//===--- Local.cpp - Functions that perform local SIL transformations. ---===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===---------------------------------------------------------------------===// #include "swift/SILPasses/Utils/Local.h" #include "swift/SILAnalysis/Analysis.h" #include "swift/SILAnalysis/ARCAnalysis.h" #include "swift/SILAnalysis/DominanceAnalysis.h" #include "swift/SIL/DynamicCasts.h" #include "swift/SIL/SILArgument.h" #include "swift/SIL/SILBuilder.h" #include "swift/SIL/SILModule.h" #include "swift/SIL/SILUndef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include using namespace swift; llvm::cl::opt DebugValuesPropagateLiveness("debug-values-propagate-liveness", llvm::cl::init(false)); bool swift::debugValuesPropagateLiveness() { return DebugValuesPropagateLiveness; } /// \brief Perform a fast local check to see if the instruction is dead. /// /// This routine only examines the state of the instruction at hand. bool swift::isInstructionTriviallyDead(SILInstruction *I) { if (!I->use_empty() || isa(I)) return false; if (auto *BI = dyn_cast(I)) { return !BI->mayHaveSideEffects(); } // condfail instructions that obviously can't fail are dead. if (auto *CFI = dyn_cast(I)) if (auto *ILI = dyn_cast(CFI->getOperand())) if (!ILI->getValue()) return true; // mark_uninitialized is never dead. if (isa(I)) return false; if (debugValuesPropagateLiveness() && (isa(I) || isa(I))) return false; // These invalidate enums so "write" memory, but that is not an essential // operation so we can remove these if they are trivially dead. if (isa(I)) return true; if (!I->mayHaveSideEffects()) return true; return false; } namespace { using CallbackTy = std::function; } // end anonymous namespace bool swift:: recursivelyDeleteTriviallyDeadInstructions(ArrayRef IA, bool Force, CallbackTy Callback) { // Delete these instruction and others that become dead after it's deleted. llvm::SmallPtrSet DeadInsts; for (auto I : IA) { // If the instruction is not dead and force is false, do nothing. if (Force || isInstructionTriviallyDead(I)) DeadInsts.insert(I); } llvm::SmallPtrSet NextInsts; while (!DeadInsts.empty()) { for (auto I : DeadInsts) { // Call the callback before we mutate the to be deleted instruction in any // way. Callback(I); // Check if any of the operands will become dead as well. MutableArrayRef Ops = I->getAllOperands(); for (Operand &Op : Ops) { SILValue OpVal = Op.get(); if (!OpVal) continue; // Remove the reference from the instruction being deleted to this // operand. Op.drop(); // If the operand is an instruction that is only used by the instruction // being deleted, delete it. if (SILInstruction *OpValInst = dyn_cast(OpVal)) if (!DeadInsts.count(OpValInst) && isInstructionTriviallyDead(OpValInst)) NextInsts.insert(OpValInst); } // If we have a function ref inst, we need to especially drop its function // argument so that it gets a proper ref decement. auto *FRI = dyn_cast(I); if (FRI && FRI->getReferencedFunction()) FRI->dropReferencedFunction(); } for (auto I : DeadInsts) { // This will remove this instruction and all its uses. I->eraseFromParent(); } NextInsts.swap(DeadInsts); NextInsts.clear(); } return true; } /// \brief If the given instruction is dead, delete it along with its dead /// operands. /// /// \param I The instruction to be deleted. /// \param Force If Force is set, don't check if the top level instruction is /// considered dead - delete it regardless. /// \return Returns true if any instructions were deleted. bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I, bool Force, CallbackTy Callback) { ArrayRef AI = ArrayRef(I); return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback); } void swift::eraseUsesOfInstruction(SILInstruction *Inst) { for (auto UI : Inst->getUses()) { auto *User = UI->getUser(); // If the instruction itself has any uses, recursively zap them so that // nothing uses this instruction. eraseUsesOfInstruction(User); // Walk through the operand list and delete any random instructions that // will become trivially dead when this instruction is removed. for (auto &Op : User->getAllOperands()) { if (auto *OpI = dyn_cast(Op.get())) { // Don't recursively delete the pointer we're getting in. if (OpI != Inst) { Op.drop(); recursivelyDeleteTriviallyDeadInstructions(OpI); } } } User->eraseFromParent(); } } void swift::replaceWithSpecializedFunction(ApplyInst *AI, SILFunction *NewF) { SILLocation Loc = AI->getLoc(); ArrayRef Subst; SmallVector Arguments; for (auto &Op : AI->getArgumentOperands()) { Arguments.push_back(Op.get()); } SILBuilderWithScope<2> Builder(AI); FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF); ApplyInst *NAI = Builder.createApply(Loc, FRI, Arguments, AI->isTransparent()); AI->replaceAllUsesWith(NAI); recursivelyDeleteTriviallyDeadInstructions(AI, true); } bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) { // Check whether any of the substitutions are dependent. for (auto &entry : SubsMap) if (entry.second->getCanonicalType()->hasArchetype()) return true; return false; } bool swift::hasUnboundGenericTypes(ArrayRef Subs) { // Check whether any of the substitutions are dependent. for (auto &sub : Subs) if (sub.getReplacement()->getCanonicalType()->hasArchetype()) return true; return false; } /// Find a new position for an ApplyInst's FuncRef so that it dominates its /// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts. void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) { FunctionRefInst *FuncRef = cast(AI->getCallee()); SILBasicBlock *DomBB = DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent()); if (DomBB == AI->getParent() && DomBB != FuncRef->getParent()) // Prefer to place the FuncRef immediately before the call. Since we're // moving FuncRef up, this must be the only call to it in the block. FuncRef->moveBefore(AI); else // Otherwise, conservatively stick it at the beginning of the block. FuncRef->moveBefore(DomBB->begin()); } /// \brief Add an argument, \p val, to the branch-edge that is pointing into /// block \p Dest. Return a new instruction and do not erase the old /// instruction. TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest, TermInst *Branch) { SILBuilderWithScope<2> Builder(Branch); if (CondBranchInst *CBI = dyn_cast(Branch)) { SmallVector TrueArgs; SmallVector FalseArgs; for (auto A : CBI->getTrueArgs()) TrueArgs.push_back(A); for (auto A : CBI->getFalseArgs()) FalseArgs.push_back(A); if (Dest == CBI->getTrueBB()) { TrueArgs.push_back(Val); assert(TrueArgs.size() == Dest->getNumBBArg()); } else { FalseArgs.push_back(Val); assert(FalseArgs.size() == Dest->getNumBBArg()); } return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(), TrueArgs, CBI->getFalseBB(), FalseArgs); } if (BranchInst *BI = dyn_cast(Branch)) { SmallVector Args; for (auto A : BI->getArgs()) Args.push_back(A); Args.push_back(Val); assert(Args.size() == Dest->getNumBBArg()); return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args); } llvm_unreachable("unsupported terminator"); } SILLinkage swift::getSpecializedLinkage(SILLinkage L) { switch (L) { case SILLinkage::Public: case SILLinkage::PublicExternal: case SILLinkage::Shared: case SILLinkage::SharedExternal: case SILLinkage::Hidden: case SILLinkage::HiddenExternal: // Specializations of public or hidden symbols can be shared by all TUs // that specialize the definition. return SILLinkage::Shared; case SILLinkage::Private: case SILLinkage::PrivateExternal: // Specializations of private symbols should remain so. // TODO: maybe PrivateExternals should get SharedExternal (these are private // functions from the stdlib which are specialized in another module). return SILLinkage::Private; } } /// Remove all instructions in the body of \p BB in safe manner by using /// undef. void swift::clearBlockBody(SILBasicBlock *BB) { // Instructions in the dead block may be used by other dead blocks. Replace // any uses of them with undef values. while (!BB->empty()) { // Grab the last instruction in the BB. auto *Inst = &BB->getInstList().back(); // Replace any non-dead results with SILUndef values. Inst->replaceAllUsesWithUndef(); // Pop the instruction off of the back of the basic block. BB->getInstList().pop_back(); } } // Handle the mechanical aspects of removing an unreachable block. void swift::removeDeadBlock(SILBasicBlock *BB) { // Clear the body of BB. clearBlockBody(BB); // Now that the BB is empty, eliminate it. BB->eraseFromParent(); } //===----------------------------------------------------------------------===// // String Concatenation Optimizer //===----------------------------------------------------------------------===// namespace { /// This is a helper class that performs optimization of string literals /// concatenation. class StringConcatenationOptimizer { /// Apply instruction being optimized. ApplyInst *AI; /// Builder to be used for creation of new instructions. SILBuilder &Builder; /// Left string literal operand of a string concatenation. StringLiteralInst *SLILeft = nullptr; /// Right string literal operand of a string concatenation. StringLiteralInst *SLIRight = nullptr; /// Function used to construct the left string literal. FunctionRefInst *FRILeft = nullptr; /// Function used to construct the right string literal. FunctionRefInst *FRIRight = nullptr; /// Apply instructions used to construct left string literal. ApplyInst *AILeft = nullptr; /// Apply instructions used to construct right string literal. ApplyInst *AIRight = nullptr; /// String literal conversion function to be used. FunctionRefInst *FRIConvertFromBuiltin = nullptr; /// Set if a String literal conversion function to be used is transparent. bool IsTransparent = false; /// Result type of a function producing the concatenated string literal. SILValue FuncResultType; /// Internal helper methods bool extractStringConcatOperands(); void adjustEncodings(); APInt getConcatenatedLength(); bool isAscii() const; public: StringConcatenationOptimizer(ApplyInst *AI, SILBuilder &Builder) : AI(AI), Builder(Builder) {} /// Tries to optimize a given apply instruction if it is a /// concatenation of string literals. /// /// Returns a new instruction if optimization was possible. SILInstruction *optimize(); }; } // end anonymous namespace /// Checks operands of a string concatenation operation to see if /// optimization is applicable. /// /// Returns false if optimization is not possible. /// Returns true and initializes internal fields if optimization is possible. bool StringConcatenationOptimizer::extractStringConcatOperands() { auto *FRI = dyn_cast(AI->getCallee()); if (!FRI) return false; auto *FRIFun = FRI->getReferencedFunction(); if (AI->getNumOperands() != 3 || !FRIFun->hasSemanticsString("string.concat")) return false; // Left and right operands of a string concatenation operation. AILeft = dyn_cast(AI->getOperand(1)); AIRight = dyn_cast(AI->getOperand(2)); if (!AILeft || !AIRight) return false; FRILeft = dyn_cast(AILeft->getCallee()); FRIRight = dyn_cast(AIRight->getCallee()); if (!FRILeft || !FRIRight) return false; auto *FRILeftFun = FRILeft->getReferencedFunction(); auto *FRIRightFun = FRIRight->getReferencedFunction(); if (FRILeftFun->getEffectsKind() >= EffectsKind::ReadWrite || FRIRightFun->getEffectsKind() >= EffectsKind::ReadWrite) return false; if (!FRILeftFun->hasDefinedSemantics() || !FRIRightFun->hasDefinedSemantics()) return false; auto SemanticsLeft = FRILeftFun->getSemanticsString(); auto SemanticsRight = FRIRightFun->getSemanticsString(); auto AILeftOperandsNum = AILeft->getNumOperands(); auto AIRightOperandsNum = AIRight->getNumOperands(); // makeUTF16 should have following parameters: // (start: RawPointer, numberOfCodeUnits: Word) // makeUTF8 should have following parameters: // (start: RawPointer, byteSize: Word, isASCII: Int1) if (!((SemanticsLeft == "string.makeUTF16" && AILeftOperandsNum == 4) || (SemanticsLeft == "string.makeUTF8" && AILeftOperandsNum == 5) || (SemanticsRight == "string.makeUTF16" && AIRightOperandsNum == 4) || (SemanticsRight == "string.makeUTF8" && AIRightOperandsNum == 5))) return false; SLILeft = dyn_cast(AILeft->getOperand(1)); SLIRight = dyn_cast(AIRight->getOperand(1)); if (!SLILeft || !SLIRight) return false; // Only UTF-8 and UTF-16 encoded string literals are supported by this // optimization. if (SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF8 && SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF16) return false; if (SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF8 && SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF16) return false; return true; } /// Ensures that both string literals to be concatenated use the same /// UTF encoding. Converts UTF-8 into UTF-16 if required. void StringConcatenationOptimizer::adjustEncodings() { if (SLILeft->getEncoding() == SLIRight->getEncoding()) { FRIConvertFromBuiltin = FRILeft; IsTransparent = AILeft->isTransparent(); if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8) { FuncResultType = AILeft->getOperand(4); } else { FuncResultType = AILeft->getOperand(3); } return; } // If one of the string literals is UTF8 and another one is UTF16, // convert the UTF8-encoded string literal into UTF16-encoding first. if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8 && SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF16) { FuncResultType = AIRight->getOperand(3); FRIConvertFromBuiltin = FRIRight; IsTransparent = AIRight->isTransparent(); // Convert UTF8 representation into UTF16. SLILeft = Builder.createStringLiteral(AI->getLoc(), SLILeft->getValue(), StringLiteralInst::Encoding::UTF16); SLILeft->setDebugScope(AI->getDebugScope()); } if (SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF8 && SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF16) { FuncResultType = AILeft->getOperand(3); FRIConvertFromBuiltin = FRILeft; IsTransparent = AILeft->isTransparent(); // Convert UTF8 representation into UTF16. SLIRight = Builder.createStringLiteral(AI->getLoc(), SLIRight->getValue(), StringLiteralInst::Encoding::UTF16); SLIRight->setDebugScope(AI->getDebugScope()); } // It should be impossible to have two operands with different // encodings at this point. assert(SLILeft->getEncoding() == SLIRight->getEncoding() && "Both operands of string concatenation should have the same encoding"); } /// Computes the length of a concatenated string literal. APInt StringConcatenationOptimizer::getConcatenatedLength() { // Real length of string literals computed based on its contents. // Length is in code units. auto SLILenLeft = SLILeft->getCodeUnitCount(); (void) SLILenLeft; auto SLILenRight = SLIRight->getCodeUnitCount(); (void) SLILenRight; // Length of string literals as reported by string.make functions. auto *LenLeft = dyn_cast(AILeft->getOperand(2)); auto *LenRight = dyn_cast(AIRight->getOperand(2)); // Real and reported length should be the same. assert(SLILenLeft == LenLeft->getValue() && "Size of string literal in @semantics(string.make) is wrong"); assert(SLILenRight == LenRight->getValue() && "Size of string literal in @semantics(string.make) is wrong"); // Compute length of the concatenated literal. return LenLeft->getValue() + LenRight->getValue(); } /// Computes the isAscii flag of a concatenated UTF8-encoded string literal. bool StringConcatenationOptimizer::isAscii() const{ // Add the isASCII argument in case of UTF8. // IsASCII is true only if IsASCII of both literals is true. auto *AsciiLeft = dyn_cast(AILeft->getOperand(3)); auto *AsciiRight = dyn_cast(AIRight->getOperand(3)); auto IsAsciiLeft = AsciiLeft->getValue() == 1; auto IsAsciiRight = AsciiRight->getValue() == 1; return IsAsciiLeft && IsAsciiRight; } SILInstruction *StringConcatenationOptimizer::optimize() { // Bail out if string literals concatenation optimization is // not possible. if (!extractStringConcatOperands()) return nullptr; // Perform string literal encodings adjustments if needed. adjustEncodings(); // Arguments of the new StringLiteralInst to be created. SmallVector Arguments; // Encoding to be used for the concatenated string literal. auto Encoding = SLILeft->getEncoding(); // Create a concatenated string literal. auto LV = SLILeft->getValue(); auto RV = SLIRight->getValue(); auto *NewSLI = Builder.createStringLiteral(AI->getLoc(), LV + Twine(RV), Encoding); NewSLI->setDebugScope(AI->getDebugScope()); Arguments.push_back(NewSLI); // Length of the concatenated literal according to its encoding. auto *Len = Builder.createIntegerLiteral( AI->getLoc(), AILeft->getOperand(2).getType(), getConcatenatedLength()); Len->setDebugScope(AI->getDebugScope()); Arguments.push_back(Len); // isAscii flag for UTF8-encoded string literals. if (Encoding == StringLiteralInst::Encoding::UTF8) { bool IsAscii = isAscii(); auto ILType = AILeft->getOperand(3).getType(); auto *Ascii = Builder.createIntegerLiteral(AI->getLoc(), ILType, intmax_t(IsAscii)); Ascii->setDebugScope(AI->getDebugScope()); Arguments.push_back(Ascii); } // Type. Arguments.push_back(FuncResultType); auto FnTy = FRIConvertFromBuiltin->getType(); auto STResultType = FnTy.castTo()->getResult().getSILType(); return ApplyInst::create(AI->getLoc(), FRIConvertFromBuiltin, FnTy, STResultType, ArrayRef(), Arguments, IsTransparent, *FRIConvertFromBuiltin->getReferencedFunction()); } /// Top level entry point SILInstruction *swift::tryToConcatenateStrings(ApplyInst *AI, SILBuilder &B) { return StringConcatenationOptimizer(AI, B).optimize(); } //===----------------------------------------------------------------------===// // Closure Deletion //===----------------------------------------------------------------------===// static bool isARCOperationRemovableIfObjectIsDead(const SILInstruction *I) { switch (I->getKind()) { case ValueKind::StrongRetainInst: case ValueKind::StrongReleaseInst: case ValueKind::RetainValueInst: case ValueKind::ReleaseValueInst: return true; default: return false; } } /// TODO: Generalize this to general objects. bool swift::tryDeleteDeadClosure(SILInstruction *Closure) { // We currently only handle locally identified values that do not escape. We // also assume that the partial apply does not capture any addresses. if (!isa(Closure) && !isa(Closure)) return false; // We only accept a user if it is an ARC object that can be removed if the // object is dead. This should be expanded in the future. This also ensures // that we are locally identified and non-escaping since we only allow for // specific ARC users. ReleaseTracker Tracker([](const SILInstruction *I) -> bool { return isARCOperationRemovableIfObjectIsDead(I); }); // Find the ARC Users and the final retain, release. if (!getFinalReleasesForValue(SILValue(Closure), Tracker)) return false; // If we have a partial_apply, release each captured argument at each one of // the final release locations of the partial apply. SILBuilder Builder(Closure); SILModule &M = Closure->getModule(); if (auto *PAI = dyn_cast(Closure)) { for (auto *FinalRelease : Tracker.getFinalReleases()) { Builder.setInsertionPoint(FinalRelease); for (SILValue Arg : PAI->getArguments()) { if (Arg.getType().isTrivial(M)) continue; Builder.createReleaseValue(FinalRelease->getLoc(), Arg); } } } // Then delete all user instructions. for (auto *User : Tracker.getTrackedUsers()) { assert(User->getNumTypes() == 0 && "We expect only ARC operations without " "results. This is true b/c of " "isARCOperationRemovableIfObjectIsDead"); User->eraseFromParent(); } // Finally delete the closure. Closure->eraseFromParent(); return true; } // Is any successor of BB in the LiveIn set? static bool successorHasLiveIn(SILBasicBlock *BB, const llvm::SmallPtrSetImpl &LiveIn) { for (auto &Succ : BB->getSuccessors()) if (LiveIn.count(Succ)) return true; return false; } // Walk backwards in BB looking for last use of value V and adding the // instruction using the value to LastUsers. static void addLastUser(SILValue V, SILBasicBlock *BB, llvm::SmallPtrSetImpl &LastUsers) { for (auto I = BB->rbegin(); I != BB->rend(); ++I) { assert(V.getDef() != &*I && "Found def before finding use!"); for (auto &O : I->getAllOperands()) { if (O.get() != V) continue; LastUsers.insert(&*I); return; } } llvm_unreachable("Expected to find use of value in block!"); } // Propagate liveness backwards from an initial set of blocks in our // LiveIn set. static void propagateLiveness(llvm::SmallPtrSetImpl &LiveIn, SILBasicBlock *DefBB) { // First populate a worklist of predecessors. llvm::SmallVector Worklist; for (auto *BB : LiveIn) for (auto Pred : BB->getPreds()) Worklist.push_back(Pred); // Now propagate liveness backwards until we hit the block that // defines the value. while (!Worklist.empty()) { auto *BB = Worklist.pop_back_val(); // If it's already in the set, then we've already queued and/or // processed the predecessors. if (BB == DefBB || !LiveIn.insert(BB).second) continue; for (auto Pred : BB->getPreds()) Worklist.push_back(Pred); } } void LifetimeTracker::computeLifetime() { llvm::SmallPtrSet LiveIn; llvm::SmallPtrSet UseBlocks; auto *DefInst = cast(TheValue.getDef()); auto *DefBB = DefInst->getParent(); if (TheValue->hasOneUse()) { Endpoints.insert(TheValue->use_begin().getUser()); return; } for (auto UI : TheValue.getUses()) { auto *BB = UI->getUser()->getParent(); UseBlocks.insert(BB); if (BB != DefBB) LiveIn.insert(BB); } propagateLiveness(LiveIn, DefBB); for (auto *BB : UseBlocks) if (!successorHasLiveIn(BB, LiveIn)) addLastUser(TheValue, BB, Endpoints); LifetimeComputed = true; } //===----------------------------------------------------------------------===// // Casts Optimization and Simplification //===----------------------------------------------------------------------===// SILInstruction * CastOptimizer:: simplifyCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) { if (auto *I = optimizeCheckedCastAddrBranchInst(Inst)) Inst = dyn_cast(I); auto Loc = Inst->getLoc(); auto Src = Inst->getSrc(); auto Dest = Inst->getDest(); auto SourceType = Inst->getSourceType(); auto TargetType = Inst->getTargetType(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); auto &Mod = Inst->getModule(); SILBuilderWithScope<1> Builder(Inst); // Try to determine the outcome of the cast from a known type // to a protocol type at compile-time. bool isSourceTypeExact = isa(Inst->getSrc()); // Check if we can statically predict the outcome of the cast. auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), Src.getType().getSwiftRValueType(), Dest.getType().getSwiftRValueType(), isSourceTypeExact, Mod.isWholeModule()); if (Feasibility == DynamicCastFeasibility::MaySucceed) return nullptr; if (Feasibility == DynamicCastFeasibility::WillFail) { if (shouldDestroyOnFailure(Inst->getConsumptionKind())) { auto &srcTL = Builder.getModule().getTypeLowering(Src.getType()); srcTL.emitDestroyAddress(Builder, Loc, Src); } auto NewI = Builder.createBranch(Loc, FailureBB); Inst->eraseFromParent(); WillFailAction(); return NewI; } // Cast will succeed // Replace by unconditional_addr_cast, followed by a branch. // The unconditional_addr_cast can be skipped, if the result of a cast // is not used afterwards. bool ResultNotUsed = isa(Dest.getDef()); for (auto Use : Dest.getUses()) { auto *User = Use->getUser(); if (isa(User) || User == Inst) continue; ResultNotUsed = false; break; } if (!ResultNotUsed) { // emitSuccessfulIndirectUnconditionalCast can handle only // address types currently. if (!Src.getType().isAddress() || !Dest.getType().isAddress()) return nullptr; // emitSuccessfulIndirectUnconditionalCast cannot handle casts // between metatypes yet. if (isa(Src.getType().getSwiftRValueType()) || isa(Dest.getType().getSwiftRValueType())) return nullptr; emitSuccessfulIndirectUnconditionalCast(Builder, Mod.getSwiftModule(), Loc, Inst->getConsumptionKind(), Src, SourceType, Dest, TargetType); } auto *NewI = Builder.createBranch(Loc, SuccessBB); Inst->eraseFromParent(); WillSucceedAction(); return NewI; } SILInstruction * CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) { if (Inst->isExact()) { // Check if the exact dynamic type of the operand can be determined. if (auto *ARI = dyn_cast(Inst->getOperand().stripUpCasts())) { SILBuilderWithScope<1> Builder(Inst); auto Loc = Inst->getLoc(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); if (ARI->getType() == Inst->getCastType()) { // This exact cast will succeed. SmallVector Args; Args.push_back(ARI); auto *NewI = Builder.createBranch(Loc, SuccessBB, Args); Inst->eraseFromParent(); WillSucceedAction(); return NewI; } else { // This exact cast will fail. auto *NewI = Builder.createBranch(Loc, FailureBB); Inst->eraseFromParent(); WillFailAction(); return NewI; } } return nullptr; } if (auto *I = optimizeCheckedCastBranchInst(Inst)) Inst = dyn_cast(I); auto LoweredSourceType = Inst->getOperand().getType(); auto LoweredTargetType = Inst->getCastType(); auto Loc = Inst->getLoc(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); auto Op = Inst->getOperand(); auto &Mod = Inst->getModule(); bool isSourceTypeExact = isa(Op); // Check if we can statically predict the outcome of the cast. auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), LoweredSourceType.getSwiftRValueType(), LoweredTargetType.getSwiftRValueType(), isSourceTypeExact); if (Feasibility == DynamicCastFeasibility::MaySucceed) return nullptr; SILBuilderWithScope<1> Builder(Inst); if (Feasibility == DynamicCastFeasibility::WillFail) { auto *NewI = Builder.createBranch(Loc, FailureBB); Inst->eraseFromParent(); WillFailAction(); return NewI; } // Casting will succeed. // Replace by unconditional_cast, followed by a branch. // The unconditional_cast can be skipped, if the result of a cast // is not used afterwards. SmallVector Args; bool ResultNotUsed = SuccessBB->getBBArg(0)->use_empty(); SILValue CastedValue; if (Op.getType() != LoweredTargetType) { if (!ResultNotUsed) { CastedValue = emitSuccessfulScalarUnconditionalCast( Builder, Mod.getSwiftModule(), Loc, Op, LoweredTargetType, LoweredSourceType.getSwiftRValueType(), LoweredTargetType.getSwiftRValueType()); } else { CastedValue = SILUndef::get(LoweredTargetType, Mod); } } else { // No need to cast. CastedValue = Op; } Args.push_back(CastedValue); auto *NewI = Builder.createBranch(Loc, SuccessBB, Args); Inst->eraseFromParent(); WillSucceedAction(); return NewI; } SILInstruction * CastOptimizer:: optimizeCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) { auto Loc = Inst->getLoc(); auto Src = Inst->getSrc(); auto Dest = Inst->getDest(); auto TargetType = Inst->getTargetType(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); // %1 = metatype $A.Type // [%2 = init_existential_metatype %1 ...] // %3 = alloc_stack // store %1 to %3 or store %2 to %3 // checked_cast_addr_br %3 to ... // -> // %1 = metatype $A.Type // checked_cast_addr_br %1 to ... if (auto *ASI = dyn_cast(Src.getDef())) { // Check if the value of this alloc_stack is set only once by a store // instruction, used only by CCABI and then deallocated. bool isLegal = true; StoreInst *Store = nullptr; for (auto Use : ASI->getUses()) { auto *User = Use->getUser(); if (isa(User) || User == Inst) continue; if (auto *SI = dyn_cast(User)) { if (!Store) { Store = SI; continue; } } isLegal = false; break; } if (isLegal && Store) { // Check what was the value stored in the allocated stack slot. auto Src = Store->getSrc(); MetatypeInst *MI = nullptr; if (auto *IEMI = dyn_cast(Src)) { MI = dyn_cast(IEMI->getOperand()); } if (!MI) MI = dyn_cast(Src); if (MI) { SILBuilderWithScope<1> B(Inst); auto NewI = B.createCheckedCastAddrBranch(Loc, Inst->getConsumptionKind(), MI, MI->getType().getSwiftRValueType(), Dest, TargetType, SuccessBB, FailureBB); Inst->eraseFromParent(); return NewI; } } } return nullptr; } SILInstruction * CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) { if (Inst->isExact()) return nullptr; auto LoweredTargetType = Inst->getCastType(); auto Loc = Inst->getLoc(); auto *SuccessBB = Inst->getSuccessBB(); auto *FailureBB = Inst->getFailureBB(); auto Op = Inst->getOperand(); // Try to simplify checked_cond_br instructions using existential // metatypes by propagating a concrete type whenever it can be // determined statically. // %0 = metatype $A.Type // %1 = init_existential_metatype ..., %0: $A // checked_cond_br %1, .... // -> // %1 = metatype $A.Type // checked_cond_br %1, .... if (auto *IEMI = dyn_cast(Op)) { if (auto *MI = dyn_cast(IEMI->getOperand())) { SILBuilderWithScope<1> B(Inst); auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI, LoweredTargetType, SuccessBB, FailureBB); Inst->eraseFromParent(); return NewI; } } if (auto *EMI = dyn_cast(Op)) { // Operand of the existential_metatype instruction. auto Op = EMI->getOperand(); auto EmiTy = EMI->getType(); // %0 = alloc_stack .. // %1 = init_existential_addr %0: $A // %2 = existential_metatype %0, ... // checked_cond_br %2, .... // -> // %1 = metatype $A.Type // checked_cond_br %1, .... if (auto *ASI = dyn_cast(Op)) { // Should be in the same BB. if (ASI->getParent() != EMI->getParent()) return nullptr; // Check if this alloc_stac is is only initialized once by means of // single init_existential_addr. bool isLegal = true; // init_existental instruction used to initialize this alloc_stack. InitExistentialAddrInst *FoundIEI = nullptr; for (auto Use: ASI->getUses()) { auto *User = Use->getUser(); if (isa(User) || isa(User) || isa(User)) continue; if (auto *IEI = dyn_cast(User)) { if (!FoundIEI) { FoundIEI = IEI; continue; } } isLegal = false; break; } if (isLegal && FoundIEI) { // Should be in the same BB. if (FoundIEI->getParent() != EMI->getParent()) return nullptr; // Get the type used to initialize the existential. auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType(); if (LoweredConcreteTy.isAnyExistentialType()) return nullptr; // Get the metatype of this type. auto EMT = dyn_cast(EmiTy.getSwiftRValueType()); auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getSwiftRValueType(), EMT->getRepresentation()); auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy); auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy); SILBuilderWithScope<1> B(Inst); auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy); auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI, LoweredTargetType, SuccessBB, FailureBB); Inst->eraseFromParent(); return NewI; } } // %0 = alloc_ref $A // %1 = init_existential_ref %0: $A, $... // %2 = existential_metatype ..., %1 : ... // checked_cond_br %2, .... // -> // %1 = metatype $A.Type // checked_cond_br %1, .... if (auto *FoundIERI = dyn_cast(Op)) { auto *ASRI = dyn_cast(FoundIERI->getOperand()); if (!ASRI) return nullptr; // Should be in the same BB. if (ASRI->getParent() != EMI->getParent()) return nullptr; // Check if this alloc_stac is is only initialized once by means of // a single initt_existential_ref. bool isLegal = true; for (auto Use: ASRI->getUses()) { auto *User = Use->getUser(); if (isa(User) || isa(User)) continue; if (auto *IERI = dyn_cast(User)) { if (IERI == FoundIERI) { continue; } } isLegal = false; break; } if (isLegal && FoundIERI) { // Should be in the same BB. if (FoundIERI->getParent() != EMI->getParent()) return nullptr; // Get the type used to initialize the existential. auto ConcreteTy = FoundIERI->getFormalConcreteType(); if (ConcreteTy.isAnyExistentialType()) return nullptr; // Get the SIL metatype of this type. auto EMT = dyn_cast(EMI->getType().getSwiftRValueType()); auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation()); auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy); auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy); SILBuilderWithScope<1> B(Inst); auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy); auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI, LoweredTargetType, SuccessBB, FailureBB); Inst->eraseFromParent(); return NewI; } } } return nullptr; } SILInstruction * CastOptimizer:: optimizeUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst) { auto LoweredSourceType = Inst->getOperand().getType(); auto LoweredTargetType = Inst->getType(); auto Loc = Inst->getLoc(); auto Op = Inst->getOperand(); auto &Mod = Inst->getModule(); bool isSourceTypeExact = isa(Op); // Check if we can statically predict the outcome of the cast. auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), LoweredSourceType.getSwiftRValueType(), LoweredTargetType.getSwiftRValueType(), isSourceTypeExact); if (Feasibility == DynamicCastFeasibility::WillFail) { // Remove the cast and insert a trap, followed by an // unreachable instruction. SILBuilderWithScope<1> Builder(Inst); auto *Trap = Builder.createBuiltinTrap(Loc); Inst->replaceAllUsesWithUndef(); EraseInstAction(Inst); Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap))); Builder.createUnreachable(ArtificialUnreachableLocation()); return Trap; } if (Feasibility == DynamicCastFeasibility::WillSucceed) { SILBuilderWithScope<1> Builder(Inst); auto Result = emitSuccessfulScalarUnconditionalCast(Builder, Mod.getSwiftModule(), Loc, Op, LoweredTargetType, LoweredSourceType.getSwiftRValueType(), LoweredTargetType.getSwiftRValueType()); ReplaceInstUsesAction(Inst, Result.getDef()); EraseInstAction(Inst); return dyn_cast(Result.getDef()); } return nullptr; } SILInstruction * CastOptimizer:: optimizeUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *Inst) { auto Loc = Inst->getLoc(); auto Src = Inst->getSrc(); auto Dest = Inst->getDest(); auto SourceType = Inst->getSourceType(); auto TargetType = Inst->getTargetType(); auto &Mod = Inst->getModule(); bool isSourceTypeExact = isa(Src); // Check if we can statically predict the outcome of the cast. auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), SourceType, TargetType, isSourceTypeExact); if (Feasibility == DynamicCastFeasibility::MaySucceed) return nullptr; if (Feasibility == DynamicCastFeasibility::WillFail) { // Remove the cast and insert a trap, followed by an // unreachable instruction. SILBuilderWithScope<1> Builder(Inst); SILInstruction *NewI = Builder.createBuiltinTrap(Loc); // mem2reg's invariants get unhappy if we don't try to // initialize a loadable result. auto DestType = Dest.getType(); auto &resultTL = Builder.getModule().Types.getTypeLowering(DestType); if (!resultTL.isAddressOnly()) { auto undef = SILValue(SILUndef::get(DestType.getObjectType(), Builder.getModule())); NewI = Builder.createStore(Loc, undef, Dest); } Inst->replaceAllUsesWithUndef(); EraseInstAction(Inst); Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(NewI))); Builder.createUnreachable(ArtificialUnreachableLocation()); } if (Feasibility == DynamicCastFeasibility::WillSucceed) { if (!Src.getType().isExistentialType() && Dest.getType().isExistentialType()) return nullptr; // Bridging casts cannot be further simplified. auto TargetIsBridgeable = TargetType->isBridgeableObjectType(); auto SourceIsBridgeable = SourceType->isBridgeableObjectType(); if (TargetIsBridgeable != SourceIsBridgeable) return nullptr; SILBuilderWithScope<1> Builder(Inst); emitSuccessfulIndirectUnconditionalCast(Builder, Mod.getSwiftModule(), Loc, Inst->getConsumptionKind(), Src, SourceType, Dest, TargetType); Inst->replaceAllUsesWithUndef(); EraseInstAction(Inst); } return nullptr; }