//===--- ParseDecl.cpp - Swift Language Parser for Declarations -----------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See http://swift.org/LICENSE.txt for license information // See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // Declaration Parsing and AST Building // //===----------------------------------------------------------------------===// #include "swift/Parse/Parser.h" #include "swift/Parse/CodeCompletionCallbacks.h" #include "swift/Parse/DelayedParsingCallbacks.h" #include "swift/Parse/Lexer.h" #include "swift/Subsystems.h" #include "swift/AST/ASTWalker.h" #include "swift/AST/Attr.h" #include "swift/AST/DiagnosticsParse.h" #include "swift/Basic/Fallthrough.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace swift; /// \brief Main entrypoint for the parser. /// /// \verbatim /// top-level: /// stmt-brace-item* /// decl-sil [[only in SIL mode] /// decl-sil-stage [[only in SIL mode] /// \endverbatim bool Parser::parseTopLevel() { SF.ASTStage = SourceFile::Parsing; // Prime the lexer. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); CurDeclContext = &SF; // Parse the body of the file. SmallVector Items; skipExtraTopLevelRBraces(); // If we are in SIL mode, and if the first token is the start of a sil // declaration, parse that one SIL function and return to the top level. This // allows type declarations and other things to be parsed, name bound, and // type checked in batches, similar to immediate mode. This also enforces // that SIL bodies can only be at the top level. if (Tok.is(tok::kw_sil)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseDeclSIL(); } else if (Tok.is(tok::kw_sil_stage)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseDeclSILStage(); } else if (Tok.is(tok::kw_sil_vtable)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseSILVTable(); } else if (Tok.is(tok::kw_sil_global)) { assert(isInSILMode() && "'sil' should only be a keyword in SIL mode"); parseSILGlobal(); } else { parseBraceItems(Items, allowTopLevelCode() ? BraceItemListKind::TopLevelCode : BraceItemListKind::TopLevelLibrary); } // If this is a Main source file, determine if we found code that needs to be // executed (this is used by the repl to know whether to compile and run the // newly parsed stuff). bool FoundTopLevelCodeToExecute = false; if (allowTopLevelCode()) { for (auto V : Items) if (isa(V.get())) FoundTopLevelCodeToExecute = true; } // Add newly parsed decls to the module. for (auto Item : Items) if (Decl *D = Item.dyn_cast()) SF.Decls.push_back(D); // Note that the source file is fully parsed and verify it. SF.ASTStage = SourceFile::Parsed; verify(SF); State->markParserPosition(Tok.getLoc(), PreviousLoc); return FoundTopLevelCodeToExecute; } bool Parser::skipExtraTopLevelRBraces() { if (!Tok.is(tok::r_brace)) return false; while (Tok.is(tok::r_brace)) { diagnose(Tok, diag::extra_rbrace) .fixItRemove(Tok.getLoc()); consumeToken(); } return true; } /// getTypeAttrFromString - If the specified string is a valid type attribute, /// return the kind. Otherwise, return TAK_Count as a sentinel. static TypeAttrKind getTypeAttrFromString(StringRef Str) { return llvm::StringSwitch(Str) #define TYPE_ATTR(X) .Case(#X, TAK_##X) #include "swift/AST/Attr.def" .Default(TAK_Count); } /// \verbatim /// attribute: /// 'asmname' '=' identifier /// 'infix' '=' numeric_constant /// 'unary' /// 'stdlib' /// 'weak' /// 'inout' /// 'unowned' /// 'noreturn' /// 'optional' /// '!'? 'mutating' /// 'requires_stored_property_inits' /// \endverbatim bool Parser::parseDeclAttribute(DeclAttributes &Attributes) { SourceLoc InversionLoc = Tok.getLoc(); bool isInverted = consumeIf(tok::exclaim_postfix); // If this not an identifier, the attribute is malformed. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::kw_in) && Tok.isNot(tok::kw_weak) && Tok.isNot(tok::kw_unowned)) { diagnose(Tok, diag::expected_attribute_name); return true; } // Determine which attribute it is, and diagnose it if unknown. AttrKind attr = llvm::StringSwitch(Tok.getText()) #define ATTR(X) .Case(#X, AK_##X) #include "swift/AST/Attr.def" .Default(AK_Count); if (attr == AK_Count) { if (getTypeAttrFromString(Tok.getText()) != TAK_Count) diagnose(Tok, diag::type_attribute_applied_to_decl); else diagnose(Tok, diag::unknown_attribute, Tok.getText()); // Recover by eating @foo when foo is not known. consumeToken(); // Recovery by eating "@foo=bar" if present. if (consumeIf(tok::equal)) { if (Tok.is(tok::identifier) || Tok.is(tok::integer_literal) || Tok.is(tok::floating_literal)) consumeToken(); } return true; } // Ok, it is a valid attribute, eat it, and then process it. SourceLoc Loc = consumeToken(); // Diagnose duplicated attributes. if (Attributes.has(attr)) { diagnose(Loc, diag::duplicate_attribute); return false; } Attributes.setAttr(attr, Loc); // If this is an inverted attribute like "@!mutating", verify that inversion // is ok. if (isInverted) { if (attr == AK_mutating) { Attributes.MutatingInverted = true; } else { diagnose(InversionLoc, diag::invalid_attribute_inversion); isInverted = false; } } // Handle any attribute-specific processing logic. switch (attr) { default: break; // Ownership attributes. case AK_weak: case AK_unowned: // Test for duplicate entries by temporarily removing this one. Attributes.clearAttribute(attr); if (Attributes.hasOwnership()) { diagnose(Loc, diag::duplicate_attribute); break; } Attributes.setAttr(attr, Loc); break; // Resilience attributes. case AK_resilient: case AK_fragile: case AK_born_fragile: // Test for duplicate entries by temporarily removing this one. Attributes.clearAttribute(attr); if (Attributes.getResilienceKind() != Resilience::Default) { diagnose(Loc, diag::duplicate_attribute); break; } Attributes.setAttr(attr, Loc); break; case AK_prefix: if (Attributes.isPostfix()) { diagnose(Loc, diag::cannot_combine_attribute, "postfix"); Attributes.clearAttribute(attr); } break; case AK_postfix: if (Attributes.isPrefix()) { diagnose(Loc, diag::cannot_combine_attribute, "prefix"); Attributes.clearAttribute(attr); } break; case AK_asmname: { if (!consumeIf(tok::equal)) { diagnose(Loc, diag::asmname_expected_equals); Attributes.clearAttribute(attr); return false; } if (Tok.isNot(tok::string_literal)) { diagnose(Loc, diag::asmname_expected_string_literal); Attributes.clearAttribute(attr); return false; } SmallVector Segments; L->getStringLiteralSegments(Tok, Segments); if (Segments.size() != 1 || Segments.front().Kind == Lexer::StringSegment::Expr) { diagnose(Loc, diag::asmname_interpolated_string); Attributes.clearAttribute(attr); } else { Attributes.AsmName = StringRef( SourceMgr->getMemoryBuffer(BufferID)->getBufferStart() + SourceMgr.getLocOffsetInBuffer(Segments.front().Loc, BufferID), Segments.front().Length); } consumeToken(tok::string_literal); break; } } return false; } /// \verbatim /// attribute-type: /// 'noreturn' /// \endverbatim bool Parser::parseTypeAttribute(TypeAttributes &Attributes) { // If this not an identifier, the attribute is malformed. if (Tok.isNot(tok::identifier) && !Tok.is(tok::kw_in)) { diagnose(Tok, diag::expected_attribute_name); return true; } // Determine which attribute it is, and diagnose it if unknown. TypeAttrKind attr = getTypeAttrFromString(Tok.getText()); if (attr == TAK_Count) { StringRef Text = Tok.getText(); bool isDeclAttribute = false #define ATTR(X) || Text == #X #include "swift/AST/Attr.def" ; if (isDeclAttribute) diagnose(Tok, diag::decl_attribute_applied_to_type); else diagnose(Tok, diag::unknown_attribute, Tok.getText()); // Recover by eating @foo when foo is not known. consumeToken(); // Recovery by eating "@foo=bar" if present. if (consumeIf(tok::equal)) { if (Tok.is(tok::identifier) || Tok.is(tok::integer_literal) || Tok.is(tok::floating_literal)) consumeToken(); } return true; } // Ok, it is a valid attribute, eat it, and then process it. SourceLoc Loc = consumeToken(); // Diagnose duplicated attributes. if (Attributes.has(attr)) diagnose(Loc, diag::duplicate_attribute); else Attributes.setAttr(attr, Loc); // Handle any attribute-specific processing logic. switch (attr) { default: break; case TAK_local_storage: case TAK_sil_self: if (!isInSILMode()) { // SIL's 'local_storage' type attribute. diagnose(Loc, diag::only_allowed_in_sil, "local_storage"); Attributes.clearAttribute(attr); } break; // Ownership attributes. case TAK_sil_weak: case TAK_sil_unowned: Attributes.clearAttribute(attr); if (!isInSILMode()) { diagnose(Loc, diag::only_allowed_in_sil, "local_storage"); return false; } if (Attributes.hasOwnership()) { diagnose(Loc, diag::duplicate_attribute); break; } Attributes.setAttr(attr, Loc); break; // 'inout' attribute. case TAK_inout: // Verify that we're not combining this attribute incorrectly. Cannot be // both inout and auto_closure. if (Attributes.has(TAK_auto_closure)) { diagnose(Loc, diag::cannot_combine_attribute, "auto_closure"); Attributes.clearAttribute(TAK_inout); } break; case TAK_auto_closure: if (Attributes.has(TAK_inout)) { // Verify that we're not combining this attribute incorrectly. Cannot be // both inout and auto_closure. diagnose(Loc, diag::cannot_combine_attribute, "inout"); Attributes.clearAttribute(TAK_auto_closure); } break; // 'cc' attribute. case TAK_cc: { // Parse the cc name in parens. SourceLoc beginLoc = Tok.getLoc(), nameLoc, endLoc; StringRef name; if (consumeIfNotAtStartOfLine(tok::l_paren)) { if (Tok.is(tok::identifier)) { nameLoc = Tok.getLoc(); name = Tok.getText(); consumeToken(); } else { diagnose(Tok, diag::cc_attribute_expected_name); } parseMatchingToken(tok::r_paren, endLoc, diag::cc_attribute_expected_rparen, beginLoc); } else { diagnose(Tok, diag::cc_attribute_expected_lparen); } if (!name.empty()) { Attributes.cc = llvm::StringSwitch>(name) .Case("freestanding", AbstractCC::Freestanding) .Case("method", AbstractCC::Method) .Case("cdecl", AbstractCC::C) .Case("objc_method", AbstractCC::ObjCMethod) .Case("witness_method", AbstractCC::WitnessMethod) .Default(Nothing); if (!Attributes.cc) { diagnose(nameLoc, diag::cc_attribute_unknown_cc_name, name); Attributes.clearAttribute(attr); } } return false; } } return false; } /// \brief This is the internal implementation of \c parseDeclAttributeList, /// which we expect to be inlined to handle the common case of an absent /// attribute list. /// /// \verbatim /// attribute-list: /// /*empty*/ /// attribute-list-clause attribute-list /// attribute-list-clause: /// '@' attribute /// '@' attribute ','? attribute-list-clause /// \endverbatim bool Parser::parseDeclAttributeListPresent(DeclAttributes &Attributes) { Attributes.AtLoc = Tok.getLoc(); do { if (parseToken(tok::at_sign, diag::expected_in_attribute_list) || parseDeclAttribute(Attributes)) return true; // Attribute lists allow, but don't require, separating commas. } while (Tok.is(tok::at_sign) || consumeIf(tok::comma)); return false; } /// \brief This is the internal implementation of \c parseTypeAttributeList, /// which we expect to be inlined to handle the common case of an absent /// attribute list. /// /// \verbatim /// attribute-list: /// /*empty*/ /// attribute-list-clause attribute-list /// attribute-list-clause: /// '@' attribute /// '@' attribute ','? attribute-list-clause /// \endverbatim bool Parser::parseTypeAttributeListPresent(TypeAttributes &Attributes) { Attributes.AtLoc = Tok.getLoc(); do { if (parseToken(tok::at_sign, diag::expected_in_attribute_list) || parseTypeAttribute(Attributes)) return true; // Attribute lists don't require separating commas. } while (Tok.is(tok::at_sign) || consumeIf(tok::comma)); return false; } bool Parser::isStartOfOperatorDecl(const Token &Tok, const Token &Tok2) { return Tok.isContextualKeyword("operator") && (Tok2.isContextualKeyword("prefix") || Tok2.isContextualKeyword("postfix") || Tok2.isContextualKeyword("infix")); } bool Parser::isStartOfMetaDecl(const Token &Tok, const Token &Tok2) { return Tok.isContextualKeyword("type") && (Tok2.is(tok::kw_func) || Tok2.is(tok::kw_let) || Tok2.is(tok::kw_var) || Tok2.is(tok::kw_init) || Tok2.is(tok::kw_destructor) || Tok2.is(tok::kw_subscript) || Tok2.is(tok::kw_struct) || Tok2.is(tok::kw_enum) || Tok2.is(tok::kw_class) || Tok2.is(tok::kw_protocol) || Tok2.is(tok::kw_typealias)); } void Parser::consumeDecl(ParserPosition BeginParserPosition, unsigned Flags, bool IsTopLevel) { backtrackToPosition(BeginParserPosition); SourceLoc BeginLoc = Tok.getLoc(); // Consume tokens up to code completion token. while (Tok.isNot(tok::code_complete)) { consumeToken(); } // Consume the code completion token, if there is one. consumeIf(tok::code_complete); SourceLoc EndLoc = Tok.getLoc(); State->delayDecl(PersistentParserState::DelayedDeclKind::Decl, Flags, CurDeclContext, { BeginLoc, EndLoc }, BeginParserPosition.PreviousLoc); if (IsTopLevel) { // Skip the rest of the file to prevent the parser from constructing the // AST for it. Forward references are not allowed at the top level. skipUntil(tok::eof); } } void Parser::setLocalDiscriminator(ValueDecl *D) { // If we're not in a local context, this is unnecessary. if (!CurLocalContext) return; Identifier name = D->getName(); unsigned discriminator = CurLocalContext->claimNextNamedDiscriminator(name); D->setLocalDiscriminator(discriminator); } /// \brief Parse a single syntactic declaration and return a list of decl /// ASTs. This can return multiple results for var decls that bind to multiple /// values, structs that define a struct decl and a constructor, etc. /// /// \verbatim /// decl: /// decl-typealias /// decl-extension /// decl-let /// decl-var /// decl-func /// decl-enum /// decl-struct /// decl-import /// decl-operator /// \endverbatim ParserStatus Parser::parseDecl(SmallVectorImpl &Entries, unsigned Flags) { ParserPosition BeginParserPosition; if (isCodeCompletionFirstPass()) BeginParserPosition = getParserPosition(); DeclAttributes Attributes; parseDeclAttributeList(Attributes); // If we see the contextual 'type' keyword followed by a declaration // keyword, parse it now. SourceLoc StaticLoc; bool UnhandledStatic = false; if (isStartOfMetaDecl(Tok, peekToken())) { StaticLoc = consumeToken(); UnhandledStatic = true; } else if (Tok.is(tok::kw_static)) { // If we see 'static', provide a Fix-It to 'type'. StaticLoc = consumeToken(); UnhandledStatic = true; diagnose(StaticLoc, diag::static_is_type) .fixItReplace(SourceRange(StaticLoc), "type"); } ParserResult DeclResult; ParserStatus Status; switch (Tok.getKind()) { case tok::kw_import: DeclResult = parseDeclImport(Flags, Attributes); Status = DeclResult; break; case tok::kw_extension: DeclResult = parseDeclExtension(Flags, Attributes); Status = DeclResult; break; case tok::kw_let: case tok::kw_var: // TODO: Static properties are only implemented for non-generic value types. if (StaticLoc.isValid()) { // Selector for unimplemented_type_var message. enum : unsigned { Misc, GenericTypes, Classes, Protocols, }; auto unimplementedStatic = [&](unsigned diagSel) { diagnose(Tok, diag::unimplemented_type_var, diagSel) .highlight(SourceRange(StaticLoc)); }; if (auto nom = dyn_cast(CurDeclContext)) { if (nom->getGenericParams()) { unimplementedStatic(GenericTypes); } else if (isa(CurDeclContext)) { unimplementedStatic(Classes); } else if (isa(CurDeclContext)) { unimplementedStatic(Protocols); } else if (!isa(CurDeclContext) && !isa(CurDeclContext)) { unimplementedStatic(Misc); } } else { unimplementedStatic(Misc); } UnhandledStatic = false; } Status = parseDeclVar(Flags, Attributes, Entries, StaticLoc); break; case tok::kw_typealias: DeclResult = parseDeclTypeAlias(!(Flags & PD_DisallowTypeAliasDef), Flags & PD_InProtocol, Attributes); Status = DeclResult; break; case tok::kw_enum: DeclResult = parseDeclEnum(Flags, Attributes); Status = DeclResult; break; case tok::kw_case: Status = parseDeclEnumCase(Flags, Attributes, Entries); break; case tok::kw_struct: DeclResult = parseDeclStruct(Flags, Attributes); Status = DeclResult; break; case tok::kw_class: DeclResult = parseDeclClass(Flags, Attributes); Status = DeclResult; break; case tok::kw_init: DeclResult = parseDeclConstructor(Flags, Attributes); Status = DeclResult; break; case tok::kw_destructor: DeclResult = parseDeclDestructor(Flags, Attributes); Status = DeclResult; break; case tok::kw_protocol: DeclResult = parseDeclProtocol(Flags, Attributes); Status = DeclResult; break; case tok::kw_func: DeclResult = parseDeclFunc(StaticLoc, Flags, Attributes); Status = DeclResult; UnhandledStatic = false; break; case tok::kw_subscript: if (StaticLoc.isValid()) { diagnose(Tok, diag::subscript_static) .fixItRemove(SourceRange(StaticLoc)); UnhandledStatic = false; } Status = parseDeclSubscript(Flags & PD_HasContainerType, !(Flags & PD_InProtocol), Attributes, Entries); break; case tok::identifier: if (isStartOfOperatorDecl(Tok, peekToken())) { DeclResult = parseDeclOperator(Flags & PD_AllowTopLevel, Attributes); break; } SWIFT_FALLTHROUGH; default: diagnose(Tok, diag::expected_decl); DeclResult = makeParserErrorResult(); Status = DeclResult; break; } if (Status.hasCodeCompletion() && isCodeCompletionFirstPass() && !CurDeclContext->isModuleScopeContext()) { // Only consume non-toplevel decls. consumeDecl(BeginParserPosition, Flags, /*IsTopLevel=*/false); // Pretend that there was no error. return makeParserSuccess(); } if (DeclResult.isNonNull()) Entries.push_back(DeclResult.get()); if (Status.isSuccess() && Tok.is(tok::semi)) Entries.back()->TrailingSemiLoc = consumeToken(tok::semi); // If we parsed 'type' but didn't handle it above, complain about it. if (Status.isSuccess() && UnhandledStatic) { diagnose(Entries.back()->getLoc(), diag::decl_not_type) .fixItRemove(SourceRange(StaticLoc)); } return Status; } void Parser::parseDeclDelayed() { auto DelayedState = State->takeDelayedDeclState(); assert(DelayedState.get() && "should have delayed state"); auto BeginParserPosition = getParserPosition(DelayedState->BodyPos); auto EndLexerState = L->getStateForEndOfTokenLoc(DelayedState->BodyEnd); // ParserPositionRAII needs a primed parser to restore to. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); // Ensure that we restore the parser state at exit. ParserPositionRAII PPR(*this); // Create a lexer that can not go past the end state. Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState); // Temporarily swap out the parser's current lexer with our new one. llvm::SaveAndRestore T(L, &LocalLex); // Rewind to the beginning of the decl. restoreParserPosition(BeginParserPosition); // Re-enter the lexical scope. Scope S(this, DelayedState->takeScope()); ContextChange CC(*this, DelayedState->ParentContext); SmallVector Entries; parseDecl(Entries, DelayedState->Flags); } /// \brief Parse an 'import' declaration, doing no token skipping on error. /// /// \verbatim /// decl-import: /// 'import' attribute-list import-kind? import-path /// import-kind: /// 'typealias' /// 'struct' /// 'class' /// 'enum' /// 'protocol' /// 'var' /// 'func' /// import-path: /// any-identifier ('.' any-identifier)* /// \endverbatim ParserResult Parser::parseDeclImport(unsigned Flags, DeclAttributes &Attributes) { SourceLoc ImportLoc = consumeToken(tok::kw_import); bool Exported = Attributes.isExported(); Attributes.clearAttribute(AK_exported); if (!Attributes.empty()) diagnose(Attributes.AtLoc, diag::import_attributes); if (!(Flags & PD_AllowTopLevel)) { diagnose(ImportLoc, diag::decl_inner_scope); return nullptr; } ImportKind Kind = ImportKind::Module; SourceLoc KindLoc; if (Tok.isKeyword()) { switch (Tok.getKind()) { case tok::kw_typealias: Kind = ImportKind::Type; break; case tok::kw_struct: Kind = ImportKind::Struct; break; case tok::kw_class: Kind = ImportKind::Class; break; case tok::kw_enum: Kind = ImportKind::Enum; break; case tok::kw_protocol: Kind = ImportKind::Protocol; break; case tok::kw_var: case tok::kw_let: Kind = ImportKind::Var; break; case tok::kw_func: Kind = ImportKind::Func; break; default: diagnose(Tok, diag::expected_identifier_in_decl, "import"); return nullptr; } KindLoc = consumeToken(); } SmallVector, 8> ImportPath; do { ImportPath.push_back(std::make_pair(Identifier(), Tok.getLoc())); if (parseAnyIdentifier(ImportPath.back().first, diag::expected_identifier_in_decl, "import")) return nullptr; } while (consumeIf(tok::period)); if (Kind != ImportKind::Module && ImportPath.size() == 1) { diagnose(ImportPath.front().second, diag::decl_expected_module_name); return nullptr; } return makeParserResult(ImportDecl::create( Context, CurDeclContext, ImportLoc, Kind, KindLoc, Exported, ImportPath)); } /// \brief Parse an inheritance clause. /// /// \verbatim /// inheritance: /// ':' type-identifier (',' type-identifier)* /// \endverbatim ParserStatus Parser::parseInheritance(SmallVectorImpl &Inherited) { consumeToken(tok::colon); ParserStatus Status; do { // Parse the inherited type (which must be a protocol). ParserResult Ty = parseTypeIdentifier(); Status |= Ty; // Record the type. if (Ty.isNonNull()) Inherited.push_back(Ty.get()); // Check for a ',', which indicates that there are more protocols coming. } while (consumeIf(tok::comma)); return Status; } enum class TokenProperty { None, StartsWithLess, }; static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &Loc, tok ResyncT1, tok ResyncT2, tok ResyncT3, tok ResyncT4, TokenProperty ResyncP1, const Diagnostic &D) { switch (P.Tok.getKind()) { case tok::identifier: Result = P.Context.getIdentifier(P.Tok.getText()); Loc = P.Tok.getLoc(); P.consumeToken(); return makeParserSuccess(); default: if (!D.is(diag::invalid_diagnostic)) P.diagnose(P.Tok, D); if (P.Tok.isKeyword() && (P.peekToken().is(ResyncT1) || P.peekToken().is(ResyncT2) || P.peekToken().is(ResyncT3) || P.peekToken().is(ResyncT4) || (ResyncP1 != TokenProperty::None && P.startsWithLess(P.peekToken())))) { llvm::SmallString<32> Name(P.Tok.getText()); // Append an invalid character so that nothing can resolve to this name. Name += "#"; Result = P.Context.getIdentifier(Name.str()); Loc = P.Tok.getLoc(); P.consumeToken(); // Return success because we recovered. return makeParserSuccess(); } return makeParserError(); } } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown, tok::unknown, TokenProperty::None, Diagnostic(ID, Args...)); } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, tok ResyncT3, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3, tok::unknown, TokenProperty::None, Diagnostic(ID, Args...)); } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, tok ResyncT3, tok ResyncT4, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3, ResyncT4, TokenProperty::None, Diagnostic(ID, Args...)); } template static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L, tok ResyncT1, tok ResyncT2, TokenProperty ResyncP1, Diag ID, ArgTypes... Args) { return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown, tok::unknown, ResyncP1, Diagnostic(ID, Args...)); } /// \brief Parse an 'extension' declaration. /// /// \verbatim /// extension: /// 'extension' attribute-list type-identifier inheritance? '{' decl* '}' /// \endverbatim ParserResult Parser::parseDeclExtension(unsigned Flags, DeclAttributes &Attr) { SourceLoc ExtensionLoc = consumeToken(tok::kw_extension); ParserResult Ty = parseTypeIdentifierWithRecovery( diag::expected_type, diag::expected_ident_type_in_extension); if (Ty.hasCodeCompletion()) return makeParserCodeCompletionResult(); if (Ty.isNull() && Tok.isKeyword()) { // We failed to parse the type, but we could try recovering by parsing a // keyword if the lookahead token looks promising. Identifier ExtensionName; SourceLoc NameLoc; if (parseIdentifierDeclName(*this, ExtensionName, NameLoc, tok::colon, tok::l_brace, diag::invalid_diagnostic).isError()) return nullptr; Ty = makeParserErrorResult( new (Context) SimpleIdentTypeRepr(NameLoc, ExtensionName)); } if (Ty.isNull()) return nullptr; ParserStatus Status; // Parse optional inheritance clause. SmallVector Inherited; if (Tok.is(tok::colon)) Status |= parseInheritance(Inherited); ExtensionDecl *ED = new (Context) ExtensionDecl(ExtensionLoc, Ty.get(), Context.AllocateCopy(Inherited), CurDeclContext); if (Attr.isValid()) ED->getMutableAttrs() = Attr; SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_extension)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, ED); Scope S(this, ScopeKind::Extension); ParserStatus BodyStatus = parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true, /*AllowSepAfterLast=*/false, diag::expected_rbrace_extension, [&]() -> ParserStatus { return parseDecl(MemberDecls, PD_HasContainerType | PD_DisallowStoredInstanceVar); }); // Don't propagate the code completion bit from members: we can not help // code completion inside a member decl, and our callers can not do // anything about it either. But propagate the error bit. if (BodyStatus.isError()) Status.setIsParseError(); } if (MemberDecls.empty()) ED->setMembers({}, { LBLoc, RBLoc }); else ED->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); if (!(Flags & PD_AllowTopLevel)) { diagnose(ExtensionLoc, diag::decl_inner_scope); Status.setIsParseError(); // Tell the type checker not to touch this extension. ED->setInvalid(); } return makeParserResult(Status, ED); } /// \brief Parse a typealias decl. /// /// \verbatim /// decl-typealias: /// 'typealias' identifier inheritance? '=' type /// \endverbatim ParserResult Parser::parseDeclTypeAlias(bool WantDefinition, bool isAssociatedType, DeclAttributes &Attributes) { SourceLoc TypeAliasLoc = consumeToken(tok::kw_typealias); Identifier Id; SourceLoc IdLoc; ParserStatus Status; if (!Attributes.empty()) diagnose(Attributes.AtLoc, diag::typealias_attributes); Status |= parseIdentifierDeclName(*this, Id, IdLoc, tok::colon, tok::equal, diag::expected_identifier_in_decl, "typealias"); if (Status.isError()) return nullptr; // Parse optional inheritance clause. SmallVector Inherited; if (isAssociatedType && Tok.is(tok::colon)) Status |= parseInheritance(Inherited); ParserResult UnderlyingTy; if (WantDefinition || Tok.is(tok::equal)) { if (parseToken(tok::equal, diag::expected_equal_in_typealias)) { Status.setIsParseError(); return Status; } UnderlyingTy = parseType(diag::expected_type_in_typealias); Status |= UnderlyingTy; if (UnderlyingTy.isNull()) return Status; } // If this is an associated type, build the AST for it. if (isAssociatedType) { auto assocType = new (Context) AssociatedTypeDecl( CurDeclContext, TypeAliasLoc, Id, IdLoc, UnderlyingTy.getPtrOrNull()); if (!Inherited.empty()) assocType->setInherited(Context.AllocateCopy(Inherited)); addToScope(assocType); return makeParserResult(Status, assocType); } // Otherwise, build a typealias. TypeAliasDecl *TAD = new (Context) TypeAliasDecl(TypeAliasLoc, Id, IdLoc, UnderlyingTy.getPtrOrNull(), CurDeclContext); addToScope(TAD); return makeParserResult(Status, TAD); } namespace { class AddVarsToScope : public ASTWalker { public: Parser &TheParser; ASTContext &Context; DeclContext *CurDeclContext; SmallVectorImpl &Decls; bool IsStatic; DeclAttributes &Attributes; PatternBindingDecl *PBD; AddVarsToScope(Parser &P, ASTContext &Context, DeclContext *CurDeclContext, SmallVectorImpl &Decls, bool IsStatic, DeclAttributes &Attributes, PatternBindingDecl *PBD) : TheParser(P), Context(Context), CurDeclContext(CurDeclContext), Decls(Decls), IsStatic(IsStatic), Attributes(Attributes), PBD(PBD) {} Pattern *walkToPatternPost(Pattern *P) override { // Handle vars. if (auto *Named = dyn_cast(P)) { VarDecl *VD = Named->getDecl(); VD->setDeclContext(CurDeclContext); VD->setStatic(IsStatic); VD->setParentPattern(PBD); if (Attributes.isValid()) VD->getMutableAttrs() = Attributes; if (VD->isComputed()) { // Add getter & setter in source order. FuncDecl* Accessors[2] = {VD->getGetter(), VD->getSetter()}; if (Accessors[0] && Accessors[1] && !Context.SourceMgr.isBeforeInBuffer( Accessors[0]->getFuncLoc(), Accessors[1]->getFuncLoc())) { std::swap(Accessors[0], Accessors[1]); } for (auto FD : Accessors) { if (FD) { FD->setDeclContext(CurDeclContext); Decls.push_back(FD); } } } Decls.push_back(VD); TheParser.addToScope(VD); } return P; } }; } void Parser::addVarsToScope(Pattern *Pat, SmallVectorImpl &Decls, bool IsStatic, DeclAttributes &Attributes, PatternBindingDecl *PBD) { Pat->walk(AddVarsToScope(*this, Context, CurDeclContext, Decls, IsStatic, Attributes, PBD)); } /// \brief Parse a get-set clause, containing a getter and (optionally) /// a setter. /// /// \verbatim /// get-set: /// get var-set? /// set var-get /// /// get: /// 'get' attribute-list ':' stmt-brace-item* /// /// set: /// 'set' attribute-list set-name? ':' stmt-brace-item* /// /// set-name: /// '(' identifier ')' /// \endverbatim bool Parser::parseGetSet(bool HasContainerType, Pattern *Indices, TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set, SourceLoc &LastValidLoc, SourceLoc StaticLoc) { bool Invalid = false; Get = nullptr; Set = nullptr; while (Tok.isNot(tok::r_brace)) { if (Tok.is(tok::eof)) { Invalid = true; break; } // Parse any leading attributes. DeclAttributes Attributes; parseDeclAttributeList(Attributes); if (Tok.isContextualKeyword("get") || !Tok.isContextualKeyword("set")) { // get ::= 'get' stmt-brace // Have we already parsed a get clause? if (Get) { diagnose(Tok, diag::duplicate_getset, false); diagnose(Get->getLoc(), diag::previous_getset, false); // Forget the previous version. Get = nullptr; } SourceLoc GetLoc = Tok.getLoc(), ColonLoc = Tok.getLoc(); if (Tok.isContextualKeyword("get")) { GetLoc = consumeToken(); if (Tok.isNot(tok::colon)) { diagnose(Tok, diag::expected_colon_get); Invalid = true; break; } ColonLoc = consumeToken(tok::colon); } // Set up a function declaration for the getter and parse its body. // Create the parameter list(s) for the getter. SmallVector Params; // Add the implicit 'self' to Params, if needed. if (HasContainerType) Params.push_back(buildImplicitSelfParameter(GetLoc)); // Add the index clause if necessary. if (Indices) { Params.push_back(Indices->clone(Context, /*Implicit=*/true)); } // Add a no-parameters clause. Params.push_back(TuplePattern::create(Context, SourceLoc(), ArrayRef(), SourceLoc(), /*hasVararg=*/false, SourceLoc(), /*Implicit=*/true)); Scope S(this, ScopeKind::FunctionBody); // Start the function. Get = FuncDecl::create(Context, /*StaticLoc=*/SourceLoc(), GetLoc, Identifier(), GetLoc, /*GenericParams=*/nullptr, Type(), Params, Params, ElementTy.clone(Context), CurDeclContext); if (StaticLoc.isValid()) Get->setStatic(true); addFunctionParametersToScope(Get->getBodyParamPatterns(), Get); // Establish the new context. ParseFunctionBody CC(*this, Get); SmallVector Entries; parseBraceItems(Entries, BraceItemListKind::Variable); BraceStmt *Body = BraceStmt::create(Context, ColonLoc, Entries, Tok.getLoc()); Get->setBody(Body); if (Attributes.isValid()) Get->getMutableAttrs() = Attributes; LastValidLoc = Body->getRBraceLoc(); continue; } // var-set ::= 'set' var-set-name? stmt-brace // Have we already parsed a var-set clause? if (Set) { diagnose(Tok, diag::duplicate_getset, true); diagnose(Set->getLoc(), diag::previous_getset, true); // Forget the previous setter. Set = nullptr; } SourceLoc SetLoc = consumeToken(); // var-set-name ::= '(' identifier ')' Identifier SetName; SourceLoc SetNameLoc; SourceRange SetNameParens; if (Tok.is(tok::l_paren)) { SourceLoc StartLoc = consumeToken(); if (Tok.is(tok::identifier)) { // We have a name. SetName = Context.getIdentifier(Tok.getText()); SetNameLoc = consumeToken(); // Look for the closing ')'. SourceLoc EndLoc; if (parseMatchingToken(tok::r_paren, EndLoc, diag::expected_rparen_setname, StartLoc)) EndLoc = SetNameLoc; SetNameParens = SourceRange(StartLoc, EndLoc); } else { diagnose(Tok, diag::expected_setname); skipUntil(tok::r_paren, tok::l_brace); if (Tok.is(tok::r_paren)) consumeToken(); } } if (Tok.isNot(tok::colon)) { diagnose(Tok, diag::expected_colon_set); Invalid = true; break; } SourceLoc ColonLoc = consumeToken(tok::colon); // Set up a function declaration for the setter and parse its body. // Create the parameter list(s) for the setter. SmallVector Params; // Add the implicit 'self' to Params, if needed. if (HasContainerType) Params.push_back(buildImplicitSelfParameter(SetLoc)); // Add the index parameters, if necessary. if (Indices) { Params.push_back(Indices->clone(Context, /*Implicit=*/true)); } bool IsNameImplicit = false; // Add the parameter. If no name was specified, the name defaults to // 'value'. if (SetName.empty()) { SetName = Context.getIdentifier("value"); SetNameLoc = SetLoc; IsNameImplicit = true; } { VarDecl *Value = new (Context) VarDecl(StaticLoc.isValid(), /*IsLet*/true, SetNameLoc, SetName, Type(), CurDeclContext); if (IsNameImplicit) Value->setImplicit(); Pattern *ValuePattern = new (Context) TypedPattern(new (Context) NamedPattern(Value), ElementTy.clone(Context)); // The TypedPattern is always implicit because the ElementTy is not // spelled inside the parameter list. It comes from elsewhere, and its // source location should be ignored. ValuePattern->setImplicit(); TuplePatternElt ValueElt(ValuePattern); Pattern *ValueParamsPattern = TuplePattern::create(Context, SetNameParens.Start, ValueElt, SetNameParens.End); if (IsNameImplicit) ValueParamsPattern->setImplicit(); Params.push_back(ValueParamsPattern); } Scope S(this, ScopeKind::FunctionBody); // Start the function. Type SetterRetTy = TupleType::getEmpty(Context); Set = FuncDecl::create(Context, /*StaticLoc=*/SourceLoc(), SetLoc, Identifier(), SetLoc, /*generic=*/nullptr, Type(), Params, Params, TypeLoc::withoutLoc(SetterRetTy), CurDeclContext); if (StaticLoc.isValid()) Set->setStatic(true); else // non-static setters default to @mutating. Set->setMutating(); addFunctionParametersToScope(Set->getBodyParamPatterns(), Set); // Establish the new context. ParseFunctionBody CC(*this, Set); // Parse the body. SmallVector Entries; parseBraceItems(Entries, BraceItemListKind::Variable); BraceStmt *Body = BraceStmt::create(Context, ColonLoc, Entries, Tok.getLoc()); Set->setBody(Body); if (Attributes.isValid()) Set->getMutableAttrs() = Attributes; LastValidLoc = Body->getRBraceLoc(); } return Invalid; } /// \brief Parse the brace-enclosed getter and setter for a variable. /// /// \verbatim /// decl-var: /// attribute-list 'var' identifier : type-annotation { get-set } /// \endverbatim void Parser::parseDeclVarGetSet(Pattern &pattern, bool HasContainerType, SourceLoc StaticLoc) { bool Invalid = false; // The grammar syntactically requires a simple identifier for the variable // name. Complain if that isn't what we got. VarDecl *PrimaryVar = nullptr; { Pattern *PrimaryPattern = &pattern; if (TypedPattern *Typed = dyn_cast(PrimaryPattern)) PrimaryPattern = Typed->getSubPattern(); if (NamedPattern *Named = dyn_cast(PrimaryPattern)) { PrimaryVar = Named->getDecl(); } } if (!PrimaryVar) diagnose(pattern.getLoc(), diag::getset_nontrivial_pattern); // The grammar syntactically requires a type annotation. Complain if // our pattern does not have one. TypeLoc TyLoc; if (TypedPattern *TP = dyn_cast(&pattern)) { TyLoc = TP->getTypeLoc(); } else { if (PrimaryVar) diagnose(pattern.getLoc(), diag::getset_missing_type); TyLoc = TypeLoc::withoutLoc(ErrorType::get(Context)); } setLocalDiscriminator(PrimaryVar); SourceLoc LBLoc = consumeToken(tok::l_brace); // Parse getter and setter. FuncDecl *Get = nullptr; FuncDecl *Set = nullptr; SourceLoc LastValidLoc = LBLoc; if (parseGetSet(HasContainerType, /*Indices=*/0, TyLoc, Get, Set, LastValidLoc, StaticLoc)) Invalid = true; // Parse the final '}'. SourceLoc RBLoc; if (Invalid) { skipUntilDeclRBrace(); RBLoc = LastValidLoc; } if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset, LBLoc)) { RBLoc = LastValidLoc; } if (Set && !Get) { if (!Invalid) diagnose(Set->getLoc(), diag::var_set_without_get); Set = nullptr; Invalid = true; } // If things went well, turn this into a computed variable. if (!Invalid && PrimaryVar && (Set || Get)) PrimaryVar->setComputedAccessors(LBLoc, Get, Set, RBLoc); } /// \brief Parse a 'var' or 'let' declaration, doing no token skipping on error. /// /// \verbatim /// decl-var: /// 'type'? 'let' attribute-list pattern initializer (',' pattern initializer )* /// 'type'? 'var' attribute-list pattern initializer? (',' pattern initializer? )* /// 'var' attribute-list identifier : type-annotation { get-set } /// \endverbatim ParserStatus Parser::parseDeclVar(unsigned Flags, DeclAttributes &Attributes, SmallVectorImpl &Decls, SourceLoc StaticLoc) { bool isLet = Tok.is(tok::kw_let); assert(Tok.getKind() == tok::kw_let || Tok.getKind() == tok::kw_var); SourceLoc VarLoc = consumeToken(); struct AllBindings { Parser &P; struct BindingInfo { PatternBindingDecl *Binding; TopLevelCodeDecl *TopLevelCode; }; SmallVector All; AllBindings(Parser &P) : P(P) {} ~AllBindings() { for (auto &info : All) { if (!info.TopLevelCode) continue; auto binding = info.Binding; auto range = binding->getSourceRange(); info.TopLevelCode->setBody(BraceStmt::create(P.Context, range.Start, ASTNode(binding), range.End)); } } } Bindings(*this); bool HasGetSet = false; ParserStatus Status; do { ParserResult pattern; { // In our recursive parse, remember that we're in a var/let pattern. llvm::SaveAndRestore T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar); pattern = parsePattern(isLet); } if (pattern.hasCodeCompletion()) return makeParserCodeCompletionStatus(); if (pattern.isNull()) return makeParserError(); // If we syntactically match the second decl-var production, with a // var-get-set clause, parse the var-get-set clause. if (Tok.is(tok::l_brace)) { // Reject getters and setters for lets, but parse them for better // recovery. if (isLet) diagnose(Tok, diag::let_cannot_be_computed_property); parseDeclVarGetSet(*pattern.get(), Flags & PD_HasContainerType, StaticLoc); if (isLet) return makeParserError(); HasGetSet = true; } if (isLet && Tok.isNot(tok::equal) && !(Flags & PD_HasContainerType)) { diagnose(VarLoc, diag::let_requires_initializer); return makeParserError(); } // If this is a var in the top-level of script/repl source file, // wrap everything in a TopLevelCodeDecl, since it represents // executable code. // // Note that, once we've built the TopLevelCodeDecl, we have to be // really cautious not to escape this scope in a way that doesn't // add it as a binding. TopLevelCodeDecl *topLevelDecl = nullptr; Optional topLevelParser; if (allowTopLevelCode() && CurDeclContext->isModuleScopeContext()) { // The body of topLevelDecl will get set later. topLevelDecl = new (Context) TopLevelCodeDecl(CurDeclContext); topLevelParser.emplace(*this, topLevelDecl, &State->getTopLevelContext()); } // In the normal case, just add PatternBindingDecls to our DeclContext. auto PBD = new (Context) PatternBindingDecl(StaticLoc, VarLoc, pattern.get(), nullptr, CurDeclContext); Bindings.All.push_back({PBD, topLevelDecl}); // Parse an initializer if present. if (Tok.is(tok::equal)) { // Record the variables that we're trying to initialize. SmallVector Vars; Vars.append(CurVars.second.begin(), CurVars.second.end()); pattern.get()->collectVariables(Vars); using RestoreVarsRAII = llvm::SaveAndRestore; RestoreVarsRAII RestoreCurVars(CurVars, {CurDeclContext, Vars}); // Enter an initializer context if we're not in a local context. PatternBindingInitializer *initContext = nullptr; Optional initParser; if (!CurDeclContext->isLocalContext()) { initContext = Context.createPatternBindingContext(PBD); initParser.emplace(*this, initContext); } SourceLoc EqualLoc = consumeToken(tok::equal); ParserResult init = parseExpr(diag::expected_init_value); // Leave the initializer context. if (initContext) { if (!initParser->hasClosures()) Context.destroyPatternBindingContext(initContext); initParser.reset(); } assert(!initParser.hasValue()); if (init.hasCodeCompletion()) { return makeParserCodeCompletionStatus(); } if (init.isNull()) { return makeParserError(); } if (HasGetSet) { diagnose(pattern.get()->getLoc(), diag::getset_init) .highlight(init.get()->getSourceRange()); init = nullptr; } if (Flags & PD_DisallowInit) { diagnose(EqualLoc, diag::disallowed_init); Status.setIsParseError(); } PBD->setInit(init.getPtrOrNull(), false); } if (topLevelDecl) { Decls.push_back(topLevelDecl); } else { Decls.push_back(PBD); } // We need to revert CurDeclContext before calling addVarsToScope. if (topLevelDecl) topLevelParser.getValue().pop(); addVarsToScope(pattern.get(), Decls, StaticLoc.isValid(), Attributes, PBD); // Propagate back types for simple patterns, like "var A, B : T". if (TypedPattern *TP = dyn_cast(PBD->getPattern())) { if (isa(TP->getSubPattern()) && !PBD->hasInit()) { for (unsigned i = Bindings.All.size() - 1; i != 0; --i) { PatternBindingDecl *PrevPBD = Bindings.All[i-1].Binding; Pattern *PrevPat = PrevPBD->getPattern(); if (!isa(PrevPat) || PrevPBD->hasInit()) break; if (HasGetSet) { // FIXME -- offer a fixit to explicitly specify the type diagnose(PrevPat->getLoc(), diag::getset_cannot_be_implied); Status.setIsParseError(); } TypedPattern *NewTP = new (Context) TypedPattern(PrevPat, TP->getTypeLoc()); PrevPBD->setPattern(NewTP); } } } } while (consumeIf(tok::comma)); if (HasGetSet) { if (Bindings.All.size() > 1) { diagnose(VarLoc, diag::disallowed_var_multiple_getset); Status.setIsParseError(); } if (Flags & PD_DisallowComputedVar) { diagnose(VarLoc, diag::disallowed_computed_var_decl); Status.setIsParseError(); } } else if (!StaticLoc.isValid() && (Flags & PD_DisallowStoredInstanceVar)) { diagnose(VarLoc, diag::disallowed_stored_var_decl); Status.setIsParseError(); return Status; } return Status; } namespace { /// Recursively walks a pattern and sets all variables' decl contexts to the /// given context. class SetVarContext : public ASTWalker { DeclContext *DC; public: SetVarContext(DeclContext *DC) : DC(DC) {} Pattern *walkToPatternPost(Pattern *P) override { // Handle vars. if (auto *Named = dyn_cast(P)) Named->getDecl()->setDeclContext(DC); return P; } }; } // unnamed namespace static void setVarContext(ArrayRef Patterns, DeclContext *DC) { for (auto P : Patterns) { P->walk(SetVarContext(DC)); } } /// \brief Build an implicit 'self' parameter for the current DeclContext. Pattern *Parser::buildImplicitSelfParameter(SourceLoc Loc) { VarDecl *D = new (Context) VarDecl(/*static*/ false, /*IsLet*/ true, Loc, Context.SelfIdentifier, Type(), CurDeclContext); D->setImplicit(); Pattern *P = new (Context) NamedPattern(D, /*Implicit=*/true); return new (Context) TypedPattern(P, TypeLoc()); } void Parser::consumeAbstractFunctionBody(AbstractFunctionDecl *AFD, const DeclAttributes &Attrs) { auto BeginParserPosition = getParserPosition(); SourceRange BodyRange; BodyRange.Start = Tok.getLoc(); // Consume the '{', and find the matching '}'. consumeToken(tok::l_brace); unsigned OpenBraces = 1; while (OpenBraces != 0 && Tok.isNot(tok::eof)) { if (consumeIf(tok::l_brace)) { OpenBraces++; continue; } if (consumeIf(tok::r_brace)) { OpenBraces--; continue; } consumeToken(); } if (OpenBraces != 0 && Tok.isNot(tok::code_complete)) { assert(Tok.is(tok::eof)); // We hit EOF, and not every brace has a pair. Recover by searching // for the next decl except variable decls and cutting off before // that point. backtrackToPosition(BeginParserPosition); consumeToken(tok::l_brace); while (Tok.is(tok::kw_var) || Tok.is(tok::kw_let) || (Tok.isNot(tok::eof) && !isStartOfDecl(Tok, peekToken()))) { consumeToken(); } } BodyRange.End = PreviousLoc; if (DelayedParseCB->shouldDelayFunctionBodyParsing(*this, AFD, Attrs, BodyRange)) { State->delayFunctionBodyParsing(AFD, BodyRange, BeginParserPosition.PreviousLoc); AFD->setBodyDelayed(BodyRange.End); } else { AFD->setBodySkipped(BodyRange.End); } } /// \brief Parse a 'func' declaration, returning null on error. The caller /// handles this case and does recovery as appropriate. /// /// \verbatim /// decl-func: /// 'type'? 'func' attribute-list any-identifier generic-params? /// func-signature stmt-brace? /// \endverbatim /// /// \note The caller of this method must ensure that the next token is 'func'. ParserResult Parser::parseDeclFunc(SourceLoc StaticLoc, unsigned Flags, DeclAttributes &Attributes) { bool HasContainerType = Flags & PD_HasContainerType; // Reject 'type' functions at global scope. if (StaticLoc.isValid() && !HasContainerType) { diagnose(Tok, diag::static_func_decl_global_scope) .fixItRemoveChars(StaticLoc, Tok.getLoc()); StaticLoc = SourceLoc(); } SourceLoc FuncLoc = consumeToken(tok::kw_func); if (StaticLoc.isValid() && Attributes.hasMutating()) { diagnose(Tok, diag::static_functions_not_mutating); Attributes.clearAttribute(AK_mutating); } Identifier Name; SourceLoc NameLoc = Tok.getLoc(); if (!(Flags & PD_AllowTopLevel) && !(Flags & PD_InProtocol) && Tok.isAnyOperator()) { // FIXME: Recovery here is awful. diagnose(Tok, diag::func_decl_nonglobal_operator); return nullptr; } if (parseAnyIdentifier(Name, diag::expected_identifier_in_decl, "function")) { ParserStatus NameStatus = parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::arrow, tok::l_brace, diag::invalid_diagnostic); if (NameStatus.isError()) return nullptr; } // Parse the generic-params, if present. Optional GenericsScope; GenericsScope.emplace(this, ScopeKind::Generics); GenericParamList *GenericParams; // If the name is an operator token that ends in '<' and the following token // is an identifier, split the '<' off as a separate token. This allows things // like 'func ==(x:T, y:T) {}' to parse as '==' with generic type variable // '' as expected. if (Name.str().size() > 1 && Name.str().back() == '<' && Tok.is(tok::identifier)) { Name = Context.getIdentifier(Name.str().slice(0, Name.str().size() - 1)); SourceLoc LAngleLoc = NameLoc.getAdvancedLoc(Name.str().size()); GenericParams = parseGenericParameters(LAngleLoc); } else { GenericParams = maybeParseGenericParams(); } SmallVector ArgParams; SmallVector BodyParams; // If we're within a container, add an implicit first pattern to match the // container type as an element named 'self'. // // This turns an instance function "(int)->int" on FooTy into // "(this: @inout FooTy)->(int)->int", and a static function // "(int)->int" on FooTy into "(this: @inout FooTy.metatype)->(int)->int". // Note that we can't actually compute the type here until Sema. if (HasContainerType) { Pattern *SelfPattern = buildImplicitSelfParameter(NameLoc); ArgParams.push_back(SelfPattern); BodyParams.push_back(SelfPattern); } DefaultArgumentInfo DefaultArgs; TypeRepr *FuncRetTy = nullptr; bool HasSelectorStyleSignature; ParserStatus SignatureStatus = parseFunctionSignature(ArgParams, BodyParams, DefaultArgs, FuncRetTy, HasSelectorStyleSignature); if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) { // Trigger delayed parsing, no need to continue. return SignatureStatus; } // Enter the arguments for the function into a new function-body scope. We // need this even if there is no function body to detect argument name // duplication. FuncDecl *FD; { Scope S(this, ScopeKind::FunctionBody); // Create the decl for the func and add it to the parent scope. FD = FuncDecl::create(Context, StaticLoc, FuncLoc, Name, NameLoc, GenericParams, Type(), ArgParams, BodyParams, FuncRetTy, CurDeclContext); if (HasSelectorStyleSignature) FD->setHasSelectorStyleSignature(); // Pass the function signature to code completion. if (SignatureStatus.hasCodeCompletion()) CodeCompletion->setDelayedParsedDecl(FD); DefaultArgs.setFunctionContext(FD); addFunctionParametersToScope(FD->getBodyParamPatterns(), FD); setVarContext(FD->getArgParamPatterns(), FD); setLocalDiscriminator(FD); // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(FD); } } // Establish the new context. ParseFunctionBody CC(*this, FD); // Check to see if we have a "{" to start a brace statement. if (Tok.is(tok::l_brace)) { if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::func_decl_without_brace); if (Body.isNull()) { // FIXME: Should do some sort of error recovery here? } else if (SignatureStatus.hasCodeCompletion()) { // Code completion was inside the signature, don't attach the body. FD->setBodySkipped(Body.get()->getEndLoc()); } else { FD->setBody(Body.get()); } } else { consumeAbstractFunctionBody(FD, Attributes); } } } // Exit the scope introduced for the generic parameters. GenericsScope.reset(); if (Attributes.isValid()) FD->getMutableAttrs() = Attributes; addToScope(FD); return makeParserResult(FD); } bool Parser::parseAbstractFunctionBodyDelayed(AbstractFunctionDecl *AFD) { assert(!AFD->getBody() && "function should not have a parsed body"); assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed && "function body should be delayed"); auto FunctionParserState = State->takeBodyState(AFD); assert(FunctionParserState.get() && "should have a valid state"); auto BeginParserPosition = getParserPosition(FunctionParserState->BodyPos); auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc()); // ParserPositionRAII needs a primed parser to restore to. if (Tok.is(tok::NUM_TOKENS)) consumeToken(); // Ensure that we restore the parser state at exit. ParserPositionRAII PPR(*this); // Create a lexer that can not go past the end state. Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState); // Temporarily swap out the parser's current lexer with our new one. llvm::SaveAndRestore T(L, &LocalLex); // Rewind to '{' of the function body. restoreParserPosition(BeginParserPosition); // Re-enter the lexical scope. Scope S(this, FunctionParserState->takeScope()); ParseFunctionBody CC(*this, AFD); ParserResult Body = parseBraceItemList(diag::func_decl_without_brace); if (Body.isNull()) { // FIXME: Should do some sort of error recovery here? return true; } else { AFD->setBody(Body.get()); } return false; } /// \brief Parse a 'enum' declaration, returning true (and doing no token /// skipping) on error. /// /// \verbatim /// decl-enum: /// 'enum' attribute-list identifier generic-params? inheritance? /// '{' decl-enum-body '}' /// decl-enum-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclEnum(unsigned Flags, DeclAttributes &Attributes) { SourceLoc EnumLoc = consumeToken(tok::kw_enum); Identifier EnumName; SourceLoc EnumNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, EnumName, EnumNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "enum"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } EnumDecl *UD = new (Context) EnumDecl(EnumLoc, EnumName, EnumNameLoc, { }, GenericParams, CurDeclContext); setLocalDiscriminator(UD); if (Attributes.isValid()) UD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) for (auto Param : *GenericParams) Param.setDeclContext(UD); // Parse optional inheritance clause within the context of the enum. if (Tok.is(tok::colon)) { ContextChange CC(*this, UD); SmallVector Inherited; Status |= parseInheritance(Inherited); UD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_enum)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { ContextChange CC(*this, UD); Scope S(this, ScopeKind::ClassBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_enum, PD_HasContainerType | PD_AllowEnumElement | PD_DisallowStoredInstanceVar)) Status.setIsParseError(); } if (MemberDecls.empty()) UD->setMembers({}, { LBLoc, RBLoc }); else UD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(UD); if (Flags & PD_DisallowNominalTypes) { diagnose(EnumLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, UD); } /// \brief Parse a 'case' of an enum. /// /// \verbatim /// enum-case: /// identifier type-tuple? /// decl-enum-element: /// 'case' attribute-list enum-case (',' enum-case)* /// \endverbatim ParserStatus Parser::parseDeclEnumCase(unsigned Flags, DeclAttributes &Attributes, llvm::SmallVectorImpl &Decls) { ParserStatus Status; SourceLoc CaseLoc = consumeToken(tok::kw_case); // Parse comma-separated enum elements. SmallVector Elements; SourceLoc CommaLoc; for (;;) { Identifier Name; SourceLoc NameLoc; const bool NameIsNotIdentifier = Tok.isNot(tok::identifier); if (parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::kw_case, tok::colon, tok::r_brace, diag::invalid_diagnostic).isError()) { NameLoc = CaseLoc; // Handle the likely case someone typed 'case X, case Y'. if (Tok.is(tok::kw_case) && CommaLoc.isValid()) { diagnose(Tok, diag::expected_identifier_after_case_comma); return Status; } // For recovery, see if the user typed something resembling a switch // "case" label. parseMatchingPattern(); } if (NameIsNotIdentifier) { if (consumeIf(tok::colon)) { diagnose(CaseLoc, diag::case_outside_of_switch, "case"); Status.setIsParseError(); return Status; } if (CommaLoc.isValid()) { diagnose(Tok, diag::expected_identifier_after_case_comma); return Status; } diagnose(CaseLoc, diag::expected_identifier_in_decl, "enum case"); } // See if there's a following argument type. ParserResult ArgType; if (Tok.isFollowingLParen()) { ArgType = parseTypeTupleBody(); if (ArgType.hasCodeCompletion()) { Status.setHasCodeCompletion(); return Status; } if (ArgType.isNull()) { Status.setIsParseError(); return Status; } } // See if there's a raw value expression. SourceLoc EqualsLoc; ParserResult RawValueExpr; LiteralExpr *LiteralRawValueExpr = nullptr; if (Tok.is(tok::equal)) { EqualsLoc = consumeToken(); { CodeCompletionCallbacks::InEnumElementRawValueRAII InEnumElementRawValue(CodeCompletion); RawValueExpr = parseExpr(diag::expected_expr_enum_case_raw_value); } if (RawValueExpr.hasCodeCompletion()) { Status.setHasCodeCompletion(); return Status; } if (RawValueExpr.isNull()) { Status.setIsParseError(); return Status; } // The raw value must be syntactically a simple literal. LiteralRawValueExpr = dyn_cast(RawValueExpr.getPtrOrNull()); if (!LiteralRawValueExpr || isa(LiteralRawValueExpr)) { diagnose(RawValueExpr.getPtrOrNull()->getLoc(), diag::nonliteral_enum_case_raw_value); LiteralRawValueExpr = nullptr; } } // For recovery, again make sure the the user didn't try to spell a switch // case label: // 'case Identifier:' or // 'case Identifier where ...:' if (Tok.is(tok::colon) || Tok.is(tok::kw_where)) { diagnose(CaseLoc, diag::case_outside_of_switch, "case"); skipUntilDeclRBrace(); Status.setIsParseError(); return Status; } // Create the element. auto *result = new (Context) EnumElementDecl(NameLoc, Name, ArgType.getPtrOrNull(), EqualsLoc, LiteralRawValueExpr, CurDeclContext); result->getMutableAttrs() = Attributes; Elements.push_back(result); // Continue through the comma-separated list. if (!Tok.is(tok::comma)) break; CommaLoc = consumeToken(tok::comma); } if (!(Flags & PD_AllowEnumElement)) { diagnose(CaseLoc, diag::disallowed_enum_element); // Don't add the EnumElementDecls unless the current context // is allowed to have EnumElementDecls. Status.setIsParseError(); return Status; } // Create and insert the EnumCaseDecl containing all the elements. auto TheCase = EnumCaseDecl::create(CaseLoc, Elements, CurDeclContext); Decls.push_back(TheCase); // Insert the element decls. std::copy(Elements.begin(), Elements.end(), std::back_inserter(Decls)); return Status; } /// \brief Parse the members in a struct/class/protocol definition. /// /// \verbatim /// decl* /// \endverbatim bool Parser::parseNominalDeclMembers(SmallVectorImpl &memberDecls, SourceLoc LBLoc, SourceLoc &RBLoc, Diag<> ErrorDiag, unsigned flags) { bool previousHadSemi = true; parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true, /*AllowSepAfterLast=*/false, ErrorDiag, [&]() -> ParserStatus { // If the previous declaration didn't have a semicolon and this new // declaration doesn't start a line, complain. if (!previousHadSemi && !Tok.isAtStartOfLine()) { SourceLoc endOfPrevious = getEndOfPreviousLoc(); diagnose(endOfPrevious, diag::declaration_same_line_without_semi) .fixItInsert(endOfPrevious, ";"); // FIXME: Add semicolon to the AST? } previousHadSemi = false; if (parseDecl(memberDecls, flags).isError()) return makeParserError(); // Check whether the previous declaration had a semicolon after it. if (!memberDecls.empty() && memberDecls.back()->TrailingSemiLoc.isValid()) previousHadSemi = true; return makeParserSuccess(); }); // If we found the closing brace, then the caller should not care if there // were errors while parsing inner decls, because we recovered. return !RBLoc.isValid(); } /// \brief Parse a 'struct' declaration, returning true (and doing no token /// skipping) on error. /// /// \verbatim /// decl-struct: /// 'struct' attribute-list identifier generic-params? inheritance? /// '{' decl-struct-body '} /// decl-struct-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclStruct(unsigned Flags, DeclAttributes &Attributes) { SourceLoc StructLoc = consumeToken(tok::kw_struct); Identifier StructName; SourceLoc StructNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, StructName, StructNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "struct"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } StructDecl *SD = new (Context) StructDecl(StructLoc, StructName, StructNameLoc, { }, GenericParams, CurDeclContext); setLocalDiscriminator(SD); if (Attributes.isValid()) SD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(SD); } } // Parse optional inheritance clause within the context of the struct. if (Tok.is(tok::colon)) { ContextChange CC(*this, SD); SmallVector Inherited; Status |= parseInheritance(Inherited); SD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_struct)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, SD); Scope S(this, ScopeKind::StructBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_struct, PD_HasContainerType)) Status.setIsParseError(); } if (MemberDecls.empty()) SD->setMembers({}, { LBLoc, RBLoc }); else SD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(SD); if (Flags & PD_DisallowNominalTypes) { diagnose(StructLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, SD); } /// \brief Parse a 'class' declaration, doing no token skipping on error. /// /// \verbatim /// decl-class: /// 'class' attribute-list identifier generic-params? inheritance? /// '{' decl-class-body '} /// decl-class-body: /// decl* /// \endverbatim ParserResult Parser::parseDeclClass(unsigned Flags, DeclAttributes &Attributes) { SourceLoc ClassLoc = consumeToken(tok::kw_class); Identifier ClassName; SourceLoc ClassNameLoc; ParserStatus Status; Status |= parseIdentifierDeclName(*this, ClassName, ClassNameLoc, tok::colon, tok::l_brace, TokenProperty::StartsWithLess, diag::expected_identifier_in_decl, "class"); if (Status.isError()) return nullptr; // Parse the generic-params, if present. GenericParamList *GenericParams = nullptr; { Scope S(this, ScopeKind::Generics); GenericParams = maybeParseGenericParams(); } // Create the class. ClassDecl *CD = new (Context) ClassDecl(ClassLoc, ClassName, ClassNameLoc, { }, GenericParams, CurDeclContext); setLocalDiscriminator(CD); // Attach attributes. if (Attributes.isValid()) CD->getMutableAttrs() = Attributes; // Now that we have a context, update the generic parameters with that // context. if (GenericParams) { for (auto Param : *GenericParams) { Param.setDeclContext(CD); } } // Parse optional inheritance clause within the context of the class. if (Tok.is(tok::colon)) { ContextChange CC(*this, CD); SmallVector Inherited; Status |= parseInheritance(Inherited); CD->setInherited(Context.AllocateCopy(Inherited)); } SmallVector MemberDecls; SourceLoc LBLoc, RBLoc; if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_class)) { LBLoc = Tok.getLoc(); RBLoc = LBLoc; Status.setIsParseError(); } else { // Parse the body. ContextChange CC(*this, CD); Scope S(this, ScopeKind::ClassBody); if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc, diag::expected_rbrace_class, PD_HasContainerType | PD_AllowDestructor)) Status.setIsParseError(); } CD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc }); addToScope(CD); if (Flags & PD_DisallowNominalTypes) { diagnose(ClassLoc, diag::disallowed_type); Status.setIsParseError(); } return makeParserResult(Status, CD); } /// \brief Parse a 'protocol' declaration, doing no token skipping on error. /// /// \verbatim /// decl-protocol: /// protocol-head '{' protocol-member* '}' /// /// protocol-head: /// 'protocol' attribute-list identifier inheritance? /// /// protocol-member: /// decl-func /// decl-var-simple /// decl-typealias /// \endverbatim ParserResult Parser:: parseDeclProtocol(unsigned Flags, DeclAttributes &Attributes) { SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol); SourceLoc NameLoc; Identifier ProtocolName; ParserStatus Status; Status |= parseIdentifierDeclName(*this, ProtocolName, NameLoc, tok::colon, tok::l_brace, diag::expected_identifier_in_decl, "protocol"); if (Status.isError()) return nullptr; // Parse optional inheritance clause. SmallVector InheritedProtocols; if (Tok.is(tok::colon)) Status |= parseInheritance(InheritedProtocols); ProtocolDecl *Proto = new (Context) ProtocolDecl(CurDeclContext, ProtocolLoc, NameLoc, ProtocolName, Context.AllocateCopy(InheritedProtocols)); // No need to setLocalDiscriminator: protocols can't appear in local contexts. if (Attributes.isValid()) Proto->getMutableAttrs() = Attributes; ContextChange CC(*this, Proto); Scope ProtocolBodyScope(this, ScopeKind::ProtocolBody); // Parse the body. { // The list of protocol elements. SmallVector Members; SourceLoc LBraceLoc; SourceLoc RBraceLoc; if (parseToken(tok::l_brace, LBraceLoc, diag::expected_lbrace_protocol)) { LBraceLoc = Tok.getLoc(); RBraceLoc = LBraceLoc; Status.setIsParseError(); } else { // Parse the members. if (parseNominalDeclMembers(Members, LBraceLoc, RBraceLoc, diag::expected_rbrace_protocol, PD_HasContainerType | PD_DisallowComputedVar | PD_DisallowNominalTypes | PD_DisallowInit | PD_DisallowTypeAliasDef | PD_InProtocol)) Status.setIsParseError(); } // Install the protocol elements. Proto->setMembers(Context.AllocateCopy(Members), { LBraceLoc, RBraceLoc }); } if (Flags & PD_DisallowNominalTypes) { diagnose(ProtocolLoc, diag::disallowed_type); Status.setIsParseError(); } else if (!(Flags & PD_AllowTopLevel)) { diagnose(ProtocolLoc, diag::decl_inner_scope); Status.setIsParseError(); } return makeParserResult(Status, Proto); } /// \brief Parse a 'subscript' declaration. /// /// \verbatim /// decl-subscript: /// subscript-head get-set /// subscript-head /// 'subscript' attribute-list pattern-tuple '->' type /// \endverbatim ParserStatus Parser::parseDeclSubscript(bool HasContainerType, bool NeedDefinition, DeclAttributes &Attributes, SmallVectorImpl &Decls) { ParserStatus Status; SourceLoc SubscriptLoc = consumeToken(tok::kw_subscript); // pattern-tuple if (Tok.isNot(tok::l_paren)) { diagnose(Tok, diag::expected_lparen_subscript); return makeParserError(); } ParserResult Indices = parsePatternTuple(/*DefaultArgs=*/nullptr, /*IsLet*/ true); if (Indices.isNull() || Indices.hasCodeCompletion()) return Indices; Indices.get()->walk(SetVarContext(CurDeclContext)); // '->' if (!Tok.is(tok::arrow)) { diagnose(Tok, diag::expected_arrow_subscript); return makeParserError(); } SourceLoc ArrowLoc = consumeToken(); // type ParserResult ElementTy = parseTypeAnnotation(diag::expected_type_subscript); if (ElementTy.isNull() || ElementTy.hasCodeCompletion()) return ElementTy; // '{' // Parse getter and setter. SourceRange DefRange = SourceRange(); FuncDecl *Get = nullptr; FuncDecl *Set = nullptr; if (Tok.is(tok::l_brace)) { SourceLoc LBLoc = consumeToken(); SourceLoc LastValidLoc = LBLoc; if (parseGetSet(HasContainerType, Indices.get(), ElementTy.get(), Get, Set, LastValidLoc, /*StaticLoc*/ SourceLoc())) Status.setIsParseError(); // Parse the final '}'. SourceLoc RBLoc; if (Status.isError()) { skipUntilDeclRBrace(); RBLoc = LastValidLoc; } if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset, LBLoc)) { RBLoc = LastValidLoc; } if (!Get) { if (Status.isSuccess()) diagnose(SubscriptLoc, diag::subscript_without_get); Status.setIsParseError(); } DefRange = SourceRange(LBLoc, RBLoc); } else { if (NeedDefinition && !isInSILMode()) { diagnose(Tok, diag::expected_lbrace_subscript); return makeParserError(); } } // Reject 'subscript' functions outside of type decls if (!HasContainerType) { diagnose(SubscriptLoc, diag::subscript_decl_wrong_scope); Status.setIsParseError(); } if (Status.isSuccess()) { // FIXME: We should build the declarations even if they are invalid. // Build an AST for the subscript declaration. SubscriptDecl *Subscript = new (Context) SubscriptDecl(Context.getIdentifier("subscript"), SubscriptLoc, Indices.get(), ArrowLoc, ElementTy.get(), DefRange, Get, Set, CurDeclContext); // No need to setLocalDiscriminator because subscripts cannot // validly appear outside of type decls. if (Attributes.isValid()) Subscript->getMutableAttrs() = Attributes; Decls.push_back(Subscript); if (Set) Set->makeSetter(Subscript); if (Get) Get->makeGetter(Subscript); // Add get/set in source order. FuncDecl* Accessors[2] = {Get, Set}; if (Accessors[0] && Accessors[1] && !SourceMgr.isBeforeInBuffer(Accessors[0]->getFuncLoc(), Accessors[1]->getFuncLoc())) { std::swap(Accessors[0], Accessors[1]); } for (auto FD : Accessors) { if (FD) { FD->setDeclContext(CurDeclContext); Decls.push_back(FD); } } } return Status; } ParserResult Parser::parseDeclConstructor(unsigned Flags, DeclAttributes &Attributes) { assert(Tok.is(tok::kw_init)); SourceLoc ConstructorLoc = consumeToken(); const bool ConstructorsNotAllowed = !(Flags & PD_HasContainerType) || (Flags & PD_InProtocol); // Reject constructors outside of types. if (ConstructorsNotAllowed) { diagnose(Tok, diag::initializer_decl_wrong_scope); } // Parse the generic-params, if present. Scope S(this, ScopeKind::Generics); GenericParamList *GenericParams = maybeParseGenericParams(); // Parse the parameters. // FIXME: handle code completion in Arguments. DefaultArgumentInfo DefaultArgs; Pattern *ArgPattern; Pattern *BodyPattern; bool HasSelectorStyleSignature; ParserStatus SignatureStatus = parseConstructorArguments(ArgPattern, BodyPattern, DefaultArgs, HasSelectorStyleSignature); if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) { // Trigger delayed parsing, no need to continue. return SignatureStatus; } VarDecl *SelfDecl = new (Context) VarDecl(/*static*/ false, /*IsLet*/ true, SourceLoc(), Context.SelfIdentifier, Type(), CurDeclContext); SelfDecl->setImplicit(); Scope S2(this, ScopeKind::ConstructorBody); ConstructorDecl *CD = new (Context) ConstructorDecl(Context.getIdentifier("init"), ConstructorLoc, ArgPattern, BodyPattern, SelfDecl, GenericParams, CurDeclContext); // No need to setLocalDiscriminator. if (HasSelectorStyleSignature) CD->setHasSelectorStyleSignature(); SelfDecl->setDeclContext(CD); DefaultArgs.setFunctionContext(CD); // Pass the function signature to code completion. if (SignatureStatus.hasCodeCompletion()) CodeCompletion->setDelayedParsedDecl(CD); if (ConstructorsNotAllowed) { // Tell the type checker not to touch this constructor. CD->setInvalid(); } if (GenericParams) { for (auto Param : *GenericParams) Param.setDeclContext(CD); } addFunctionParametersToScope(BodyPattern, CD); ArgPattern->walk(SetVarContext(CD)); addToScope(SelfDecl); // '{' if (!Tok.is(tok::l_brace)) { if (!isInSILMode()) { if (!SignatureStatus.isError()) { // Don't emit this diagnostic if we already complained about this // constructor decl. diagnose(Tok, diag::expected_lbrace_initializer); } return makeParserResult(CD); } } else { // Parse the body. ParseFunctionBody CC(*this, CD); if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::invalid_diagnostic); if (!Body.isNull()) CD->setBody(Body.get()); } else { consumeAbstractFunctionBody(CD, Attributes); } } if (Attributes.isValid()) CD->getMutableAttrs() = Attributes; return makeParserResult(CD); } ParserResult Parser:: parseDeclDestructor(unsigned Flags, DeclAttributes &Attributes) { SourceLoc DestructorLoc = consumeToken(tok::kw_destructor); ParserResult Params; if (Tok.is(tok::l_paren)) { // Parse the parameter tuple. SourceLoc LParenLoc = Tok.getLoc(); DefaultArgumentInfo DefaultArgs; // ignored in valid code ParserResult Params = parsePatternTuple(&DefaultArgs, /*IsLet*/true); if (!Params.isParseError()) { // Check that the destructor has zero parameters. SourceRange ElementsRange; SourceLoc RParenLoc; if (auto Tuple = dyn_cast(Params.get())) { auto Fields = Tuple->getFields(); if (!Fields.empty()) { ElementsRange = { Fields.front().getPattern()->getStartLoc(), Fields.back().getPattern()->getEndLoc() }; RParenLoc = Tuple->getRParenLoc(); } } else { auto Paren = cast(Params.get()); ElementsRange = Paren->getSubPattern()->getSourceRange(); RParenLoc = Paren->getRParenLoc(); } if (ElementsRange.isValid()) { diagnose(LParenLoc, diag::destructor_parameter_nonempty_tuple) .fixItRemove(ElementsRange); Params = makeParserErrorResult( TuplePattern::create(Context, LParenLoc, ArrayRef(), RParenLoc)); } } } else { SourceLoc AfterDestructorKw = Lexer::getLocForEndOfToken(SourceMgr, DestructorLoc); diagnose(AfterDestructorKw, diag::expected_lparen_destructor) .fixItInsert(AfterDestructorKw, "()"); Params = makeParserErrorResult( TuplePattern::create(Context, Tok.getLoc(), ArrayRef(), Tok.getLoc())); } // '{' if (!Tok.is(tok::l_brace)) { if (!Tok.is(tok::l_brace) && !isInSILMode()) { diagnose(Tok, diag::expected_lbrace_destructor); return nullptr; } } VarDecl *SelfDecl = new (Context) VarDecl(/*static*/ false, /*IsLet*/ true, SourceLoc(), Context.SelfIdentifier, Type(), CurDeclContext); SelfDecl->setImplicit(); Scope S(this, ScopeKind::DestructorBody); DestructorDecl *DD = new (Context) DestructorDecl(Context.getIdentifier("destructor"), DestructorLoc, SelfDecl, CurDeclContext); // No need to setLocalDiscriminator. SelfDecl->setDeclContext(DD); addToScope(SelfDecl); // Parse the body. if (Tok.is(tok::l_brace)) { ParseFunctionBody CC(*this, DD); if (!isDelayedParsingEnabled()) { ParserResult Body = parseBraceItemList(diag::invalid_diagnostic); if (!Body.isNull()) DD->setBody(Body.get()); } else { consumeAbstractFunctionBody(DD, Attributes); } } if (Attributes.isValid()) DD->getMutableAttrs() = Attributes; // Reject 'destructor' functions outside of classes if (!(Flags & PD_AllowDestructor)) { diagnose(DestructorLoc, diag::destructor_decl_outside_class); // Tell the type checker not to touch this destructor. DD->setInvalid(); } return makeParserResult(DD); } ParserResult Parser::parseDeclOperator(bool AllowTopLevel, DeclAttributes &Attributes) { assert(Tok.isContextualKeyword("operator") && "no 'operator' at start of operator decl?!"); SourceLoc OperatorLoc = consumeToken(tok::identifier); if (!Attributes.empty()) diagnose(Attributes.AtLoc, diag::operator_attributes); auto kind = llvm::StringSwitch>(Tok.getText()) .Case("prefix", DeclKind::PrefixOperator) .Case("postfix", DeclKind::PostfixOperator) .Case("infix", DeclKind::InfixOperator) .Default(Nothing); assert(kind && "no fixity after 'operator'?!"); SourceLoc KindLoc = consumeToken(tok::identifier); if (!Tok.isAnyOperator() && !Tok.is(tok::exclaim_postfix)) { diagnose(Tok, diag::expected_operator_name_after_operator); return nullptr; } Identifier Name = Context.getIdentifier(Tok.getText()); SourceLoc NameLoc = consumeToken(); // Postfix operator '!' is reserved. if (*kind == DeclKind::PostfixOperator &&Name.str().equals("!")) { diagnose(NameLoc, diag::custom_operator_postfix_exclaim); } if (!Tok.is(tok::l_brace)) { diagnose(Tok, diag::expected_lbrace_after_operator); return nullptr; } ParserResult Result; switch (*kind) { case DeclKind::PrefixOperator: Result = parseDeclPrefixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; case DeclKind::PostfixOperator: Result = parseDeclPostfixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; case DeclKind::InfixOperator: Result = parseDeclInfixOperator(OperatorLoc, KindLoc, Name, NameLoc); break; default: llvm_unreachable("impossible"); } if (Tok.is(tok::r_brace)) consumeToken(); if (!AllowTopLevel) { diagnose(OperatorLoc, diag::operator_decl_inner_scope); return nullptr; } return Result; } ParserResult Parser::parseDeclPrefixOperator(SourceLoc OperatorLoc, SourceLoc PrefixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); while (!Tok.is(tok::r_brace)) { // Currently there are no operator attributes for prefix operators. if (Tok.is(tok::identifier)) diagnose(Tok, diag::unknown_prefix_operator_attribute, Tok.getText()); else diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult( new (Context) PrefixOperatorDecl(CurDeclContext, OperatorLoc, PrefixLoc, Name, NameLoc, LBraceLoc, RBraceLoc)); } ParserResult Parser::parseDeclPostfixOperator(SourceLoc OperatorLoc, SourceLoc PostfixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); while (!Tok.is(tok::r_brace)) { // Currently there are no operator attributes for postfix operators. if (Tok.is(tok::identifier)) diagnose(Tok, diag::unknown_postfix_operator_attribute, Tok.getText()); else diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult( new (Context) PostfixOperatorDecl(CurDeclContext, OperatorLoc, PostfixLoc, Name, NameLoc, LBraceLoc, RBraceLoc)); } ParserResult Parser::parseDeclInfixOperator(SourceLoc OperatorLoc, SourceLoc InfixLoc, Identifier Name, SourceLoc NameLoc) { SourceLoc LBraceLoc = consumeToken(tok::l_brace); // Initialize InfixData with default attributes: // precedence 100, associativity none unsigned char precedence = 100; Associativity associativity = Associativity::None; SourceLoc AssociativityLoc, AssociativityValueLoc, PrecedenceLoc, PrecedenceValueLoc; while (!Tok.is(tok::r_brace)) { if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_operator_attribute); skipUntilDeclRBrace(); return nullptr; } if (Tok.getText().equals("associativity")) { if (AssociativityLoc.isValid()) { diagnose(Tok, diag::operator_associativity_redeclared); skipUntilDeclRBrace(); return nullptr; } AssociativityLoc = consumeToken(); if (!Tok.is(tok::identifier)) { diagnose(Tok, diag::expected_infix_operator_associativity); skipUntilDeclRBrace(); return nullptr; } auto parsedAssociativity = llvm::StringSwitch>(Tok.getText()) .Case("none", Associativity::None) .Case("left", Associativity::Left) .Case("right", Associativity::Right) .Default(Nothing); if (!parsedAssociativity) { diagnose(Tok, diag::unknown_infix_operator_associativity, Tok.getText()); skipUntilDeclRBrace(); return nullptr; } associativity = *parsedAssociativity; AssociativityValueLoc = consumeToken(); continue; } if (Tok.getText().equals("precedence")) { if (PrecedenceLoc.isValid()) { diagnose(Tok, diag::operator_precedence_redeclared); skipUntilDeclRBrace(); return nullptr; } PrecedenceLoc = consumeToken(); if (!Tok.is(tok::integer_literal)) { diagnose(Tok, diag::expected_infix_operator_precedence); skipUntilDeclRBrace(); return nullptr; } if (Tok.getText().getAsInteger(0, precedence)) { diagnose(Tok, diag::invalid_infix_operator_precedence); precedence = 255; } PrecedenceValueLoc = consumeToken(); continue; } diagnose(Tok, diag::unknown_infix_operator_attribute, Tok.getText()); skipUntilDeclRBrace(); return nullptr; } SourceLoc RBraceLoc = Tok.getLoc(); return makeParserResult(new (Context) InfixOperatorDecl( CurDeclContext, OperatorLoc, InfixLoc, Name, NameLoc, LBraceLoc, AssociativityLoc, AssociativityValueLoc, PrecedenceLoc, PrecedenceValueLoc, RBraceLoc, InfixData(precedence, associativity))); }