p\n", entry->getData()); #endif return entry->getData(); } #if SWIFT_DEBUG_RUNTIME printf("not found in cache!\n"); #endif // We might reasonably get called by generic code, like a demangler // that produces type objects. As long as we sink this below the // fast-path map lookup, it doesn't really cost us anything. if (numElements == 0) return &_TMdT_; typedef TupleTypeMetadata::Element Element; // Allocate the tuple cache entry, which includes space for both the // metadata and a value-witness table. auto entry = TupleCacheEntry::allocate(genericArgs, numElements, numElements * sizeof(Element)); auto witnesses = &entry->Witnesses; auto metadata = entry->getData(); metadata->setKind(MetadataKind::Tuple); metadata->ValueWitnesses = witnesses; metadata->NumElements = numElements; metadata->Labels = labels; // Perform basic layout on the tuple. auto layout = BasicLayout::initialForValueType(); performBasicLayout(layout, elements, numElements, [&](size_t i, const Metadata *elt, size_t offset) { metadata->getElements()[i].Type = elt; metadata->getElements()[i].Offset = offset; }); witnesses->size = layout.size; witnesses->flags = layout.flags; witnesses->stride = layout.stride; // Copy the function witnesses in, either from the proposed // witnesses or from the standard table. if (!proposedWitnesses) { // For a tuple with a single element, just use the witnesses for // the element type. if (numElements == 1) { proposedWitnesses = elements[0]->getValueWitnesses(); // Otherwise, use generic witnesses (when we can't pattern-match // into something better). } else if (layout.flags.isInlineStorage() && layout.flags.isPOD()) { if (layout.size == 8) proposedWitnesses = &_TWVBi64_; else if (layout.size == 4) proposedWitnesses = &_TWVBi32_; else if (layout.size == 2) proposedWitnesses = &_TWVBi16_; else if (layout.size == 1) proposedWitnesses = &_TWVBi8_; else proposedWitnesses = &tuple_witnesses_pod_inline; } else if (layout.flags.isInlineStorage() && !layout.flags.isPOD()) { proposedWitnesses = &tuple_witnesses_nonpod_inline; } else if (!layout.flags.isInlineStorage() && layout.flags.isPOD()) { proposedWitnesses = &tuple_witnesses_pod_noninline; } else { assert(!layout.flags.isInlineStorage() && !layout.flags.isPOD()); proposedWitnesses = &tuple_witnesses_nonpod_noninline; } } #define ASSIGN_TUPLE_WITNESS(NAME) \ witnesses->NAME = proposedWitnesses->NAME; FOR_ALL_FUNCTION_VALUE_WITNESSES(ASSIGN_TUPLE_WITNESS) #undef ASSIGN_TUPLE_WITNESS // We have extra inhabitants if the first element does. // FIXME: generalize this. if (auto firstEltEIVWT = dyn_cast( elements[0]->getValueWitnesses())) { witnesses->flags = witnesses->flags.withExtraInhabitants(true); witnesses->extraInhabitantFlags = firstEltEIVWT->extraInhabitantFlags; witnesses->storeExtraInhabitant = tuple_storeExtraInhabitant; witnesses->getExtraInhabitantIndex = tuple_getExtraInhabitantIndex; } auto finalMetadata = TupleTypes.add(entry)->getData(); #if SWIFT_DEBUG_RUNTIME printf(" -> %p\n", finalMetadata); #endif return finalMetadata; } const TupleTypeMetadata * swift::swift_getTupleTypeMetadata2(const Metadata *elt0, const Metadata *elt1, const char *labels, const ValueWitnessTable *proposedWitnesses) { const Metadata *elts[] = { elt0, elt1 }; return swift_getTupleTypeMetadata(2, elts, labels, proposedWitnesses); } const TupleTypeMetadata * swift::swift_getTupleTypeMetadata3(const Metadata *elt0, const Metadata *elt1, const Metadata *elt2, const char *labels, const ValueWitnessTable *proposedWitnesses) { const Metadata *elts[] = { elt0, elt1, elt2 }; return swift_getTupleTypeMetadata(3, elts, labels, proposedWitnesses); } /*** Structs ***************************************************************/ /// Initialize the value witness table and struct field offset vector for a /// struct, using the "Universal" layout strategy. void swift::swift_initStructMetadata_UniversalStrategy(size_t numFields, const Metadata * const *fieldTypes, size_t *fieldOffsets, ValueWitnessTable *vwtable) { auto layout = BasicLayout::initialForValueType(); performBasicLayout(layout, fieldTypes, numFields, [&](size_t i, const Metadata *fieldType, size_t offset) { fieldOffsets[i] = offset; }); vwtable->size = layout.size; vwtable->flags = layout.flags; vwtable->stride = layout.stride; // We have extra inhabitants if the first element does. // FIXME: generalize this. if (auto firstFieldVWT = dyn_cast( fieldTypes[0]->getValueWitnesses())) { vwtable->flags = vwtable->flags.withExtraInhabitants(true); auto xiVWT = cast(vwtable); xiVWT->extraInhabitantFlags = firstFieldVWT->extraInhabitantFlags; // The compiler should already have initialized these. assert(xiVWT->storeExtraInhabitant); assert(xiVWT->getExtraInhabitantIndex); } } /*** Classes ***************************************************************/ /// Initialize the field offset vector for a dependent-layout class, using the /// "Universal" layout strategy. void swift::swift_initClassMetadata_UniversalStrategy(ClassMetadata *self, const ClassMetadata *super, size_t numFields, const Metadata * const *fieldTypes, size_t *fieldOffsets) { // Start layout by appending to a standard heap object header. auto layout = BasicLayout::initialForHeapObject(); // If we have a superclass, start from its size and alignment instead. if (super) { uintptr_t superSize = super->getInstanceSize(); uintptr_t superAlignMask = super->getInstanceAlignMask(); layout.size = superSize; layout.flags = layout.flags.withAlignmentMask(superAlignMask); layout.stride = llvm::RoundUpToAlignment(superSize, superAlignMask+1); } performBasicLayout(layout, fieldTypes, numFields, [&](size_t i, const Metadata *fieldType, size_t offset) { fieldOffsets[i] = offset; }); // Save the final size and alignment into the metadata record. assert(self->isTypeMetadata()); self->setInstanceSize(layout.size); self->setInstanceAlignMask(layout.flags.getAlignmentMask()); } /*** Metatypes *************************************************************/ namespace { class MetatypeCacheEntry : public CacheEntry { FullMetadata Metadata; public: MetatypeCacheEntry(size_t numArguments) {} static constexpr size_t getNumArguments() { return 1; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for metatype type metadata. static MetadataCache MetatypeTypes; /// \brief Find the appropriate value witness table for the given type. static const ValueWitnessTable * getMetatypeValueWitnesses(const Metadata *instanceType) { // The following metatypes have non-trivial representation // in the concrete: // - class types // - metatypes of types that require value witnesses // For class types, return the unmanaged-pointer witnesses. if (instanceType->isClassType()) return &getUnmanagedPointerPointerValueWitnesses(); // Metatypes preserve the triviality of their instance type. if (instanceType->getKind() == MetadataKind::Metatype) return instanceType->getValueWitnesses(); // Everything else is trivial and can use the empty-tuple metadata. return &_TWVT_; } /// \brief Fetch a uniqued metadata for a metatype type. extern "C" const MetatypeMetadata * swift::swift_getMetatypeMetadata(const Metadata *instanceMetadata) { const size_t numGenericArgs = 1; const void *args[] = { instanceMetadata }; if (auto entry = MetatypeTypes.find(args, numGenericArgs)) { return entry->getData(); } auto entry = MetatypeCacheEntry::allocate(args, numGenericArgs, 0); auto metadata = entry->getData(); metadata->setKind(MetadataKind::Metatype); metadata->ValueWitnesses = getMetatypeValueWitnesses(instanceMetadata); metadata->InstanceType = instanceMetadata; return MetatypeTypes.add(entry)->getData(); } /*** Existential Metatypes *************************************************/ namespace { class ExistentialMetatypeCacheEntry : public CacheEntry { FullMetadata Metadata; public: ExistentialMetatypeCacheEntry(size_t numArguments) {} static constexpr size_t getNumArguments() { return 1; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for existential metatype type metadata. static MetadataCache ExistentialMetatypeTypes; /// \brief Find the appropriate value witness table for the given type. static const ValueWitnessTable * getExistentialMetatypeValueWitnesses(unsigned numWitnessTables) { // FIXME return &getUnmanagedPointerPointerValueWitnesses(); } /// \brief Fetch a uniqued metadata for a metatype type. extern "C" const ExistentialMetatypeMetadata * swift::swift_getExistentialMetatypeMetadata(const Metadata *instanceMetadata) { const size_t numGenericArgs = 1; const void *args[] = { instanceMetadata }; if (auto entry = ExistentialMetatypeTypes.find(args, numGenericArgs)) { return entry->getData(); } auto entry = ExistentialMetatypeCacheEntry::allocate(args, numGenericArgs, 0); // FIXME: the value witnesses should probably account for room for // protocol witness tables ExistentialTypeFlags flags; if (instanceMetadata->getKind() == MetadataKind::Existential) { flags = static_cast(instanceMetadata)->Flags; } else { assert(instanceMetadata->getKind() == MetadataKind::ExistentialMetatype); flags = static_cast(instanceMetadata)->Flags; } auto metadata = entry->getData(); metadata->setKind(MetadataKind::ExistentialMetatype); metadata->ValueWitnesses = getExistentialMetatypeValueWitnesses(flags.getNumWitnessTables()); metadata->InstanceType = instanceMetadata; metadata->Flags = flags; return ExistentialMetatypeTypes.add(entry)->getData(); } /*** Existential types ********************************************************/ namespace { class ExistentialCacheEntry : public CacheEntry { public: FullMetadata Metadata; ExistentialCacheEntry(size_t numArguments) { Metadata.Protocols.NumProtocols = numArguments; } size_t getNumArguments() const { return Metadata.Protocols.NumProtocols; } FullMetadata *getData() { return &Metadata; } const FullMetadata *getData() const { return &Metadata; } }; } /// The uniquing structure for existential type metadata. static MetadataCache ExistentialTypes; static const ValueWitnessTable OpaqueExistentialValueWitnesses_0 = ValueWitnessTableForBox>::table; static const ValueWitnessTable OpaqueExistentialValueWitnesses_1 = ValueWitnessTableForBox>::table; static llvm::DenseMap OpaqueExistentialValueWitnessTables; /// Instantiate a value witness table for an opaque existential container with /// the given number of witness table pointers. static const ValueWitnessTable * getOpaqueExistentialValueWitnesses(unsigned numWitnessTables) { // We pre-allocate a couple of important cases. if (numWitnessTables == 0) return &OpaqueExistentialValueWitnesses_0; if (numWitnessTables == 1) return &OpaqueExistentialValueWitnesses_1; // FIXME: make thread-safe auto found = OpaqueExistentialValueWitnessTables.find(numWitnessTables); if (found != OpaqueExistentialValueWitnessTables.end()) return found->second; using Box = NonFixedOpaqueExistentialBox; using Witnesses = NonFixedValueWitnesses; static_assert(!Witnesses::hasExtraInhabitants, "no extra inhabitants"); auto *vwt = new ValueWitnessTable; #define STORE_VAR_OPAQUE_EXISTENTIAL_WITNESS(WITNESS) \ vwt->WITNESS = Witnesses::WITNESS; FOR_ALL_FUNCTION_VALUE_WITNESSES(STORE_VAR_OPAQUE_EXISTENTIAL_WITNESS) #undef STORE_VAR_OPAQUE_EXISTENTIAL_WITNESS vwt->size = Box::Container::getSize(numWitnessTables); vwt->flags = ValueWitnessFlags() .withAlignment(Box::Container::getAlignment(numWitnessTables)) .withPOD(false) .withInlineStorage(false) .withExtraInhabitants(false); vwt->stride = Box::Container::getStride(numWitnessTables); OpaqueExistentialValueWitnessTables.insert({numWitnessTables, vwt}); return vwt; } static const ExtraInhabitantsValueWitnessTable ClassExistentialValueWitnesses_1 = ValueWitnessTableForBox>::table; static const ExtraInhabitantsValueWitnessTable ClassExistentialValueWitnesses_2 = ValueWitnessTableForBox>::table; static llvm::DenseMap ClassExistentialValueWitnessTables; /// Instantiate a value witness table for a class-constrained existential /// container with the given number of witness table pointers. static const ExtraInhabitantsValueWitnessTable * getClassExistentialValueWitnesses(unsigned numWitnessTables) { if (numWitnessTables == 0) return &_TWVBO; if (numWitnessTables == 1) return &ClassExistentialValueWitnesses_1; if (numWitnessTables == 2) return &ClassExistentialValueWitnesses_2; static_assert(3 * sizeof(void*) >= sizeof(ValueBuffer), "not handling all possible inline-storage class existentials!"); auto found = ClassExistentialValueWitnessTables.find(numWitnessTables); if (found != ClassExistentialValueWitnessTables.end()) return found->second; using Box = NonFixedClassExistentialBox; using Witnesses = NonFixedValueWitnesses; auto *vwt = new ExtraInhabitantsValueWitnessTable; #define STORE_VAR_CLASS_EXISTENTIAL_WITNESS(WITNESS) \ vwt->WITNESS = Witnesses::WITNESS; FOR_ALL_FUNCTION_VALUE_WITNESSES(STORE_VAR_CLASS_EXISTENTIAL_WITNESS) STORE_VAR_CLASS_EXISTENTIAL_WITNESS(storeExtraInhabitant) STORE_VAR_CLASS_EXISTENTIAL_WITNESS(getExtraInhabitantIndex) #undef STORE_VAR_CLASS_EXISTENTIAL_WITNESS vwt->size = Box::Container::getSize(numWitnessTables); vwt->flags = ValueWitnessFlags() .withAlignment(Box::Container::getAlignment(numWitnessTables)) .withPOD(false) .withInlineStorage(false) .withExtraInhabitants(true); vwt->stride = Box::Container::getStride(numWitnessTables); vwt->extraInhabitantFlags = ExtraInhabitantFlags() .withNumExtraInhabitants(Witnesses::numExtraInhabitants); ClassExistentialValueWitnessTables.insert({numWitnessTables, vwt}); return vwt; } /// Get the value witness table for an existential type, first trying to use a /// shared specialized table for common cases. static const ValueWitnessTable * getExistentialValueWitnesses(ProtocolClassConstraint classConstraint, unsigned numWitnessTables) { switch (classConstraint) { case ProtocolClassConstraint::Class: return getClassExistentialValueWitnesses(numWitnessTables); case ProtocolClassConstraint::Any: return getOpaqueExistentialValueWitnesses(numWitnessTables); } } const OpaqueValue * ExistentialTypeMetadata::projectValue(const OpaqueValue *container) const { // The layout of the container depends on whether it's class-constrained. if (Flags.getClassConstraint() == ProtocolClassConstraint::Class) { auto classContainer = reinterpret_cast(container); return reinterpret_cast(&classContainer->Value); } else { auto opaqueContainer = reinterpret_cast(container); return opaqueContainer->Type->vw_projectBuffer( const_cast(&opaqueContainer->Buffer)); } } const Metadata * ExistentialTypeMetadata::getDynamicType(const OpaqueValue *container) const { // The layout of the container depends on whether it's class-constrained. if (isClassBounded()) { auto classContainer = reinterpret_cast(container); void *obj = classContainer->Value; return swift_getObjectType(reinterpret_cast(obj)); } else { auto opaqueContainer = reinterpret_cast(container); return opaqueContainer->Type; } } const void * const * ExistentialTypeMetadata::getWitnessTable(const OpaqueValue *container, unsigned i) const { assert(i < Flags.getNumWitnessTables()); // The layout of the container depends on whether it's class-constrained. const void * const * witnessTables; if (isClassBounded()) { auto classContainer = reinterpret_cast(container); witnessTables = classContainer->getWitnessTables(); } else { auto opaqueContainer = reinterpret_cast(container); witnessTables = opaqueContainer->getWitnessTables(); } // The return type here describes extra structure for the protocol // witness table for some reason. We should probaby have a nominal // type for these, just for type safety reasons. return reinterpret_cast(witnessTables[i]); } /// \brief Fetch a uniqued metadata for an existential type. The array /// referenced by \c protocols will be sorted in-place. const ExistentialTypeMetadata * swift::swift_getExistentialTypeMetadata(size_t numProtocols, const ProtocolDescriptor **protocols) { // Sort the protocol set. std::sort(protocols, protocols + numProtocols); // Calculate the class constraint and number of witness tables for the // protocol set. unsigned numWitnessTables = 0; ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any; for (auto p : make_range(protocols, protocols + numProtocols)) { if (p->Flags.needsWitnessTable()) { ++numWitnessTables; } if (p->Flags.getClassConstraint() == ProtocolClassConstraint::Class) classConstraint = ProtocolClassConstraint::Class; } auto protocolArgs = reinterpret_cast(protocols); if (auto entry = ExistentialTypes.find(protocolArgs, numProtocols)) { return entry->getData(); } auto entry = ExistentialCacheEntry::allocate(protocolArgs, numProtocols, sizeof(const ProtocolDescriptor *) * numProtocols); auto metadata = entry->getData(); metadata->setKind(MetadataKind::Existential); metadata->ValueWitnesses = getExistentialValueWitnesses(classConstraint, numWitnessTables); metadata->Flags = ExistentialTypeFlags() .withNumWitnessTables(numWitnessTables) .withClassConstraint(classConstraint); metadata->Protocols.NumProtocols = numProtocols; for (size_t i = 0; i < numProtocols; ++i) metadata->Protocols[i] = protocols[i]; return ExistentialTypes.add(entry)->getData(); } /// \brief Perform a copy-assignment from one existential container to another. /// Both containers must be of the same existential type representable with no /// witness tables. OpaqueValue *swift::swift_assignExistentialWithCopy0(OpaqueValue *dest, const OpaqueValue *src, const Metadata *type) { using Witnesses = ValueWitnesses>; return Witnesses::assignWithCopy(dest, const_cast(src), type); } /// \brief Perform a copy-assignment from one existential container to another. /// Both containers must be of the same existential type representable with one /// witness table. OpaqueValue *swift::swift_assignExistentialWithCopy1(OpaqueValue *dest, const OpaqueValue *src, const Metadata *type) { using Witnesses = ValueWitnesses>; return Witnesses::assignWithCopy(dest, const_cast(src), type); } /// \brief Perform a copy-assignment from one existential container to another. /// Both containers must be of the same existential type representable with the /// same number of witness tables. OpaqueValue *swift::swift_assignExistentialWithCopy(OpaqueValue *dest, const OpaqueValue *src, const Metadata *type) { assert(!type->getValueWitnesses()->isValueInline()); using Witnesses = NonFixedValueWitnesses; return Witnesses::assignWithCopy(dest, const_cast(src), type); } /*** Foreign types *********************************************************/ namespace { /// A string whose data is globally-allocated. struct GlobalString { StringRef Data; /*implicit*/ GlobalString(StringRef data) : Data(data) {} }; } template <> struct llvm::DenseMapInfo { static GlobalString getEmptyKey() { return StringRef((const char*) 0, 0); } static GlobalString getTombstoneKey() { return StringRef((const char*) 1, 0); } static unsigned getHashValue(const GlobalString &val) { // llvm::hash_value(StringRef) is, unfortunately, defined out of // line in a library we otherwise would not need to link against. return llvm::hash_combine_range(val.Data.begin(), val.Data.end()); } static bool isEqual(const GlobalString &lhs, const GlobalString &rhs) { return lhs.Data == rhs.Data; } }; // We use a DenseMap over what are essentially StringRefs instead of a // StringMap because we don't need to actually copy the string. static llvm::DenseMap ForeignTypes; const ForeignTypeMetadata * swift::swift_getForeignTypeMetadata(ForeignTypeMetadata *nonUnique) { // Fast path: check the invasive cache. if (nonUnique->Unique) return nonUnique->Unique; // Okay, insert a new row. // FIXME: locking! auto insertResult = ForeignTypes.insert({GlobalString(nonUnique->Name), nonUnique}); auto uniqueMetadata = insertResult.first->second; // If the insertion created a new entry, set up the metadata we were // passed as the insertion result. if (insertResult.second) { // Call the initialization callback if present. if (nonUnique->hasInitializationFunction()) nonUnique->getInitializationFunction()(nonUnique); } // Remember the unique result in the invasive cache. We don't want // to do this until after the initialization completes; otherwise, // it will be possible for code to fast-path through this function // too soon. nonUnique->Unique = uniqueMetadata; return uniqueMetadata; } /*** Other metadata routines ***********************************************/ const NominalTypeDescriptor * Metadata::getNominalTypeDescriptor() const { switch (getKind()) { case MetadataKind::Class: { const ClassMetadata *cls = static_cast(this); assert(cls->isTypeMetadata()); if (cls->isArtificialSubclass()) return nullptr; return cls->getDescription(); } case MetadataKind::Struct: case MetadataKind::Enum: return static_cast(this)->Description; case MetadataKind::ForeignClass: case MetadataKind::Opaque: case MetadataKind::Tuple: case MetadataKind::Function: case MetadataKind::Block: case MetadataKind::PolyFunction: case MetadataKind::Existential: case MetadataKind::ExistentialMetatype: case MetadataKind::Metatype: case MetadataKind::ObjCClassWrapper: case MetadataKind::HeapArray: case MetadataKind::HeapLocalVariable: return nullptr; } } /// Scan and return a single run-length encoded identifier. /// Returns a malloc-allocated string, or nullptr on failure. /// mangled is advanced past the end of the scanned token. static char *scanIdentifier(const char *&mangled) { const char *original = mangled; { if (*mangled == '0') goto fail; // length may not be zero size_t length = 0; while (isdigit(*mangled)) { size_t oldlength = length; length *= 10; length += *mangled++ - '0'; if (length <= oldlength) goto fail; // integer overflow } if (length == 0) goto fail; if (length > strlen(mangled)) goto fail; char *result = strndup(mangled, length); assert(result); mangled += length; return result; } fail: mangled = original; // rewind return nullptr; } /// \brief Demangle a mangled class name into module+class. /// Returns true if the name was successfully decoded. /// On success, *outModule and *outClass must be freed with free(). /// FIXME: this should be replaced by a real demangler bool swift::swift_demangleSimpleClass(const char *mangledName, char **outModule, char **outClass) { char *moduleName = nullptr; char *className = nullptr; { // Prefix for a mangled class const char *m = mangledName; if (0 != strncmp(m, "_TtC", 4)) goto fail; m += 4; // Module name if (strncmp(m, "Ss", 2) == 0) { moduleName = strdup(swift::STDLIB_NAME); assert(moduleName); m += 2; } else { moduleName = scanIdentifier(m); if (!moduleName) goto fail; } // Class name className = scanIdentifier(m); if (!className) goto fail; // Nothing else if (strlen(m)) goto fail; *outModule = moduleName; *outClass = className; return true; } fail: if (moduleName) free(moduleName); if (className) free(className); *outModule = nullptr; *outClass = nullptr; return false; } namespace llvm { namespace hashing { namespace detail { // An extern variable expected by LLVM's hashing templates. We don't link any // LLVM libs into the runtime, so define this here. size_t fixed_seed_override = 0; } } }