//===--- CSSimplify.cpp - Constraint Simplification -----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file implements simplifications of constraints within the constraint // system. // //===----------------------------------------------------------------------===// #include "CSFix.h" #include "ConstraintSystem.h" #include "swift/AST/ExistentialLayout.h" #include "swift/AST/GenericEnvironment.h" #include "swift/AST/GenericSignature.h" #include "swift/AST/ParameterList.h" #include "swift/AST/ProtocolConformance.h" #include "swift/Basic/StringExtras.h" #include "swift/ClangImporter/ClangModule.h" #include "swift/Sema/IDETypeChecking.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/Compiler.h" using namespace swift; using namespace constraints; MatchCallArgumentListener::~MatchCallArgumentListener() { } void MatchCallArgumentListener::extraArgument(unsigned argIdx) { } void MatchCallArgumentListener::missingArgument(unsigned paramIdx) { } bool MatchCallArgumentListener::missingLabel(unsigned paramIdx) { return true; } bool MatchCallArgumentListener::extraneousLabel(unsigned paramIdx) { return true; } bool MatchCallArgumentListener::incorrectLabel(unsigned paramIdx) { return true; } bool MatchCallArgumentListener::outOfOrderArgument(unsigned argIdx, unsigned prevArgIdx) { return true; } bool MatchCallArgumentListener::relabelArguments(ArrayRef newNames){ return true; } bool MatchCallArgumentListener::trailingClosureMismatch( unsigned paramIdx, unsigned argIdx) { return true; } /// Produce a score (smaller is better) comparing a parameter name and /// potentially-typo'd argument name. /// /// \param paramName The name of the parameter. /// \param argName The name of the argument. /// \param maxScore The maximum score permitted by this comparison, or /// 0 if there is no limit. /// /// \returns the score, if it is good enough to even consider this a match. /// Otherwise, an empty optional. /// static Optional scoreParamAndArgNameTypo(StringRef paramName, StringRef argName, unsigned maxScore) { using namespace camel_case; // Compute the edit distance. unsigned dist = argName.edit_distance(paramName, /*AllowReplacements=*/true, /*MaxEditDistance=*/maxScore); // If the edit distance would be too long, we're done. if (maxScore != 0 && dist > maxScore) return None; // The distance can be zero due to the "with" transformation above. if (dist == 0) return 1; // If this is just a single character label on both sides, // simply return distance. if (paramName.size() == 1 && argName.size() == 1) return dist; // Only allow about one typo for every two properly-typed characters, which // prevents completely-wacky suggestions in many cases. if (dist > (argName.size() + 1) / 3) return None; return dist; } bool constraints::areConservativelyCompatibleArgumentLabels( OverloadChoice choice, ArrayRef labels, bool hasTrailingClosure) { ValueDecl *decl = nullptr; Type baseType; switch (choice.getKind()) { case OverloadChoiceKind::Decl: case OverloadChoiceKind::DeclViaBridge: case OverloadChoiceKind::DeclViaDynamic: case OverloadChoiceKind::DeclViaUnwrappedOptional: decl = choice.getDecl(); baseType = choice.getBaseType(); if (baseType) baseType = baseType->getRValueType(); break; case OverloadChoiceKind::KeyPathApplication: // Key path applications are written as if subscript[keyPath:]. return !hasTrailingClosure && labels.size() == 1 && labels[0].is("keyPath"); case OverloadChoiceKind::BaseType: case OverloadChoiceKind::DynamicMemberLookup: case OverloadChoiceKind::KeyPathDynamicMemberLookup: case OverloadChoiceKind::TupleIndex: return true; } // This is a member lookup, which generally means that the call arguments // (if we have any) will apply to the second level of parameters, with // the member lookup binding the first level. But there are cases where // we can get an unapplied declaration reference back. bool hasCurriedSelf; if (isa(decl)) { hasCurriedSelf = true; } else if (!baseType || baseType->is()) { hasCurriedSelf = false; } else if (baseType->is() && decl->isInstanceMember()) { hasCurriedSelf = false; } else if (auto *EED = dyn_cast(decl)) { // enum elements have either `(Self.Type) -> (Arg...) -> Self`, or // `(Self.Type) -> Self`, in the former case self type has to be // stripped off. hasCurriedSelf = bool(EED->getParameterList()); } else { hasCurriedSelf = true; } const AnyFunctionType *fTy; if (auto fn = dyn_cast(decl)) { fTy = fn->getInterfaceType()->castTo(); } else if (auto subscript = dyn_cast(decl)) { fTy = subscript->getInterfaceType()->castTo(); } else if (auto enumElement = dyn_cast(decl)) { fTy = enumElement->getInterfaceType()->castTo(); } else { return true; } SmallVector argInfos; for (auto argLabel : labels) { argInfos.push_back(AnyFunctionType::Param(Type(), argLabel, {})); } const AnyFunctionType *levelTy = fTy; if (hasCurriedSelf && !isa(decl)) { levelTy = levelTy->getResult()->getAs(); assert(levelTy && "Parameter list curry level does not match type"); } auto params = levelTy->getParams(); SmallBitVector defaultMap = computeDefaultMap(params, decl, hasCurriedSelf); MatchCallArgumentListener listener; SmallVector unusedParamBindings; return !matchCallArguments(argInfos, params, defaultMap, hasTrailingClosure, /*allow fixes*/ false, listener, unusedParamBindings); } Expr *constraints::getArgumentLabelTargetExpr(Expr *fn) { // Dig out the function, looking through, parentheses, ?, and !. do { fn = fn->getSemanticsProvidingExpr(); if (auto force = dyn_cast(fn)) { fn = force->getSubExpr(); continue; } if (auto bind = dyn_cast(fn)) { fn = bind->getSubExpr(); continue; } return fn; } while (true); } /// Determine the default type-matching options to use when decomposing a /// constraint into smaller constraints. static ConstraintSystem::TypeMatchOptions getDefaultDecompositionOptions( ConstraintSystem::TypeMatchOptions flags) { return flags | ConstraintSystem::TMF_GenerateConstraints; } /// Determine whether the given parameter can accept a trailing closure. static bool acceptsTrailingClosure(const AnyFunctionType::Param ¶m) { Type paramTy = param.getPlainType(); if (!paramTy) return true; paramTy = paramTy->lookThroughAllOptionalTypes(); return paramTy->isTypeParameter() || paramTy->is() || paramTy->is() || paramTy->isTypeVariableOrMember() || paramTy->is() || paramTy->isAny(); } // FIXME: This should return ConstraintSystem::TypeMatchResult instead // to give more information to the solver about the failure. bool constraints:: matchCallArguments(ArrayRef args, ArrayRef params, const SmallBitVector &defaultMap, bool hasTrailingClosure, bool allowFixes, MatchCallArgumentListener &listener, SmallVectorImpl ¶meterBindings) { assert(params.size() == defaultMap.size() && "Default map does not match"); // Keep track of the parameter we're matching and what argument indices // got bound to each parameter. unsigned paramIdx, numParams = params.size(); parameterBindings.clear(); parameterBindings.resize(numParams); // Keep track of which arguments we have claimed from the argument tuple. unsigned nextArgIdx = 0, numArgs = args.size(); SmallVector claimedArgs(numArgs, false); SmallVector actualArgNames; unsigned numClaimedArgs = 0; // Indicates whether any of the arguments are potentially out-of-order, // requiring further checking at the end. bool potentiallyOutOfOrder = false; auto hasDefault = [&defaultMap, &numParams](unsigned idx) -> bool { return idx < numParams ? defaultMap.test(idx) : false; }; // Local function that claims the argument at \c argNumber, returning the // index of the claimed argument. This is primarily a helper for // \c claimNextNamed. auto claim = [&](Identifier expectedName, unsigned argNumber, bool ignoreNameClash = false) -> unsigned { // Make sure we can claim this argument. assert(argNumber != numArgs && "Must have a valid index to claim"); assert(!claimedArgs[argNumber] && "Argument already claimed"); if (!actualArgNames.empty()) { // We're recording argument names; record this one. actualArgNames[argNumber] = expectedName; } else if (args[argNumber].getLabel() != expectedName && !ignoreNameClash) { // We have an argument name mismatch. Start recording argument names. actualArgNames.resize(numArgs); // Figure out previous argument names from the parameter bindings. for (unsigned i = 0; i != numParams; ++i) { const auto ¶m = params[i]; bool firstArg = true; for (auto argIdx : parameterBindings[i]) { actualArgNames[argIdx] = firstArg ? param.getLabel() : Identifier(); firstArg = false; } } // Record this argument name. actualArgNames[argNumber] = expectedName; } claimedArgs[argNumber] = true; ++numClaimedArgs; return argNumber; }; // Local function that skips over any claimed arguments. auto skipClaimedArgs = [&]() { while (nextArgIdx != numArgs && claimedArgs[nextArgIdx]) ++nextArgIdx; }; // Local function that retrieves the next unclaimed argument with the given // name (which may be empty). This routine claims the argument. auto claimNextNamed = [&](Identifier paramLabel, bool ignoreNameMismatch, bool forVariadic = false) -> Optional { // Skip over any claimed arguments. skipClaimedArgs(); // If we've claimed all of the arguments, there's nothing more to do. if (numClaimedArgs == numArgs) return None; // Go hunting for an unclaimed argument whose name does match. Optional claimedWithSameName; for (unsigned i = nextArgIdx; i != numArgs; ++i) { auto argLabel = args[i].getLabel(); if (argLabel != paramLabel) { // If this is an attempt to claim additional unlabeled arguments // for variadic parameter, we have to stop at first labeled argument. if (forVariadic) return None; // Otherwise we can continue trying to find argument which // matches parameter with or without label. continue; } // Skip claimed arguments. if (claimedArgs[i]) { // Note that we have already claimed an argument with the same name. if (!claimedWithSameName) claimedWithSameName = i; continue; } // We found a match. If the match wasn't the next one, we have // potentially out of order arguments. if (i != nextArgIdx) { // Avoid claiming un-labeled defaulted parameters // by out-of-order un-labeled arguments or parts // of variadic argument sequence, because that might // be incorrect: // ```swift // func foo(_ a: Int, _ b: Int = 0, c: Int = 0, _ d: Int) {} // foo(1, c: 2, 3) // -> `3` will be claimed as '_ b:'. // ``` if (argLabel.empty() && (hasDefault(i) || !forVariadic)) continue; potentiallyOutOfOrder = true; } // Claim it. return claim(paramLabel, i); } // If we're not supposed to attempt any fixes, we're done. if (!allowFixes) return None; // Several things could have gone wrong here, and we'll check for each // of them at some point: // - The keyword argument might be redundant, in which case we can point // out the issue. // - The argument might be unnamed, in which case we try to fix the // problem by adding the name. // - The argument might have extraneous label, in which case we try to // fix the problem by removing such label. // - The keyword argument might be a typo for an actual argument name, in // which case we should find the closest match to correct to. // Missing or extraneous label. if (nextArgIdx != numArgs && ignoreNameMismatch) { auto argLabel = args[nextArgIdx].getLabel(); // Claim this argument if we are asked to ignore labeling failure, // only if argument doesn't have a label when parameter expected // it to, or vice versa. if (paramLabel.empty() || argLabel.empty()) return claim(paramLabel, nextArgIdx); } // Redundant keyword arguments. if (claimedWithSameName) { // FIXME: We can provide better diagnostics here. return None; } // Typo correction is handled in a later pass. return None; }; // Local function that attempts to bind the given parameter to arguments in // the list. bool haveUnfulfilledParams = false; auto bindNextParameter = [&](bool ignoreNameMismatch) { const auto ¶m = params[paramIdx]; // Handle variadic parameters. if (param.isVariadic()) { // Claim the next argument with the name of this parameter. auto claimed = claimNextNamed(param.getLabel(), ignoreNameMismatch); // If there was no such argument, leave the parameter unfulfilled. if (!claimed) { haveUnfulfilledParams = true; return; } // Record the first argument for the variadic. parameterBindings[paramIdx].push_back(*claimed); // If the argument is itself variadic, we're forwarding varargs // with a VarargExpansionExpr; don't collect any more arguments. if (args[*claimed].isVariadic()) { skipClaimedArgs(); return; } auto currentNextArgIdx = nextArgIdx; { nextArgIdx = *claimed; // Claim any additional unnamed arguments. while ((claimed = claimNextNamed(Identifier(), false, true))) { parameterBindings[paramIdx].push_back(*claimed); } } nextArgIdx = currentNextArgIdx; skipClaimedArgs(); return; } // Try to claim an argument for this parameter. if (auto claimed = claimNextNamed(param.getLabel(), ignoreNameMismatch)) { parameterBindings[paramIdx].push_back(*claimed); skipClaimedArgs(); return; } // There was no argument to claim. Leave the argument unfulfilled. haveUnfulfilledParams = true; }; // If we have a trailing closure, it maps to the last parameter. if (hasTrailingClosure && numParams > 0) { // If there is no suitable last parameter to accept the trailing closure, // notify the listener and bail if we need to. if (!acceptsTrailingClosure(params[numParams - 1])) { if (listener.trailingClosureMismatch(numParams - 1, numArgs - 1)) return true; } // Claim the parameter/argument pair. claimedArgs[numArgs-1] = true; ++numClaimedArgs; parameterBindings[numParams-1].push_back(numArgs-1); } // Mark through the parameters, binding them to their arguments. for (paramIdx = 0; paramIdx != numParams; ++paramIdx) { if (parameterBindings[paramIdx].empty()) bindNextParameter(false); } // If we have any unclaimed arguments, complain about those. if (numClaimedArgs != numArgs) { // Find all of the named, unclaimed arguments. llvm::SmallVector unclaimedNamedArgs; for (nextArgIdx = 0; skipClaimedArgs(), nextArgIdx != numArgs; ++nextArgIdx) { if (!args[nextArgIdx].getLabel().empty()) unclaimedNamedArgs.push_back(nextArgIdx); } if (!unclaimedNamedArgs.empty()) { // Find all of the named, unfulfilled parameters. llvm::SmallVector unfulfilledNamedParams; bool hasUnfulfilledUnnamedParams = false; for (paramIdx = 0; paramIdx != numParams; ++paramIdx) { if (parameterBindings[paramIdx].empty()) { if (params[paramIdx].getLabel().empty()) hasUnfulfilledUnnamedParams = true; else unfulfilledNamedParams.push_back(paramIdx); } } if (!unfulfilledNamedParams.empty()) { // Use typo correction to find the best matches. // FIXME: There is undoubtedly a good dynamic-programming algorithm // to find the best assignment here. for (auto argIdx : unclaimedNamedArgs) { auto argName = args[argIdx].getLabel(); // Find the closest matching unfulfilled named parameter. unsigned bestScore = 0; unsigned best = 0; for (unsigned i = 0, n = unfulfilledNamedParams.size(); i != n; ++i) { unsigned param = unfulfilledNamedParams[i]; auto paramName = params[param].getLabel(); if (auto score = scoreParamAndArgNameTypo(paramName.str(), argName.str(), bestScore)) { if (*score < bestScore || bestScore == 0) { bestScore = *score; best = i; } } } // If we found a parameter to fulfill, do it. if (bestScore > 0) { // Bind this parameter to the argument. nextArgIdx = argIdx; paramIdx = unfulfilledNamedParams[best]; auto paramLabel = params[paramIdx].getLabel(); parameterBindings[paramIdx].push_back(claim(paramLabel, argIdx)); skipClaimedArgs(); // Erase this parameter from the list of unfulfilled named // parameters, so we don't try to fulfill it again. unfulfilledNamedParams.erase(unfulfilledNamedParams.begin() + best); if (unfulfilledNamedParams.empty()) break; } } // Update haveUnfulfilledParams, because we may have fulfilled some // parameters above. haveUnfulfilledParams = hasUnfulfilledUnnamedParams || !unfulfilledNamedParams.empty(); } } // Find all of the unfulfilled parameters, and match them up // semi-positionally. if (numClaimedArgs != numArgs) { // Restart at the first argument/parameter. nextArgIdx = 0; skipClaimedArgs(); haveUnfulfilledParams = false; for (paramIdx = 0; paramIdx != numParams; ++paramIdx) { // Skip fulfilled parameters. if (!parameterBindings[paramIdx].empty()) continue; bindNextParameter(true); } } // If there are as many arguments as parameters but we still // haven't claimed all of the arguments, it could mean that // labels don't line up, if so let's try to claim arguments // with incorrect labels, and let OoO/re-labeling logic diagnose that. if (numArgs == numParams && numClaimedArgs != numArgs) { for (unsigned i = 0; i < numArgs; ++i) { if (claimedArgs[i] || !parameterBindings[i].empty()) continue; // If parameter has a default value, we don't really // now if label doesn't match because it's incorrect // or argument belongs to some other parameter, so // we just leave this parameter unfulfilled. if (defaultMap.test(i)) continue; // Looks like there was no parameter claimed at the same // position, it could only mean that label is completely // different, because typo correction has been attempted already. parameterBindings[i].push_back(claim(params[i].getLabel(), i)); } } // If we still haven't claimed all of the arguments, fail. if (numClaimedArgs != numArgs) { nextArgIdx = 0; skipClaimedArgs(); listener.extraArgument(nextArgIdx); return true; } // FIXME: If we had the actual parameters and knew the body names, those // matches would be best. potentiallyOutOfOrder = true; } // If we have any unfulfilled parameters, check them now. if (haveUnfulfilledParams) { for (paramIdx = 0; paramIdx != numParams; ++paramIdx) { // If we have a binding for this parameter, we're done. if (!parameterBindings[paramIdx].empty()) continue; const auto ¶m = params[paramIdx]; // Variadic parameters can be unfulfilled. if (param.isVariadic()) continue; // Parameters with defaults can be unfulfilled. if (hasDefault(paramIdx)) continue; listener.missingArgument(paramIdx); return true; } } // If any arguments were provided out-of-order, check whether we have // violated any of the reordering rules. if (potentiallyOutOfOrder) { // If we've seen label failures and now there is an out-of-order // parameter (or even worse - OoO parameter with label re-naming), // we most likely have no idea what would be the best // diagnostic for this situation, so let's just try to re-label. auto isOutOfOrderArgument = [&](bool hadLabelMismatch, unsigned argIdx, unsigned prevArgIdx) { if (hadLabelMismatch) return false; auto newLabel = args[argIdx].getLabel(); auto oldLabel = args[prevArgIdx].getLabel(); unsigned actualIndex = prevArgIdx; for (; actualIndex != argIdx; ++actualIndex) { // Looks like new position (excluding defaulted parameters), // has a valid label. if (newLabel == params[actualIndex].getLabel()) break; // If we are moving the the position with a different label // and there is no default value for it, can't diagnose the // problem as a simple re-ordering. if (!defaultMap.test(actualIndex)) return false; } for (unsigned i = actualIndex + 1, n = params.size(); i != n; ++i) { if (oldLabel == params[i].getLabel()) break; if (!defaultMap.test(i)) return false; } return true; }; unsigned argIdx = 0; // Enumerate the parameters and their bindings to see if any arguments are // our of order bool hadLabelMismatch = false; for (auto binding : parameterBindings) { for (auto boundArgIdx : binding) { // We've found the parameter that has an out of order // argument, and know the indices of the argument that // needs to move (fromArgIdx) and the argument location // it should move to (toArgIdx). auto fromArgIdx = boundArgIdx; auto toArgIdx = argIdx; // If there is no re-ordering going on, and index is past // the number of parameters, it could only mean that this // is variadic parameter, so let's just move on. if (fromArgIdx == toArgIdx && toArgIdx >= params.size()) { assert(args[fromArgIdx].getLabel().empty()); argIdx++; continue; } // First let's double check if out-of-order argument is nothing // more than a simple label mismatch, because in situation where // one argument requires label and another one doesn't, but caller // doesn't provide either, problem is going to be identified as // out-of-order argument instead of label mismatch. auto expectedLabel = params[toArgIdx].getLabel(); auto argumentLabel = args[fromArgIdx].getLabel(); if (argumentLabel != expectedLabel) { // - The parameter is unnamed, in which case we try to fix the // problem by removing the name. if (expectedLabel.empty()) { hadLabelMismatch = true; if (listener.extraneousLabel(toArgIdx)) return true; // - The argument is unnamed, in which case we try to fix the // problem by adding the name. } else if (argumentLabel.empty()) { hadLabelMismatch = true; if (listener.missingLabel(toArgIdx)) return true; // - The argument label has a typo at the same position. } else if (fromArgIdx == toArgIdx) { hadLabelMismatch = true; if (listener.incorrectLabel(toArgIdx)) return true; } } if (boundArgIdx == argIdx) { // If the argument is in the right location, just continue argIdx++; continue; } // This situation looks like out-of-order argument but it's hard // to say exactly without considering other factors, because it // could be invalid labeling too. if (isOutOfOrderArgument(hadLabelMismatch, fromArgIdx, toArgIdx)) return listener.outOfOrderArgument(fromArgIdx, toArgIdx); SmallVector expectedLabels; llvm::transform(params, std::back_inserter(expectedLabels), [](const AnyFunctionType::Param ¶m) { return param.getLabel(); }); return listener.relabelArguments(expectedLabels); } } } // If no arguments were renamed, the call arguments match up with the // parameters. if (actualArgNames.empty()) return false; // The arguments were relabeled; notify the listener. return listener.relabelArguments(actualArgNames); } /// Find the callee declaration and uncurry level for a given call /// locator. static std::tuple, bool> getCalleeDeclAndArgs(ConstraintSystem &cs, ConstraintLocatorBuilder callLocator, SmallVectorImpl &argLabelsScratch) { ArrayRef argLabels; bool hasTrailingClosure = false; // Break down the call. SmallVector path; auto callExpr = callLocator.getLocatorParts(path); if (!callExpr) return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); // Our remaining path can only be 'ApplyArgument'. if (!path.empty() && !(path.size() <= 2 && path.back().getKind() == ConstraintLocator::ApplyArgument)) return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); // Dig out the callee. ConstraintLocator *targetLocator; if (auto call = dyn_cast(callExpr)) { targetLocator = cs.getConstraintLocator(call->getDirectCallee()); argLabels = call->getArgumentLabels(); hasTrailingClosure = call->hasTrailingClosure(); } else if (auto unresolved = dyn_cast(callExpr)) { targetLocator = cs.getConstraintLocator(callExpr); argLabels = unresolved->getArgumentLabels(); hasTrailingClosure = unresolved->hasTrailingClosure(); } else if (auto subscript = dyn_cast(callExpr)) { targetLocator = cs.getConstraintLocator(callExpr); argLabels = subscript->getArgumentLabels(); hasTrailingClosure = subscript->hasTrailingClosure(); } else if (auto dynSubscript = dyn_cast(callExpr)) { targetLocator = cs.getConstraintLocator(callExpr); argLabels = dynSubscript->getArgumentLabels(); hasTrailingClosure = dynSubscript->hasTrailingClosure(); } else if (auto keyPath = dyn_cast(callExpr)) { if (path.size() != 2 || path[0].getKind() != ConstraintLocator::KeyPathComponent || path[1].getKind() != ConstraintLocator::ApplyArgument) return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); auto componentIndex = path[0].getValue(); if (componentIndex >= keyPath->getComponents().size()) return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); auto &component = keyPath->getComponents()[componentIndex]; switch (component.getKind()) { case KeyPathExpr::Component::Kind::Subscript: case KeyPathExpr::Component::Kind::UnresolvedSubscript: targetLocator = cs.getConstraintLocator(callExpr, path[0]); argLabels = component.getSubscriptLabels(); hasTrailingClosure = false; // key paths don't support trailing closures break; case KeyPathExpr::Component::Kind::Invalid: case KeyPathExpr::Component::Kind::UnresolvedProperty: case KeyPathExpr::Component::Kind::Property: case KeyPathExpr::Component::Kind::OptionalForce: case KeyPathExpr::Component::Kind::OptionalChain: case KeyPathExpr::Component::Kind::OptionalWrap: case KeyPathExpr::Component::Kind::Identity: case KeyPathExpr::Component::Kind::TupleElement: return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); } } else { if (auto apply = dyn_cast(callExpr)) { argLabels = apply->getArgumentLabels(argLabelsScratch); assert(!apply->hasTrailingClosure()); } else if (auto objectLiteral = dyn_cast(callExpr)) { argLabels = objectLiteral->getArgumentLabels(); hasTrailingClosure = objectLiteral->hasTrailingClosure(); } return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); } // Find the overload choice corresponding to the callee locator. // FIXME: This linearly walks the list of resolved overloads, which is // potentially very expensive. Optional choice; for (auto resolved = cs.getResolvedOverloadSets(); resolved; resolved = resolved->Previous) { // FIXME: Workaround null locators. if (!resolved->Locator) continue; auto resolvedLocator = resolved->Locator; SmallVector resolvedPath( resolvedLocator->getPath().begin(), resolvedLocator->getPath().end()); if (!resolvedPath.empty() && (resolvedPath.back().getKind() == ConstraintLocator::SubscriptMember || resolvedPath.back().getKind() == ConstraintLocator::Member || resolvedPath.back().getKind() == ConstraintLocator::UnresolvedMember || resolvedPath.back().getKind() == ConstraintLocator::ConstructorMember)) { resolvedPath.pop_back(); resolvedLocator = cs.getConstraintLocator( resolvedLocator->getAnchor(), resolvedPath, resolvedLocator->getSummaryFlags()); } SourceRange range; resolvedLocator = simplifyLocator(cs, resolvedLocator, range); if (resolvedLocator == targetLocator) { choice = resolved->Choice; break; } } // If we didn't find any matching overloads, we're done. if (!choice) return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); // If there's a declaration, return it. if (auto *decl = choice->getDeclOrNull()) { bool hasCurriedSelf = false; if (decl->getDeclContext()->isTypeContext()) { if (auto function = dyn_cast(decl)) { // References to instance members on a metatype stay at level 0. // Everything else is level 1. if (!(function->isInstanceMember() && cs.getFixedTypeRecursive(choice->getBaseType(), /*wantRValue=*/true) ->is())) hasCurriedSelf = true; } else if (isa(decl)) { // Subscript level 1 == the indices. hasCurriedSelf = true; } else if (isa(decl)) { // Enum element level 1 == the payload. hasCurriedSelf = true; } } return std::make_tuple(decl, hasCurriedSelf, argLabels, hasTrailingClosure); } return std::make_tuple(nullptr, /*hasCurriedSelf=*/false, argLabels, hasTrailingClosure); } class ArgumentFailureTracker : public MatchCallArgumentListener { ConstraintSystem &CS; SmallVectorImpl &Bindings; ConstraintLocatorBuilder Locator; public: ArgumentFailureTracker(ConstraintSystem &cs, SmallVectorImpl &bindings, ConstraintLocatorBuilder locator) : CS(cs), Bindings(bindings), Locator(locator) {} bool missingLabel(unsigned paramIndex) override { return !CS.shouldAttemptFixes(); } bool extraneousLabel(unsigned paramIndex) override { return !CS.shouldAttemptFixes(); } bool incorrectLabel(unsigned paramIndex) override { return !CS.shouldAttemptFixes(); } bool outOfOrderArgument(unsigned argIdx, unsigned prevArgIdx) override { if (CS.shouldAttemptFixes()) { auto *fix = MoveOutOfOrderArgument::create( CS, argIdx, prevArgIdx, Bindings, CS.getConstraintLocator(Locator)); return CS.recordFix(fix); } return true; } bool relabelArguments(ArrayRef newLabels) override { if (!CS.shouldAttemptFixes()) return true; auto *anchor = Locator.getBaseLocator()->getAnchor(); if (!anchor) return true; auto *locator = CS.getConstraintLocator(anchor); auto *fix = RelabelArguments::create(CS, newLabels, locator); CS.recordFix(fix); return false; } }; // Match the argument of a call to the parameter. ConstraintSystem::TypeMatchResult constraints::matchCallArguments( ConstraintSystem &cs, ArrayRef args, ArrayRef params, ConstraintKind subKind, ConstraintLocatorBuilder locator) { // Extract the parameters. ValueDecl *callee; bool hasCurriedSelf; ArrayRef argLabels; SmallVector argLabelsScratch; bool hasTrailingClosure = false; std::tie(callee, hasCurriedSelf, argLabels, hasTrailingClosure) = getCalleeDeclAndArgs(cs, locator, argLabelsScratch); SmallBitVector defaultMap = computeDefaultMap(params, callee, hasCurriedSelf); // Apply labels to arguments. SmallVector argsWithLabels; argsWithLabels.append(args.begin(), args.end()); AnyFunctionType::relabelParams(argsWithLabels, argLabels); // Match up the call arguments to the parameters. SmallVector parameterBindings; ArgumentFailureTracker listener(cs, parameterBindings, locator); if (constraints::matchCallArguments(argsWithLabels, params, defaultMap, hasTrailingClosure, cs.shouldAttemptFixes(), listener, parameterBindings)) return cs.getTypeMatchFailure(locator); // If this application is part of an operator, then we allow an implicit // lvalue to be compatible with inout arguments. This is used by // assignment operators. auto *anchor = locator.getAnchor(); assert(anchor && "locator without anchor expression?"); for (unsigned paramIdx = 0, numParams = parameterBindings.size(); paramIdx != numParams; ++paramIdx){ // Skip unfulfilled parameters. There's nothing to do for them. if (parameterBindings[paramIdx].empty()) continue; // Determine the parameter type. const auto ¶m = params[paramIdx]; auto paramTy = param.getOldType(); // Compare each of the bound arguments for this parameter. for (auto argIdx : parameterBindings[paramIdx]) { auto loc = locator.withPathElement(LocatorPathElt:: getApplyArgToParam(argIdx, paramIdx)); auto argTy = argsWithLabels[argIdx].getOldType(); bool matchingAutoClosureResult = param.isAutoClosure(); if (param.isAutoClosure()) { auto &ctx = cs.getASTContext(); auto *fnType = paramTy->castTo(); auto *argExpr = getArgumentExpr(locator.getAnchor(), argIdx); // If the argument is not marked as @autoclosure or // this is Swift version >= 5 where forwarding is not allowed, // argument would always be wrapped into an implicit closure // at the end, so we can safely match against result type. if (ctx.isSwiftVersionAtLeast(5) || !isAutoClosureArgument(argExpr)) { // In Swift >= 5 mode there is no @autoclosure forwarding, // so let's match result types. paramTy = fnType->getResult(); } else { // Matching @autoclosure argument to @autoclosure parameter // directly would mean introducting a function conversion // in Swift <= 4 mode. cs.increaseScore(SK_FunctionConversion); matchingAutoClosureResult = false; } } // If argument comes for declaration it should loose // `@autoclosure` flag, because in context it's used // as a function type represented by autoclosure. assert(!argsWithLabels[argIdx].isAutoClosure()); cs.addConstraint( subKind, argTy, paramTy, matchingAutoClosureResult ? loc.withPathElement(ConstraintLocator::AutoclosureResult) : loc, /*isFavored=*/false); } } return cs.getTypeMatchSuccess(); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchTupleTypes(TupleType *tuple1, TupleType *tuple2, ConstraintKind kind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // FIXME: Remove varargs logic below once we're no longer comparing // argument lists in CSRanking. // Equality and subtyping have fairly strict requirements on tuple matching, // requiring element names to either match up or be disjoint. if (kind < ConstraintKind::Conversion) { if (tuple1->getNumElements() != tuple2->getNumElements()) return getTypeMatchFailure(locator); for (unsigned i = 0, n = tuple1->getNumElements(); i != n; ++i) { const auto &elt1 = tuple1->getElement(i); const auto &elt2 = tuple2->getElement(i); // If the names don't match, we may have a conflict. if (elt1.getName() != elt2.getName()) { // Same-type requirements require exact name matches. if (kind <= ConstraintKind::Equal) return getTypeMatchFailure(locator); // For subtyping constraints, just make sure that this name isn't // used at some other position. if (elt2.hasName() && tuple1->getNamedElementId(elt2.getName()) != -1) return getTypeMatchFailure(locator); } // Variadic bit must match. if (elt1.isVararg() != elt2.isVararg()) return getTypeMatchFailure(locator); // Compare the element types. auto result = matchTypes(elt1.getType(), elt2.getType(), kind, subflags, locator.withPathElement( LocatorPathElt::getTupleElement(i))); if (result.isFailure()) return result; } return getTypeMatchSuccess(); } assert(kind >= ConstraintKind::Conversion); ConstraintKind subKind; switch (kind) { case ConstraintKind::OperatorArgumentConversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::Conversion: subKind = ConstraintKind::Conversion; break; case ConstraintKind::OpaqueUnderlyingType: case ConstraintKind::Bind: case ConstraintKind::BindParam: case ConstraintKind::BindToPointerType: case ConstraintKind::Equal: case ConstraintKind::Subtype: case ConstraintKind::ApplicableFunction: case ConstraintKind::DynamicCallableApplicableFunction: case ConstraintKind::BindOverload: case ConstraintKind::CheckedCast: case ConstraintKind::ConformsTo: case ConstraintKind::Defaultable: case ConstraintKind::Disjunction: case ConstraintKind::DynamicTypeOf: case ConstraintKind::EscapableFunctionOf: case ConstraintKind::OpenedExistentialOf: case ConstraintKind::KeyPath: case ConstraintKind::KeyPathApplication: case ConstraintKind::LiteralConformsTo: case ConstraintKind::OptionalObject: case ConstraintKind::SelfObjectOfProtocol: case ConstraintKind::UnresolvedValueMember: case ConstraintKind::ValueMember: case ConstraintKind::BridgingConversion: case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: llvm_unreachable("Not a conversion"); } // Compute the element shuffles for conversions. SmallVector sources; if (computeTupleShuffle(tuple1, tuple2, sources)) return getTypeMatchFailure(locator); // Check each of the elements. for (unsigned idx2 = 0, n = sources.size(); idx2 != n; ++idx2) { unsigned idx1 = sources[idx2]; // Match up the types. const auto &elt1 = tuple1->getElement(idx1); const auto &elt2 = tuple2->getElement(idx2); auto result = matchTypes(elt1.getType(), elt2.getType(), subKind, subflags, locator.withPathElement( LocatorPathElt::getTupleElement(idx1))); if (result.isFailure()) return result; } return getTypeMatchSuccess(); } // Returns 'false' (i.e. no error) if it is legal to match functions with the // corresponding function type representations and the given match kind. static bool matchFunctionRepresentations(FunctionTypeRepresentation rep1, FunctionTypeRepresentation rep2, ConstraintKind kind) { switch (kind) { case ConstraintKind::Bind: case ConstraintKind::BindParam: case ConstraintKind::BindToPointerType: case ConstraintKind::Equal: return rep1 != rep2; case ConstraintKind::OpaqueUnderlyingType: case ConstraintKind::Subtype: case ConstraintKind::Conversion: case ConstraintKind::BridgingConversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::OperatorArgumentConversion: case ConstraintKind::ApplicableFunction: case ConstraintKind::DynamicCallableApplicableFunction: case ConstraintKind::BindOverload: case ConstraintKind::CheckedCast: case ConstraintKind::ConformsTo: case ConstraintKind::Defaultable: case ConstraintKind::Disjunction: case ConstraintKind::DynamicTypeOf: case ConstraintKind::EscapableFunctionOf: case ConstraintKind::OpenedExistentialOf: case ConstraintKind::KeyPath: case ConstraintKind::KeyPathApplication: case ConstraintKind::LiteralConformsTo: case ConstraintKind::OptionalObject: case ConstraintKind::SelfObjectOfProtocol: case ConstraintKind::UnresolvedValueMember: case ConstraintKind::ValueMember: case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: return false; } llvm_unreachable("Unhandled ConstraintKind in switch."); } /// Check whether given parameter list represents a single tuple /// or type variable which could be later resolved to tuple. /// This is useful for SE-0110 related fixes in `matchFunctionTypes`. static bool isSingleTupleParam(ASTContext &ctx, ArrayRef params) { if (params.size() != 1) return false; const auto ¶m = params.front(); if (param.isVariadic() || param.isInOut() || param.hasLabel()) return false; auto paramType = param.getPlainType(); // Support following case which was allowed until 5: // // func bar(_: (Int, Int) -> Void) {} // let foo: ((Int, Int)?) -> Void = { _ in } // // bar(foo) // Ok if (!ctx.isSwiftVersionAtLeast(5)) paramType = paramType->lookThroughAllOptionalTypes(); // Parameter type should either a tuple or something that can become a // tuple later on. return (paramType->is() || paramType->isTypeVariableOrMember()); } /// Attempt to fix missing arguments by introducing type variables /// and inferring their types from parameters. static bool fixMissingArguments(ConstraintSystem &cs, Expr *anchor, FunctionType *funcType, SmallVectorImpl &args, SmallVectorImpl ¶ms, unsigned numMissing, ConstraintLocatorBuilder locator) { assert(args.size() < params.size()); auto &ctx = cs.getASTContext(); // If there are N parameters but a single closure argument // (which might be anonymous), it's most likely used as a // tuple e.g. `$0.0`. Optional argumentTuple; if (isa(anchor) && isSingleTupleParam(ctx, args)) { auto isParam = [](const Expr *expr) { if (auto *DRE = dyn_cast(expr)) { if (auto *decl = DRE->getDecl()) return isa(decl); } return false; }; const auto &arg = args.back(); if (auto *argTy = arg.getPlainType()->getAs()) { anchor->forEachChildExpr([&](Expr *expr) -> Expr * { if (auto *UDE = dyn_cast(expr)) { if (!isParam(UDE->getBase())) return expr; auto name = UDE->getName().getBaseIdentifier(); unsigned index = 0; if (!name.str().getAsInteger(10, index) || llvm::any_of(params, [&](const AnyFunctionType::Param ¶m) { return param.getLabel() == name; })) { argumentTuple.emplace(argTy); args.pop_back(); return nullptr; } } return expr; }); } } for (unsigned i = args.size(), n = params.size(); i != n; ++i) { auto *argLoc = cs.getConstraintLocator( anchor, LocatorPathElt::getSynthesizedArgument(i)); args.push_back(params[i].withType(cs.createTypeVariable(argLoc, TVO_CanBindToNoEscape))); } ArrayRef argsRef(args); auto *fix = AddMissingArguments::create(cs, funcType, argsRef.take_back(numMissing), cs.getConstraintLocator(locator)); if (cs.recordFix(fix)) return true; // If the argument was a single "tuple", let's bind newly // synthesized arguments to it. if (argumentTuple) { cs.addConstraint(ConstraintKind::Bind, *argumentTuple, FunctionType::composeInput(ctx, args, /*canonicalVararg=*/false), cs.getConstraintLocator(anchor)); } return false; } ConstraintSystem::TypeMatchResult ConstraintSystem::matchFunctionTypes(FunctionType *func1, FunctionType *func2, ConstraintKind kind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // A non-throwing function can be a subtype of a throwing function. if (func1->throws() != func2->throws()) { // Cannot drop 'throws'. if (func1->throws() || kind < ConstraintKind::Subtype) return getTypeMatchFailure(locator); } // A non-@noescape function type can be a subtype of a @noescape function // type. if (func1->isNoEscape() != func2->isNoEscape() && (func1->isNoEscape() || kind < ConstraintKind::Subtype)) { if (!shouldAttemptFixes()) return getTypeMatchFailure(locator); auto *fix = MarkExplicitlyEscaping::create( *this, getConstraintLocator(locator), func2); if (recordFix(fix)) return getTypeMatchFailure(locator); } if (matchFunctionRepresentations(func1->getExtInfo().getRepresentation(), func2->getExtInfo().getRepresentation(), kind)) { return getTypeMatchFailure(locator); } // Determine how we match up the input/result types. ConstraintKind subKind; switch (kind) { case ConstraintKind::Bind: case ConstraintKind::BindParam: case ConstraintKind::BindToPointerType: case ConstraintKind::Equal: subKind = kind; break; case ConstraintKind::Subtype: case ConstraintKind::Conversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::OperatorArgumentConversion: case ConstraintKind::OpaqueUnderlyingType: subKind = ConstraintKind::Subtype; break; case ConstraintKind::ApplicableFunction: case ConstraintKind::DynamicCallableApplicableFunction: case ConstraintKind::BindOverload: case ConstraintKind::CheckedCast: case ConstraintKind::ConformsTo: case ConstraintKind::Defaultable: case ConstraintKind::Disjunction: case ConstraintKind::DynamicTypeOf: case ConstraintKind::EscapableFunctionOf: case ConstraintKind::OpenedExistentialOf: case ConstraintKind::KeyPath: case ConstraintKind::KeyPathApplication: case ConstraintKind::LiteralConformsTo: case ConstraintKind::OptionalObject: case ConstraintKind::SelfObjectOfProtocol: case ConstraintKind::UnresolvedValueMember: case ConstraintKind::ValueMember: case ConstraintKind::BridgingConversion: case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: llvm_unreachable("Not a relational constraint"); } // Input types can be contravariant (or equal). auto argumentLocator = locator.withPathElement(ConstraintLocator::FunctionArgument); TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); SmallVector func1Params; func1Params.append(func1->getParams().begin(), func1->getParams().end()); SmallVector func2Params; func2Params.append(func2->getParams().begin(), func2->getParams().end()); // Add a very narrow exception to SE-0110 by allowing functions that // take multiple arguments to be passed as an argument in places // that expect a function that takes a single tuple (of the same // arity); auto canImplodeParams = [&](ArrayRef params) { if (params.size() == 1) return false; for (auto param : params) if (param.isVariadic() || param.isInOut() || param.isAutoClosure()) return false; return true; }; auto implodeParams = [&](SmallVectorImpl ¶ms) { auto input = AnyFunctionType::composeInput(getASTContext(), params, /*canonicalVararg=*/false); params.clear(); // If fixes are disabled let's do an easy thing and implode // tuple directly into parameters list. if (!shouldAttemptFixes()) { params.emplace_back(input); return; } // Synthesize new argument and bind it to tuple formed from existing // arguments, this makes it easier to diagnose cases where we attempt // a single tuple element formed when no arguments were present. auto argLoc = argumentLocator.withPathElement( LocatorPathElt::getSynthesizedArgument(0)); auto *typeVar = createTypeVariable(getConstraintLocator(argLoc), TVO_CanBindToNoEscape); params.emplace_back(typeVar); assignFixedType(typeVar, input); }; { SmallVector path; locator.getLocatorParts(path); // Find the last path element, skipping OptionalPayload elements // so that we allow this exception in cases of optional injection. auto last = std::find_if( path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool { return elt.getKind() != ConstraintLocator::OptionalPayload; }); auto &ctx = getASTContext(); if (last != path.rend()) { if (last->getKind() == ConstraintLocator::ApplyArgToParam) { if (isSingleTupleParam(ctx, func2Params) && canImplodeParams(func1Params)) { implodeParams(func1Params); } else if (!ctx.isSwiftVersionAtLeast(5) && isSingleTupleParam(ctx, func1Params) && canImplodeParams(func2Params)) { auto *simplified = locator.trySimplifyToExpr(); // We somehow let tuple unsplatting function conversions // through in some cases in Swift 4, so let's let that // continue to work, but only for Swift 4. if (simplified && (isa(simplified) || isa(simplified) || isa(simplified))) { implodeParams(func2Params); } } } } if (shouldAttemptFixes()) { auto *anchor = locator.trySimplifyToExpr(); if (anchor && isa(anchor) && isSingleTupleParam(ctx, func2Params) && canImplodeParams(func1Params)) { auto *fix = AllowClosureParamDestructuring::create( *this, func2, getConstraintLocator(anchor)); if (recordFix(fix)) return getTypeMatchFailure(argumentLocator); implodeParams(func1Params); } } } // https://bugs.swift.org/browse/SR-6796 // Add a super-narrow hack to allow: // (()) -> T to be passed in place of () -> T if (getASTContext().isSwiftVersionAtLeast(4) && !getASTContext().isSwiftVersionAtLeast(5)) { SmallVector path; locator.getLocatorParts(path); // Find the last path element, skipping GenericArgument elements // so that we allow this exception in cases of optional types, and // skipping OptionalPayload elements so that we allow this // exception in cases of optional injection. auto last = std::find_if( path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool { return elt.getKind() != ConstraintLocator::GenericArgument && elt.getKind() != ConstraintLocator::OptionalPayload; }); if (last != path.rend()) { if (last->getKind() == ConstraintLocator::ApplyArgToParam) { if (isSingleTupleParam(getASTContext(), func1Params) && func1Params[0].getOldType()->isVoid()) { if (func2Params.empty()) { func2Params.emplace_back(getASTContext().TheEmptyTupleType); } } } } } int diff = func1Params.size() - func2Params.size(); if (diff != 0) { if (!shouldAttemptFixes()) return getTypeMatchFailure(argumentLocator); auto *anchor = locator.trySimplifyToExpr(); if (!anchor) return getTypeMatchFailure(argumentLocator); // If there are missing arguments, let's add them // using parameter as a template. if (diff < 0) { if (fixMissingArguments(*this, anchor, func2, func1Params, func2Params, abs(diff), locator)) return getTypeMatchFailure(argumentLocator); } else { // TODO(diagnostics): Add handling of extraneous arguments. return getTypeMatchFailure(argumentLocator); } } bool hasLabelingFailures = false; for (unsigned i : indices(func1Params)) { auto func1Param = func1Params[i]; auto func2Param = func2Params[i]; // Variadic bit must match. if (func1Param.isVariadic() != func2Param.isVariadic()) return getTypeMatchFailure(argumentLocator); // Labels must match. // // FIXME: We should not end up with labels here at all, but we do // from invalid code in diagnostics, and as a result of code completion // directly building constraint systems. if (func1Param.getLabel() != func2Param.getLabel()) { if (!shouldAttemptFixes()) return getTypeMatchFailure(argumentLocator); // If we are allowed to attempt fixes, let's ignore labeling // failures, and create a fix to re-label arguments if types // line up correctly. hasLabelingFailures = true; } // FIXME: We should check value ownership too, but it's not completely // trivial because of inout-to-pointer conversions. // Compare the parameter types. auto result = matchTypes(func2Param.getOldType(), func1Param.getOldType(), subKind, subflags, (func1Params.size() == 1 ? argumentLocator : argumentLocator.withPathElement( LocatorPathElt::getTupleElement(i)))); if (result.isFailure()) return result; } if (hasLabelingFailures) { SmallVector correctLabels; for (const auto ¶m : func2Params) correctLabels.push_back(param.getLabel()); auto *fix = RelabelArguments::create(*this, correctLabels, getConstraintLocator(argumentLocator)); if (recordFix(fix)) return getTypeMatchFailure(argumentLocator); } // Result type can be covariant (or equal). return matchTypes(func1->getResult(), func2->getResult(), subKind, subflags, locator.withPathElement( ConstraintLocator::FunctionResult)); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchSuperclassTypes(Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); auto classDecl2 = type2->getClassOrBoundGenericClass(); for (auto super1 = type1->getSuperclass(); super1; super1 = super1->getSuperclass()) { if (super1->getClassOrBoundGenericClass() != classDecl2) continue; return matchTypes(super1, type2, ConstraintKind::Bind, subflags, locator); } return getTypeMatchFailure(locator); } static ConstraintSystem::TypeMatchResult matchDeepTypeArguments(ConstraintSystem &cs, ConstraintSystem::TypeMatchOptions subflags, ArrayRef args1, ArrayRef args2, ConstraintLocatorBuilder locator) { if (args1.size() != args2.size()) { return cs.getTypeMatchFailure(locator); } for (unsigned i = 0, n = args1.size(); i != n; ++i) { auto result = cs.matchTypes(args1[i], args2[i], ConstraintKind::Bind, subflags, locator.withPathElement( LocatorPathElt::getGenericArgument(i))); if (result.isFailure()) return result; } return cs.getTypeMatchSuccess(); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchDeepEqualityTypes(Type type1, Type type2, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = TMF_GenerateConstraints; // Handle opaque archetypes. if (auto arch1 = type1->getAs()) { auto arch2 = type2->castTo(); auto opaque1 = cast(arch1->getRoot()); auto opaque2 = cast(arch2->getRoot()); assert(arch1->getInterfaceType()->getCanonicalType( opaque1->getGenericEnvironment()->getGenericSignature()) == arch2->getInterfaceType()->getCanonicalType( opaque2->getGenericEnvironment()->getGenericSignature())); assert(opaque1->getDecl() == opaque2->getDecl()); auto args1 = opaque1->getSubstitutions().getReplacementTypes(); auto args2 = opaque2->getSubstitutions().getReplacementTypes(); // Match up the replacement types of the respective substitution maps. return matchDeepTypeArguments(*this, subflags, args1, args2, locator); } // Handle nominal types that are not directly generic. if (auto nominal1 = type1->getAs()) { auto nominal2 = type2->castTo(); assert((bool)nominal1->getParent() == (bool)nominal2->getParent() && "Mismatched parents of nominal types"); if (!nominal1->getParent()) return getTypeMatchSuccess(); // Match up the parents, exactly. return matchTypes(nominal1->getParent(), nominal2->getParent(), ConstraintKind::Bind, subflags, locator.withPathElement(ConstraintLocator::ParentType)); } auto bound1 = type1->castTo(); auto bound2 = type2->castTo(); // Match up the parents, exactly, if there are parents. assert((bool)bound1->getParent() == (bool)bound2->getParent() && "Mismatched parents of bound generics"); if (bound1->getParent()) { auto result = matchTypes(bound1->getParent(), bound2->getParent(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::ParentType)); if (result.isFailure()) return result; } // Match up the generic arguments, exactly. auto args1 = bound1->getGenericArgs(); auto args2 = bound2->getGenericArgs(); return matchDeepTypeArguments(*this, subflags, args1, args2, locator); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchExistentialTypes(Type type1, Type type2, ConstraintKind kind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // If the first type is a type variable or member thereof, there's nothing // we can do now. if (type1->isTypeVariableOrMember()) { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, kind, type1, type2, getConstraintLocator(locator))); return getTypeMatchSuccess(); } return getTypeMatchAmbiguous(); } // FIXME: Feels like a hack. if (type1->is()) return getTypeMatchFailure(locator); // FIXME; Feels like a hack...nothing actually "conforms" here, and // we need to disallow conversions from types containing @noescape // functions to Any. // Conformance to 'Any' always holds. if (type2->isAny()) { if (!type1->isNoEscape()) return getTypeMatchSuccess(); if (shouldAttemptFixes()) { auto &ctx = getASTContext(); auto *fix = MarkExplicitlyEscaping::create( *this, getConstraintLocator(locator), ctx.TheAnyType); if (!recordFix(fix)) return getTypeMatchSuccess(); } return getTypeMatchFailure(locator); } TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // Handle existential metatypes. if (auto meta1 = type1->getAs()) { if (auto meta2 = type2->getAs()) { return matchExistentialTypes(meta1->getInstanceType(), meta2->getInstanceType(), kind, subflags, locator.withPathElement( ConstraintLocator::InstanceType)); } } if (!type2->isExistentialType()) return getTypeMatchFailure(locator); auto layout = type2->getExistentialLayout(); if (auto layoutConstraint = layout.getLayoutConstraint()) { if (layoutConstraint->isClass()) { if (kind == ConstraintKind::ConformsTo) { if (!type1->satisfiesClassConstraint()) return getTypeMatchFailure(locator); } else { // Subtype relation to AnyObject also allows class-bound // existentials that are not @objc and therefore carry // witness tables. if (!type1->isClassExistentialType() && !type1->mayHaveSuperclass()) return getTypeMatchFailure(locator); } // Keep going. } } if (layout.explicitSuperclass) { auto subKind = std::min(ConstraintKind::Subtype, kind); auto result = matchTypes(type1, layout.explicitSuperclass, subKind, subflags, locator); if (result.isFailure()) return result; } for (auto *proto : layout.getProtocols()) { auto *protoDecl = proto->getDecl(); if (auto superclass = protoDecl->getSuperclass()) { auto subKind = std::min(ConstraintKind::Subtype, kind); auto result = matchTypes(type1, superclass, subKind, subflags, locator); if (result.isFailure()) return result; } switch (simplifyConformsToConstraint(type1, protoDecl, kind, locator, subflags)) { case SolutionKind::Solved: case SolutionKind::Unsolved: break; case SolutionKind::Error: { if (!shouldAttemptFixes()) return getTypeMatchFailure(locator); if (auto last = locator.last()) { // TODO(diagnostics): Diagnosing missing conformances // associated with arguments requires having general // conversion failures implemented first, otherwise // we would be misdiagnosing ambiguous cases associated // with overloaded declarations. if (last->getKind() == ConstraintLocator::ApplyArgToParam) return getTypeMatchFailure(locator); } auto *fix = MissingConformance::forContextual( *this, type1, proto, getConstraintLocator(locator)); if (recordFix(fix)) return getTypeMatchFailure(locator); break; } } } return getTypeMatchSuccess(); } static bool isStringCompatiblePointerBaseType(TypeChecker &TC, DeclContext *DC, Type baseType) { // Allow strings to be passed to pointer-to-byte or pointer-to-void types. if (baseType->isEqual(TC.getInt8Type(DC))) return true; if (baseType->isEqual(TC.getUInt8Type(DC))) return true; if (baseType->isEqual(TC.Context.TheEmptyTupleType)) return true; return false; } /// Determine whether the first type with the given number of optionals /// is potentially more optional than the second type with its number of /// optionals. static bool isPotentiallyMoreOptionalThan(Type type1, Type type2) { SmallVector optionals1; Type objType1 = type1->lookThroughAllOptionalTypes(optionals1); auto numOptionals1 = optionals1.size(); SmallVector optionals2; type2->lookThroughAllOptionalTypes(optionals2); auto numOptionals2 = optionals2.size(); if (numOptionals1 <= numOptionals2 && !objType1->isTypeVariableOrMember()) return false; return true; } /// Enumerate all of the applicable optional conversion restrictions static void enumerateOptionalConversionRestrictions( Type type1, Type type2, ConstraintKind kind, ConstraintLocatorBuilder locator, llvm::function_ref fn) { // Optional-to-optional. if (type1->getOptionalObjectType() && type2->getOptionalObjectType()) fn(ConversionRestrictionKind::OptionalToOptional); // Inject a value into an optional. if (isPotentiallyMoreOptionalThan(type2, type1)) { fn(ConversionRestrictionKind::ValueToOptional); } } /// Determine whether we can bind the given type variable to the given /// fixed type. static bool isBindable(TypeVariableType *typeVar, Type type) { return !ConstraintSystem::typeVarOccursInType(typeVar, type) && !type->is(); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchTypesBindTypeVar( TypeVariableType *typeVar, Type type, ConstraintKind kind, TypeMatchOptions flags, ConstraintLocatorBuilder locator, llvm::function_ref formUnsolvedResult) { assert(typeVar->is() && "Expected a type variable!"); // FIXME: Due to some SE-0110 related code farther up we can end // up with type variables wrapped in parens that will trip this // assert. For now, maintain the existing behavior. // assert(!type->is() && "Expected a non-type variable!"); // Simplify the right-hand type and perform the "occurs" check. typeVar = getRepresentative(typeVar); type = simplifyType(type, flags); if (!isBindable(typeVar, type)) return formUnsolvedResult(); // Since member lookup doesn't check requirements // it might sometimes return types which are not // visible in the current context e.g. typealias // defined in constrained extension, substitution // of which might produce error type for base, so // assignement should thead lightly and just fail // if it encounters such types. if (type->hasError()) return getTypeMatchFailure(locator); // Equal constraints allow mixed LValue/RValue bindings, but // if we bind a type to a type variable that can bind to // LValues as part of simplifying the Equal constraint we may // later block a binding of the opposite "LValue-ness" to the // same type variable that happens as part of simplifying // another constraint. if (kind == ConstraintKind::Equal) { if (typeVar->getImpl().canBindToLValue()) return formUnsolvedResult(); type = type->getRValueType(); } // If the left-hand type variable cannot bind to an lvalue, // but we still have an lvalue, fail. if (!typeVar->getImpl().canBindToLValue() && type->hasLValueType()) { return getTypeMatchFailure(locator); } // If the left-hand type variable cannot bind to an inout, // but we still have an inout, fail. if (!typeVar->getImpl().canBindToInOut() && type->is()) { return getTypeMatchFailure(locator); } // If the left-hand type variable cannot bind to a non-escaping type, // but we still have a non-escaping type, fail. if (!typeVar->getImpl().canBindToNoEscape() && type->isNoEscape()) { if (shouldAttemptFixes()) { auto *fix = MarkExplicitlyEscaping::create( *this, getConstraintLocator(locator)); if (recordFix(fix)) return getTypeMatchFailure(locator); // Allow no-escape function to be bound with recorded fix. } else { return getTypeMatchFailure(locator); } } // We do not allow keypaths to go through AnyObject. Let's create a fix // so this can be diagnosed later. if (auto loc = typeVar->getImpl().getLocator()) { auto locPath = loc->getPath(); if (!locPath.empty() && locPath.back().getKind() == ConstraintLocator::KeyPathRoot && type->isAnyObject()) { auto *fix = AllowAnyObjectKeyPathRoot::create( *this, getConstraintLocator(locator)); if (recordFix(fix)) return getTypeMatchFailure(locator); } } // Okay. Bind below. // A constraint that binds any pointer to a void pointer is // ineffective, since any pointer can be converted to a void pointer. if (kind == ConstraintKind::BindToPointerType && type->isVoid()) { // Bind type1 to Void only as a last resort. addConstraint(ConstraintKind::Defaultable, typeVar, type, getConstraintLocator(locator)); return getTypeMatchSuccess(); } // When binding a fixed type to a type variable that cannot contain // lvalues or noescape types, any type variables within the fixed // type cannot contain lvalues or noescape types either. if (type->hasTypeVariable()) { type.visit([&](Type t) { if (auto *tvt = dyn_cast(t.getPointer())) { if (!typeVar->getImpl().canBindToLValue()) { typeVar->getImpl().setCanBindToLValue(getSavedBindings(), /*enabled=*/false); } if (!typeVar->getImpl().canBindToNoEscape()) { typeVar->getImpl().setCanBindToNoEscape(getSavedBindings(), /*enabled=*/false); } } }); } assignFixedType(typeVar, type); return getTypeMatchSuccess(); } static ConstraintFix *fixRequirementFailure(ConstraintSystem &cs, Type type1, Type type2, Expr *anchor, ArrayRef path) { // Can't fix not yet properly resolved types. if (type1->hasTypeVariable() || type2->hasTypeVariable()) return nullptr; // If dependent members are present here it's because // base doesn't conform to associated type's protocol. if (type1->hasDependentMember() || type2->hasDependentMember()) return nullptr; auto req = path.back(); if (req.isConditionalRequirement()) { // path is - ... -> open generic -> type req # -> cond req #, // to identify type requirement we only need `open generic -> type req #` // part, because that's how fixes for type requirements are recorded. auto reqPath = path.drop_back(); // If underlying conformance requirement has been fixed, // then there is no reason to fix up conditional requirements. if (cs.hasFixFor(cs.getConstraintLocator(anchor, reqPath, /*summaryFlags=*/0))) return nullptr; } auto *reqLoc = cs.getConstraintLocator(anchor, path, /*summaryFlags=*/0); auto reqKind = static_cast(req.getValue2()); switch (reqKind) { case RequirementKind::SameType: { return SkipSameTypeRequirement::create(cs, type1, type2, reqLoc); } case RequirementKind::Superclass: { return SkipSuperclassRequirement::create(cs, type1, type2, reqLoc); } case RequirementKind::Conformance: case RequirementKind::Layout: llvm_unreachable("conformance requirements are handled elsewhere"); } } /// Attempt to repair typing failures and record fixes if needed. /// \return true if at least some of the failures has been repaired /// successfully, which allows type matcher to continue. bool ConstraintSystem::repairFailures( Type lhs, Type rhs, SmallVectorImpl &conversionsOrFixes, ConstraintLocatorBuilder locator) { SmallVector path; auto *anchor = locator.getLocatorParts(path); // If there is a missing explicit call it could be: // // a). Contextual e.g. `let _: R = foo` // b). Argument is a function value passed to parameter // which expects its result type e.g. `foo(bar)` // c). Assigment destination type matches return type of // of the function value e.g. `foo = bar` or `foo = .bar` auto repairByInsertingExplicitCall = [&](Type srcType, Type dstType) -> bool { auto fnType = srcType->getAs(); if (!fnType || fnType->getNumParams() > 0) return false; auto resultType = fnType->getResult(); // If this is situation like `x = { ... }` where closure results in // `Void`, let's not suggest to call the closure, because it's most // likely not intended. if (anchor && isa(anchor)) { auto *assignment = cast(anchor); if (isa(assignment->getSrc()) && resultType->isVoid()) return false; } // If left-hand side is a function type but right-hand // side isn't, let's check it would be possible to fix // this by forming an explicit call. auto convertTo = dstType->lookThroughAllOptionalTypes(); // Right-hand side can't be - a function, a type variable or dependent // member, or `Any` (if function conversion to `Any` didn't succeed there // is something else going on e.g. problem with escapiness). if (convertTo->is() || convertTo->isTypeVariableOrMember() || convertTo->isAny()) return false; auto result = matchTypes(resultType, dstType, ConstraintKind::Conversion, TypeMatchFlags::TMF_ApplyingFix, locator); if (result.isSuccess()) { conversionsOrFixes.push_back( InsertExplicitCall::create(*this, getConstraintLocator(locator))); return true; } return false; }; auto repairByAnyToAnyObjectCast = [&](Type lhs, Type rhs) -> bool { if (!(lhs->isAny() && rhs->isAnyObject())) return false; conversionsOrFixes.push_back(MissingConformance::forContextual( *this, lhs, rhs, getConstraintLocator(locator))); return true; }; if (path.empty()) { if (!anchor) return false; // If method reference forms a value type of the key path, // there is going to be a constraint to match result of the // member lookup to the generic parameter `V` of *KeyPath // type associated with key path expression, which we need to // fix-up here. if (isa(anchor)) { auto *fnType = lhs->getAs(); if (fnType && fnType->getResult()->isEqual(rhs)) return true; } if (auto *AE = dyn_cast(anchor)) { if (repairByInsertingExplicitCall(lhs, rhs)) return true; if (isa(AE->getSrc())) { conversionsOrFixes.push_back( RemoveAddressOf::create(*this, getConstraintLocator(locator))); return true; } if (repairByAnyToAnyObjectCast(lhs, rhs)) return true; } return false; } auto &elt = path.back(); switch (elt.getKind()) { case ConstraintLocator::LValueConversion: case ConstraintLocator::ApplyArgToParam: { if (repairByInsertingExplicitCall(lhs, rhs)) return true; if (lhs->getOptionalObjectType() && !rhs->getOptionalObjectType()) { conversionsOrFixes.push_back( ForceOptional::create(*this, lhs, lhs->getOptionalObjectType(), getConstraintLocator(locator))); } break; } case ConstraintLocator::FunctionArgument: { auto *argLoc = getConstraintLocator( locator.withPathElement(LocatorPathElt::getSynthesizedArgument(0))); // Let's drop the last element which points to a single argument // and see if this is a contextual mismatch. path.pop_back(); if (path.empty() || !(path.back().getKind() == ConstraintLocator::ApplyArgToParam || path.back().getKind() == ConstraintLocator::ContextualType)) return false; auto arg = llvm::find_if(getTypeVariables(), [&argLoc](const TypeVariableType *typeVar) { return typeVar->getImpl().getLocator() == argLoc; }); // What we have here is a form or tuple splat with no arguments // demonstrated by following example: // // func foo(_: T, _: (T.Element) -> Int) {} // foo { 42 } // // In cases like this `T.Element` might be resolved to `Void` // which means that we have to try a single empty tuple argument // as a narrow exception to SE-0110, see `matchFunctionTypes`. // // But if `T.Element` didn't get resolved to `Void` we'd like // to diagnose this as a missing argument which can't be ignored. if (arg != getTypeVariables().end()) { auto fnType = FunctionType::get({FunctionType::Param(lhs)}, getASTContext().TheEmptyTupleType); conversionsOrFixes.push_back(AddMissingArguments::create( *this, fnType, {FunctionType::Param(*arg)}, getConstraintLocator(anchor, path, /*summaryFlags=*/0))); } break; } case ConstraintLocator::TypeParameterRequirement: case ConstraintLocator::ConditionalRequirement: { if (auto *fix = fixRequirementFailure(*this, lhs, rhs, anchor, path)) conversionsOrFixes.push_back(fix); break; } case ConstraintLocator::ClosureResult: { auto *fix = ContextualMismatch::create(*this, lhs, rhs, getConstraintLocator(locator)); conversionsOrFixes.push_back(fix); break; } case ConstraintLocator::ContextualType: { auto purpose = getContextualTypePurpose(); if (rhs->isVoid() && (purpose == CTP_ReturnStmt || purpose == CTP_ReturnSingleExpr)) { conversionsOrFixes.push_back( RemoveReturn::create(*this, getConstraintLocator(locator))); return true; } if (repairByInsertingExplicitCall(lhs, rhs)) return true; if (repairByAnyToAnyObjectCast(lhs, rhs)) return true; // If both types are key path, the only differences // between them are mutability and/or root, value type mismatch. if (isKnownKeyPathType(lhs) && isKnownKeyPathType(rhs)) { auto *fix = KeyPathContextualMismatch::create( *this, lhs, rhs, getConstraintLocator(locator)); conversionsOrFixes.push_back(fix); } if (lhs->is() && !rhs->is() && isa(anchor)) { auto *fix = ContextualMismatch::create(*this, lhs, rhs, getConstraintLocator(locator)); conversionsOrFixes.push_back(fix); } break; } case ConstraintLocator::FunctionResult: { // `apply argument` -> `arg/param compare` -> // `@autoclosure result` -> `function result` if (path.size() > 3) { const auto &elt = path[path.size() - 2]; if (elt.getKind() == ConstraintLocator::AutoclosureResult && repairByInsertingExplicitCall(lhs, rhs)) return true; } break; } case ConstraintLocator::AutoclosureResult: { if (repairByInsertingExplicitCall(lhs, rhs)) return true; break; } case ConstraintLocator::TupleElement: { if (anchor && (isa(anchor) || isa(anchor))) { conversionsOrFixes.push_back(CollectionElementContextualMismatch::create( *this, lhs, rhs, getConstraintLocator(locator))); } break; } case ConstraintLocator::SequenceElementType: { // This is going to be diagnosed as `missing conformance`, // so no need to create duplicate fixes. if (rhs->isExistentialType()) break; conversionsOrFixes.push_back(CollectionElementContextualMismatch::create( *this, lhs, rhs, getConstraintLocator(locator))); break; } default: break; } return !conversionsOrFixes.empty(); } ConstraintSystem::TypeMatchResult ConstraintSystem::matchTypes(Type type1, Type type2, ConstraintKind kind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // If we have type variables that have been bound to fixed types, look through // to the fixed type. type1 = getFixedTypeRecursive(type1, flags, kind == ConstraintKind::Equal); type2 = getFixedTypeRecursive(type2, flags, kind == ConstraintKind::Equal); auto desugar1 = type1->getDesugaredType(); auto desugar2 = type2->getDesugaredType(); // If the types are obviously equivalent, we're done. if (desugar1->isEqual(desugar2) && !isa(desugar2)) return getTypeMatchSuccess(); // Local function that should be used to produce the return value whenever // this function was unable to resolve the constraint. It should be used // within \c matchTypes() as // // return formUnsolvedResult(); // // along any unsolved path. No other returns should produce // SolutionKind::Unsolved or inspect TMF_GenerateConstraints. auto formUnsolvedResult = [&] { // If we're supposed to generate constraints (i.e., this is a // newly-generated constraint), do so now. if (flags.contains(TMF_GenerateConstraints)) { // Add a new constraint between these types. We consider the current // type-matching problem to the "solved" by this addition, because // this new constraint will be solved at a later point. // Obviously, this must not happen at the top level, or the // algorithm would not terminate. addUnsolvedConstraint(Constraint::create(*this, kind, type1, type2, getConstraintLocator(locator))); return getTypeMatchSuccess(); } return getTypeMatchAmbiguous(); }; auto *typeVar1 = dyn_cast(desugar1); auto *typeVar2 = dyn_cast(desugar2); // If either (or both) types are type variables, unify the type variables. if (typeVar1 || typeVar2) { // Handle the easy case of both being type variables, and being // identical, first. if (typeVar1 && typeVar2) { auto rep1 = getRepresentative(typeVar1); auto rep2 = getRepresentative(typeVar2); if (rep1 == rep2) { // We already merged these two types, so this constraint is // trivially solved. return getTypeMatchSuccess(); } } switch (kind) { case ConstraintKind::Bind: case ConstraintKind::BindToPointerType: case ConstraintKind::Equal: { if (typeVar1 && typeVar2) { auto rep1 = getRepresentative(typeVar1); auto rep2 = getRepresentative(typeVar2); // If exactly one of the type variables can bind to an lvalue, we // can't merge these two type variables. if (kind == ConstraintKind::Equal && rep1->getImpl().canBindToLValue() != rep2->getImpl().canBindToLValue()) return formUnsolvedResult(); // Merge the equivalence classes corresponding to these two variables. mergeEquivalenceClasses(rep1, rep2); return getTypeMatchSuccess(); } assert((type1->is() || type2->is()) && "Expected a type variable!"); // FIXME: Due to some SE-0110 related code farther up we can end // up with type variables wrapped in parens that will trip this // assert. For now, maintain the existing behavior. // assert( // (!type1->is() || !type2->is()) // && "Expected a non-type variable!"); auto *typeVar = typeVar1 ? typeVar1 : typeVar2; auto type = typeVar1 ? type2 : type1; return matchTypesBindTypeVar(typeVar, type, kind, flags, locator, formUnsolvedResult); } case ConstraintKind::BindParam: { if (typeVar2 && !typeVar1) { // Simplify the left-hand type and perform the "occurs" check. auto rep2 = getRepresentative(typeVar2); type1 = simplifyType(type1, flags); if (!isBindable(typeVar2, type1)) return formUnsolvedResult(); if (auto *iot = type1->getAs()) { if (!rep2->getImpl().canBindToLValue()) return getTypeMatchFailure(locator); assignFixedType(rep2, LValueType::get(iot->getObjectType())); } else { assignFixedType(rep2, type1); } return getTypeMatchSuccess(); } else if (typeVar1 && !typeVar2) { // Simplify the right-hand type and perform the "occurs" check. auto rep1 = getRepresentative(typeVar1); type2 = simplifyType(type2, flags); if (!isBindable(rep1, type2)) return formUnsolvedResult(); if (auto *lvt = type2->getAs()) { if (!rep1->getImpl().canBindToInOut()) return getTypeMatchFailure(locator); assignFixedType(rep1, InOutType::get(lvt->getObjectType())); } else { assignFixedType(rep1, type2); } return getTypeMatchSuccess(); } if (typeVar1 && typeVar2) { auto rep1 = getRepresentative(typeVar1); auto rep2 = getRepresentative(typeVar2); if (!rep1->getImpl().canBindToInOut() || !rep2->getImpl().canBindToLValue()) { // Merge the equivalence classes corresponding to these two variables. mergeEquivalenceClasses(rep1, rep2); return getTypeMatchSuccess(); } } return formUnsolvedResult(); } case ConstraintKind::Subtype: case ConstraintKind::Conversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::OperatorArgumentConversion: return formUnsolvedResult(); case ConstraintKind::OpaqueUnderlyingType: case ConstraintKind::ApplicableFunction: case ConstraintKind::DynamicCallableApplicableFunction: case ConstraintKind::BindOverload: case ConstraintKind::BridgingConversion: case ConstraintKind::CheckedCast: case ConstraintKind::ConformsTo: case ConstraintKind::Defaultable: case ConstraintKind::Disjunction: case ConstraintKind::DynamicTypeOf: case ConstraintKind::EscapableFunctionOf: case ConstraintKind::OpenedExistentialOf: case ConstraintKind::KeyPath: case ConstraintKind::KeyPathApplication: case ConstraintKind::LiteralConformsTo: case ConstraintKind::OptionalObject: case ConstraintKind::SelfObjectOfProtocol: case ConstraintKind::UnresolvedValueMember: case ConstraintKind::ValueMember: case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: llvm_unreachable("Not a relational constraint"); } } // If one of the types is a member type of a type variable type, // there's nothing we can do. if (desugar1->isTypeVariableOrMember() || desugar2->isTypeVariableOrMember()) { return formUnsolvedResult(); } llvm::SmallVector conversionsOrFixes; // Decompose parallel structure. TypeMatchOptions subflags = getDefaultDecompositionOptions(flags) - TMF_ApplyingFix; if (desugar1->getKind() == desugar2->getKind()) { switch (desugar1->getKind()) { #define SUGARED_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" llvm_unreachable("Type has not been desugared completely"); #define ARTIFICIAL_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" llvm_unreachable("artificial type in constraint"); #define BUILTIN_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" case TypeKind::Error: case TypeKind::Unresolved: return getTypeMatchFailure(locator); case TypeKind::GenericTypeParam: llvm_unreachable("unmapped dependent type in type checker"); case TypeKind::TypeVariable: llvm_unreachable("type variables should have already been handled by now"); case TypeKind::DependentMember: // Nothing we can solve. return formUnsolvedResult(); case TypeKind::Module: case TypeKind::PrimaryArchetype: case TypeKind::OpenedArchetype: // If two module types or archetypes were not already equal, there's // nothing more we can do. return getTypeMatchFailure(locator); case TypeKind::Tuple: { auto result = matchTupleTypes(cast(desugar1), cast(desugar2), kind, subflags, locator); if (result != SolutionKind::Error) return result; // FIXME: All cases in this switch should go down to the fix logic // to give repairFailures() a chance to run, but this breaks stuff // right now. break; } case TypeKind::Enum: case TypeKind::Struct: case TypeKind::Class: { auto nominal1 = cast(desugar1); auto nominal2 = cast(desugar2); if (nominal1->getDecl() == nominal2->getDecl()) conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality); // Check for CF <-> ObjectiveC bridging. if (isa(desugar1) && kind >= ConstraintKind::Subtype) { auto class1 = cast(nominal1->getDecl()); auto class2 = cast(nominal2->getDecl()); // CF -> Objective-C via toll-free bridging. if (class1->getForeignClassKind() == ClassDecl::ForeignKind::CFType && class2->getForeignClassKind() != ClassDecl::ForeignKind::CFType && class1->getAttrs().hasAttribute()) { conversionsOrFixes.push_back( ConversionRestrictionKind::CFTollFreeBridgeToObjC); } // Objective-C -> CF via toll-free bridging. if (class2->getForeignClassKind() == ClassDecl::ForeignKind::CFType && class1->getForeignClassKind() != ClassDecl::ForeignKind::CFType && class2->getAttrs().hasAttribute()) { conversionsOrFixes.push_back( ConversionRestrictionKind::ObjCTollFreeBridgeToCF); } } break; } case TypeKind::DynamicSelf: // FIXME: Deep equality? What is the rule between two DynamicSelfs? break; case TypeKind::Protocol: // Nothing to do here; try existential and user-defined conversions below. break; case TypeKind::Metatype: case TypeKind::ExistentialMetatype: { auto meta1 = cast(desugar1); auto meta2 = cast(desugar2); // A.Type < B.Type if A < B and both A and B are classes. // P.Type < Q.Type if P < Q, both P and Q are protocols, and P.Type // and Q.Type are both existential metatypes auto subKind = std::min(kind, ConstraintKind::Subtype); // If instance types can't have a subtype relationship // it means that such types can be simply equated. auto instanceType1 = meta1->getInstanceType(); auto instanceType2 = meta2->getInstanceType(); if (isa(meta1) && !(instanceType1->mayHaveSuperclass() && instanceType2->getClassOrBoundGenericClass())) { subKind = ConstraintKind::Bind; } return matchTypes( instanceType1, instanceType2, subKind, subflags, locator.withPathElement(ConstraintLocator::InstanceType)); } case TypeKind::Function: { auto func1 = cast(desugar1); auto func2 = cast(desugar2); return matchFunctionTypes(func1, func2, kind, flags, locator); } case TypeKind::GenericFunction: llvm_unreachable("Polymorphic function type should have been opened"); case TypeKind::ProtocolComposition: // Existential types handled below. break; case TypeKind::LValue: if (kind == ConstraintKind::BindParam) return getTypeMatchFailure(locator); return matchTypes(cast(desugar1)->getObjectType(), cast(desugar2)->getObjectType(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::LValueConversion)); case TypeKind::InOut: if (kind == ConstraintKind::BindParam) return getTypeMatchFailure(locator); if (kind == ConstraintKind::OperatorArgumentConversion) { conversionsOrFixes.push_back( RemoveAddressOf::create(*this, getConstraintLocator(locator))); break; } return matchTypes(cast(desugar1)->getObjectType(), cast(desugar2)->getObjectType(), ConstraintKind::Bind, subflags, locator.withPathElement(ConstraintLocator::LValueConversion)); case TypeKind::UnboundGeneric: llvm_unreachable("Unbound generic type should have been opened"); case TypeKind::BoundGenericClass: case TypeKind::BoundGenericEnum: case TypeKind::BoundGenericStruct: { auto bound1 = cast(desugar1); auto bound2 = cast(desugar2); if (bound1->getDecl() == bound2->getDecl()) conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality); break; } // Opaque archetypes are globally bound, so we can match them for deep // equality. case TypeKind::OpaqueTypeArchetype: { auto opaque1 = cast(desugar1); auto opaque2 = cast(desugar2); if (opaque1->getDecl() == opaque2->getDecl()) { conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality); } break; } // Same for nested archetypes rooted in opaque types. case TypeKind::NestedArchetype: { auto nested1 = cast(desugar1); auto nested2 = cast(desugar2); auto rootOpaque1 = dyn_cast(nested1->getRoot()); auto rootOpaque2 = dyn_cast(nested2->getRoot()); if (rootOpaque1 && rootOpaque2) { auto interfaceTy1 = nested1->getInterfaceType() ->getCanonicalType(rootOpaque1->getGenericEnvironment() ->getGenericSignature()); auto interfaceTy2 = nested2->getInterfaceType() ->getCanonicalType(rootOpaque2->getGenericEnvironment() ->getGenericSignature()); if (interfaceTy1 == interfaceTy2 && rootOpaque1->getDecl() == rootOpaque2->getDecl()) { conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality); break; } } // If the archetypes aren't rooted in an opaque type, or are rooted in // completely different decls, then there's nothing else we can do. return getTypeMatchFailure(locator); } } } if (kind >= ConstraintKind::Conversion) { // An lvalue of type T1 can be converted to a value of type T2 so long as // T1 is convertible to T2 (by loading the value). Note that we cannot get // a value of inout type as an lvalue though. if (type1->is() && !type2->is()) { return matchTypes(type1->getWithoutSpecifierType(), type2, kind, subflags, locator); } } if (kind >= ConstraintKind::Subtype) { // Subclass-to-superclass conversion. if (type1->mayHaveSuperclass() && type2->getClassOrBoundGenericClass() && type1->getClassOrBoundGenericClass() != type2->getClassOrBoundGenericClass()) { conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass); } // Existential-to-superclass conversion. if (type1->isClassExistentialType() && type2->getClassOrBoundGenericClass()) { conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass); } // Metatype-to-existential-metatype conversion. // // Equivalent to a conformance relation on the instance types. if (type1->is() && type2->is()) { conversionsOrFixes.push_back( ConversionRestrictionKind::MetatypeToExistentialMetatype); } // Existential-metatype-to-superclass-metatype conversion. if (type2->is()) { if (auto *meta1 = type1->getAs()) { if (meta1->getInstanceType()->isClassExistentialType()) { conversionsOrFixes.push_back( ConversionRestrictionKind::ExistentialMetatypeToMetatype); } } } // Concrete value to existential conversion. if (!type1->is() && type2->isExistentialType()) { // Penalize conversions to Any. if (kind >= ConstraintKind::Conversion && type2->isAny()) increaseScore(ScoreKind::SK_EmptyExistentialConversion); conversionsOrFixes.push_back(ConversionRestrictionKind::Existential); } // T -> AnyHashable. if (isAnyHashableType(desugar2)) { // Don't allow this in operator contexts or we'll end up allowing // 'T() == U()' for unrelated T and U that just happen to be Hashable. // We can remove this special case when we implement operator hiding. if (!type1->is() && kind != ConstraintKind::OperatorArgumentConversion) { conversionsOrFixes.push_back( ConversionRestrictionKind::HashableToAnyHashable); } } // Metatype to object conversion. // // Class and protocol metatypes are interoperable with certain Objective-C // runtime classes, but only when ObjC interop is enabled. if (TC.getLangOpts().EnableObjCInterop) { // These conversions are between concrete types that don't need further // resolution, so we can consider them immediately solved. auto addSolvedRestrictedConstraint = [&](ConversionRestrictionKind restriction) -> TypeMatchResult { addRestrictedConstraint(ConstraintKind::Subtype, restriction, type1, type2, locator); return getTypeMatchSuccess(); }; if (auto meta1 = type1->getAs()) { if (meta1->getInstanceType()->mayHaveSuperclass() && type2->isAnyObject()) { increaseScore(ScoreKind::SK_UserConversion); return addSolvedRestrictedConstraint( ConversionRestrictionKind::ClassMetatypeToAnyObject); } // Single @objc protocol value metatypes can be converted to the ObjC // Protocol class type. auto isProtocolClassType = [&](Type t) -> bool { if (auto classDecl = t->getClassOrBoundGenericClass()) if (classDecl->getName() == getASTContext().Id_Protocol && classDecl->getModuleContext()->getName() == getASTContext().Id_ObjectiveC) return true; return false; }; if (auto protoTy = meta1->getInstanceType()->getAs()) { if (protoTy->getDecl()->isObjC() && isProtocolClassType(type2)) { increaseScore(ScoreKind::SK_UserConversion); return addSolvedRestrictedConstraint( ConversionRestrictionKind::ProtocolMetatypeToProtocolClass); } } } if (auto meta1 = type1->getAs()) { // Class-constrained existential metatypes can be converted to AnyObject. if (meta1->getInstanceType()->isClassExistentialType() && type2->isAnyObject()) { increaseScore(ScoreKind::SK_UserConversion); return addSolvedRestrictedConstraint( ConversionRestrictionKind::ExistentialMetatypeToAnyObject); } } } // Special implicit nominal conversions. if (!type1->is() && kind >= ConstraintKind::Subtype) { // Array -> Array. if (isArrayType(desugar1) && isArrayType(desugar2)) { conversionsOrFixes.push_back(ConversionRestrictionKind::ArrayUpcast); // Dictionary -> Dictionary. } else if (isDictionaryType(desugar1) && isDictionaryType(desugar2)) { conversionsOrFixes.push_back( ConversionRestrictionKind::DictionaryUpcast); // Set -> Set. } else if (isSetType(desugar1) && isSetType(desugar2)) { conversionsOrFixes.push_back( ConversionRestrictionKind::SetUpcast); } } } if (kind == ConstraintKind::BindToPointerType) { if (desugar2->isEqual(getASTContext().TheEmptyTupleType)) return getTypeMatchSuccess(); } if (kind >= ConstraintKind::Conversion) { // It is never legal to form an autoclosure that results in these // implicit conversions to pointer types. bool isAutoClosureArgument = false; if (auto last = locator.last()) if (last->getKind() == ConstraintLocator::AutoclosureResult) isAutoClosureArgument = true; // Pointer arguments can be converted from pointer-compatible types. if (kind >= ConstraintKind::ArgumentConversion) { Type unwrappedType2 = type2; bool type2IsOptional = false; if (Type unwrapped = type2->getOptionalObjectType()) { type2IsOptional = true; unwrappedType2 = unwrapped; } PointerTypeKind pointerKind; if (Type pointeeTy = unwrappedType2->getAnyPointerElementType(pointerKind)) { switch (pointerKind) { case PTK_UnsafeRawPointer: case PTK_UnsafeMutableRawPointer: case PTK_UnsafePointer: case PTK_UnsafeMutablePointer: // UnsafeMutablePointer can be converted from an inout reference to a // scalar or array. if (!isAutoClosureArgument) { if (auto inoutType1 = dyn_cast(desugar1)) { auto inoutBaseType = inoutType1->getInOutObjectType(); Type simplifiedInoutBaseType = getFixedTypeRecursive( inoutBaseType, /*wantRValue=*/true); // FIXME: If the base is still a type variable, we can't tell // what to do here. Might have to try \c ArrayToPointer and make // it more robust. if (isArrayType(simplifiedInoutBaseType)) { conversionsOrFixes.push_back( ConversionRestrictionKind::ArrayToPointer); } conversionsOrFixes.push_back( ConversionRestrictionKind::InoutToPointer); } } // Operators cannot use these implicit conversions. if (kind == ConstraintKind::ArgumentConversion) { // We can potentially convert from an UnsafeMutablePointer // of a different type, if we're a void pointer. Type unwrappedType1 = type1; bool type1IsOptional = false; if (Type unwrapped = type1->getOptionalObjectType()) { type1IsOptional = true; unwrappedType1 = unwrapped; } // Don't handle normal optional-related conversions here. if (unwrappedType1->isEqual(unwrappedType2)) break; PointerTypeKind type1PointerKind; bool type1IsPointer{ unwrappedType1->getAnyPointerElementType(type1PointerKind)}; bool optionalityMatches = !type1IsOptional || type2IsOptional; if (type1IsPointer && optionalityMatches) { if (type1PointerKind == PTK_UnsafeMutablePointer) { // Favor an UnsafeMutablePointer-to-UnsafeMutablePointer // conversion. if (type1PointerKind != pointerKind) increaseScore(ScoreKind::SK_ValueToPointerConversion); conversionsOrFixes.push_back( ConversionRestrictionKind::PointerToPointer); } // UnsafeMutableRawPointer -> UnsafeRawPointer else if (type1PointerKind == PTK_UnsafeMutableRawPointer && pointerKind == PTK_UnsafeRawPointer) { if (type1PointerKind != pointerKind) increaseScore(ScoreKind::SK_ValueToPointerConversion); conversionsOrFixes.push_back( ConversionRestrictionKind::PointerToPointer); } } // UnsafePointer and UnsafeRawPointer can also be converted from an // array or string value, or a UnsafePointer or // AutoreleasingUnsafeMutablePointer. if (pointerKind == PTK_UnsafePointer || pointerKind == PTK_UnsafeRawPointer) { if (!isAutoClosureArgument) { if (isArrayType(type1)) { conversionsOrFixes.push_back( ConversionRestrictionKind::ArrayToPointer); } // The pointer can be converted from a string, if the element // type is compatible. if (type1->isEqual(TC.getStringType(DC))) { auto baseTy = getFixedTypeRecursive(pointeeTy, false); if (baseTy->isTypeVariableOrMember() || isStringCompatiblePointerBaseType(TC, DC, baseTy)) conversionsOrFixes.push_back( ConversionRestrictionKind::StringToPointer); } } if (type1IsPointer && optionalityMatches && (type1PointerKind == PTK_UnsafePointer || type1PointerKind == PTK_AutoreleasingUnsafeMutablePointer)) { conversionsOrFixes.push_back( ConversionRestrictionKind::PointerToPointer); } } } break; case PTK_AutoreleasingUnsafeMutablePointer: // PTK_AutoreleasingUnsafeMutablePointer can be converted from an // inout reference to a scalar. if (!isAutoClosureArgument && type1->is()) { conversionsOrFixes.push_back( ConversionRestrictionKind::InoutToPointer); } break; } } } } if (kind >= ConstraintKind::OperatorArgumentConversion) { // If the RHS is an inout type, the LHS must be an @lvalue type. if (auto *lvt = type1->getAs()) { if (auto *iot = type2->getAs()) { return matchTypes(lvt->getObjectType(), iot->getObjectType(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::LValueConversion)); } } } // A value of type T! can be converted to type U if T is convertible // to U by force-unwrapping the source value. // A value of type T, T?, or T! can be converted to type U? or U! if // T is convertible to U. if (!type1->is() && kind >= ConstraintKind::Subtype) { enumerateOptionalConversionRestrictions( type1, type2, kind, locator, [&](ConversionRestrictionKind restriction) { conversionsOrFixes.push_back(restriction); }); } // Allow '() -> T' to '() -> ()' and '() -> Never' to '() -> T' for closure // literals and expressions representing an implicit return type of the single // expression functions. if (auto elt = locator.last()) { if (elt->getKind() == ConstraintLocator::ClosureResult || elt->getKind() == ConstraintLocator::SingleExprFuncResultType) { if (kind >= ConstraintKind::Subtype && (type1->isUninhabited() || type2->isVoid())) { increaseScore(SK_FunctionConversion); return getTypeMatchSuccess(); } } } if (kind == ConstraintKind::BindParam) { if (auto *iot = dyn_cast(desugar1)) { if (auto *lvt = dyn_cast(desugar2)) { return matchTypes(iot->getObjectType(), lvt->getObjectType(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::LValueConversion)); } } } // Attempt fixes iff it's allowed, both types are concrete and // we are not in the middle of attempting one already. bool attemptFixes = shouldAttemptFixes() && !flags.contains(TMF_ApplyingFix); // When we hit this point, we're committed to the set of potential // conversions recorded thus far. // // If we should attempt fixes, add those to the list. They'll only be visited // if there are no other possible solutions. if (attemptFixes && kind >= ConstraintKind::Conversion) { Type objectType1 = type1->getRValueType(); // If we have an optional type, try to force-unwrap it. // FIXME: Should we also try '?'? if (objectType1->getOptionalObjectType()) { bool forceUnwrapPossible = true; if (auto declRefExpr = dyn_cast_or_null(locator.trySimplifyToExpr())) { if (declRefExpr->getDecl()->isImplicit()) { // The expression that provides the first type is implicit and never // spelled out in source code, e.g. $match in an expression pattern. // Thus we cannot force unwrap the first type forceUnwrapPossible = false; } } if (auto optTryExpr = dyn_cast_or_null(locator.trySimplifyToExpr())) { auto subExprType = getType(optTryExpr->getSubExpr()); bool isSwift5OrGreater = TC.getLangOpts().isSwiftVersionAtLeast(5); if (isSwift5OrGreater && (bool)subExprType->getOptionalObjectType()) { // For 'try?' expressions, a ForceOptional fix converts 'try?' // to 'try!'. If the sub-expression is optional, then a force-unwrap // won't change anything in Swift 5+ because 'try?' already avoids // adding an additional layer of Optional there. forceUnwrapPossible = false; } } if (forceUnwrapPossible) { conversionsOrFixes.push_back(ForceOptional::create( *this, objectType1, objectType1->getOptionalObjectType(), getConstraintLocator(locator))); } } // If we have a value of type AnyObject that we're trying to convert to // a class, force a downcast. // FIXME: Also allow types bridged through Objective-C classes. if (objectType1->isAnyObject() && type2->getClassOrBoundGenericClass()) { conversionsOrFixes.push_back( ForceDowncast::create(*this, type2, getConstraintLocator(locator))); } // If we could perform a bridging cast, try it. if (auto bridged = TC.getDynamicBridgedThroughObjCClass(DC, objectType1, type2)) { // Note: don't perform this recovery for NSNumber; bool useFix = true; if (auto classType = bridged->getAs()) { SmallString<16> scratch; if (classType->getDecl()->isObjC() && classType->getDecl()->getObjCRuntimeName(scratch) == "NSNumber") useFix = false; } if (useFix) conversionsOrFixes.push_back( ForceDowncast::create(*this, type2, getConstraintLocator(locator))); } if (type2->is()) { if (type1->is()) { // If we're converting an lvalue to an inout type, add the missing '&'. conversionsOrFixes.push_back( AddAddressOf::create(*this, getConstraintLocator(locator))); } else { // If we have a concrete type that's an rvalue, "fix" it. conversionsOrFixes.push_back( TreatRValueAsLValue::create(*this, getConstraintLocator(locator))); } } } if (attemptFixes && type2->is()) { conversionsOrFixes.push_back( TreatRValueAsLValue::create(*this, getConstraintLocator(locator))); } else if (attemptFixes && kind == ConstraintKind::Bind && type1->is()) { conversionsOrFixes.push_back( TreatRValueAsLValue::create(*this, getConstraintLocator(locator))); } // Attempt to repair any failures identifiable at this point. if (attemptFixes) { if (repairFailures(type1, type2, conversionsOrFixes, locator)) { if (conversionsOrFixes.empty()) return getTypeMatchSuccess(); } } if (conversionsOrFixes.empty()) return getTypeMatchFailure(locator); // Where there is more than one potential conversion, create a disjunction // so that we'll explore all of the options. if (conversionsOrFixes.size() > 1) { auto fixedLocator = getConstraintLocator(locator); SmallVector constraints; for (auto potential : conversionsOrFixes) { auto constraintKind = kind; if (auto restriction = potential.getRestriction()) { // Determine the constraint kind. For a deep equality constraint, only // perform equality. if (*restriction == ConversionRestrictionKind::DeepEquality) constraintKind = ConstraintKind::Bind; constraints.push_back( Constraint::createRestricted(*this, constraintKind, *restriction, type1, type2, fixedLocator)); if (constraints.back()->getKind() == ConstraintKind::Bind) constraints.back()->setFavored(); continue; } auto fix = *potential.getFix(); constraints.push_back( Constraint::createFixed(*this, constraintKind, fix, type1, type2, fixedLocator)); } // Sort favored constraints first. std::sort(constraints.begin(), constraints.end(), [&](Constraint *lhs, Constraint *rhs) -> bool { if (lhs->isFavored() == rhs->isFavored()) return false; return lhs->isFavored(); }); addDisjunctionConstraint(constraints, fixedLocator); return getTypeMatchSuccess(); } // For a single potential conversion, directly recurse, so that we // don't allocate a new constraint or constraint locator. auto formTypeMatchResult = [&](SolutionKind kind) { switch (kind) { case SolutionKind::Error: return getTypeMatchFailure(locator); case SolutionKind::Solved: return getTypeMatchSuccess(); case SolutionKind::Unsolved: return getTypeMatchAmbiguous(); } llvm_unreachable("unhandled kind"); }; // Handle restrictions. if (auto restriction = conversionsOrFixes[0].getRestriction()) { return formTypeMatchResult(simplifyRestrictedConstraint(*restriction, type1, type2, kind, subflags, locator)); } // Handle fixes. auto fix = *conversionsOrFixes[0].getFix(); return formTypeMatchResult(simplifyFixConstraint(fix, type1, type2, kind, subflags, locator)); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyConstructionConstraint( Type valueType, FunctionType *fnType, TypeMatchOptions flags, DeclContext *useDC, FunctionRefKind functionRefKind, ConstraintLocator *locator) { // Desugar the value type. auto desugarValueType = valueType->getDesugaredType(); switch (desugarValueType->getKind()) { #define SUGARED_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" llvm_unreachable("Type has not been desugared completely"); #define ARTIFICIAL_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" llvm_unreachable("artificial type in constraint"); case TypeKind::Unresolved: case TypeKind::Error: return SolutionKind::Error; case TypeKind::GenericFunction: case TypeKind::GenericTypeParam: llvm_unreachable("unmapped dependent type"); case TypeKind::TypeVariable: case TypeKind::DependentMember: return SolutionKind::Unsolved; case TypeKind::Tuple: { // Tuple construction is simply tuple conversion. Type argType = AnyFunctionType::composeInput(getASTContext(), fnType->getParams(), /*canonicalVararg=*/false); Type resultType = fnType->getResult(); if (matchTypes(resultType, desugarValueType, ConstraintKind::Bind, flags, ConstraintLocatorBuilder(locator) .withPathElement(ConstraintLocator::ApplyFunction)) .isFailure()) return SolutionKind::Error; return matchTypes(argType, valueType, ConstraintKind::Conversion, getDefaultDecompositionOptions(flags), locator); } case TypeKind::Enum: case TypeKind::Struct: case TypeKind::Class: case TypeKind::BoundGenericClass: case TypeKind::BoundGenericEnum: case TypeKind::BoundGenericStruct: case TypeKind::PrimaryArchetype: case TypeKind::OpenedArchetype: case TypeKind::NestedArchetype: case TypeKind::OpaqueTypeArchetype: case TypeKind::DynamicSelf: case TypeKind::ProtocolComposition: case TypeKind::Protocol: // Break out to handle the actual construction below. break; case TypeKind::UnboundGeneric: llvm_unreachable("Unbound generic type should have been opened"); #define BUILTIN_TYPE(id, parent) case TypeKind::id: #define TYPE(id, parent) #include "swift/AST/TypeNodes.def" case TypeKind::ExistentialMetatype: case TypeKind::Metatype: case TypeKind::Function: case TypeKind::LValue: case TypeKind::InOut: case TypeKind::Module: return SolutionKind::Error; } auto fnLocator = getConstraintLocator(locator, ConstraintLocator::ApplyFunction); auto memberType = createTypeVariable(fnLocator, TVO_CanBindToNoEscape); // The constructor will have function type T -> T2, for a fresh type // variable T. T2 is the result type provided via the construction // constraint itself. addValueMemberConstraint(MetatypeType::get(valueType, TC.Context), DeclBaseName::createConstructor(), memberType, useDC, functionRefKind, /*outerAlternatives=*/{}, getConstraintLocator( fnLocator, ConstraintLocator::ConstructorMember)); // FIXME: Once TVO_PrefersSubtypeBinding is replaced with something // better, we won't need the second type variable at all. { auto argType = createTypeVariable( getConstraintLocator(locator, ConstraintLocator::ApplyArgument), (TVO_CanBindToLValue | TVO_CanBindToInOut | TVO_CanBindToNoEscape | TVO_PrefersSubtypeBinding)); addConstraint(ConstraintKind::FunctionInput, memberType, argType, locator); } addConstraint(ConstraintKind::ApplicableFunction, fnType, memberType, fnLocator); return SolutionKind::Solved; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint( Type type, Type protocol, ConstraintKind kind, ConstraintLocatorBuilder locator, TypeMatchOptions flags) { if (auto proto = protocol->getAs()) { return simplifyConformsToConstraint(type, proto->getDecl(), kind, locator, flags); } // Dig out the fixed type to which this type refers. type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true); return matchExistentialTypes(type, protocol, kind, flags, locator); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint( Type type, ProtocolDecl *protocol, ConstraintKind kind, ConstraintLocatorBuilder locator, TypeMatchOptions flags) { // Dig out the fixed type to which this type refers. type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true); // If we hit a type variable without a fixed type, we can't // solve this yet. if (type->isTypeVariableOrMember()) { // If we're supposed to generate constraints, do so. if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, kind, type, protocol->getDeclaredType(), getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; } /// Record the given conformance as the result, adding any conditional /// requirements if necessary. auto recordConformance = [&](ProtocolConformanceRef conformance) { // Record the conformance. CheckedConformances.push_back({getConstraintLocator(locator), conformance}); // This conformance may be conditional, in which case we need to consider // those requirements as constraints too. if (conformance.isConcrete()) { unsigned index = 0; for (const auto &req : conformance.getConditionalRequirements()) { addConstraint(req, locator.withPathElement( LocatorPathElt::getConditionalRequirementComponent( index++, req.getKind()))); } } return SolutionKind::Solved; }; // For purposes of argument type matching, existential types don't need to // conform -- they only need to contain the protocol, so check that // separately. switch (kind) { case ConstraintKind::SelfObjectOfProtocol: if (auto conformance = TC.containsProtocol(type, protocol, DC, (ConformanceCheckFlags::InExpression| ConformanceCheckFlags::SkipConditionalRequirements))) { return recordConformance(*conformance); } break; case ConstraintKind::ConformsTo: case ConstraintKind::LiteralConformsTo: { // Check whether this type conforms to the protocol. if (auto conformance = TC.conformsToProtocol( type, protocol, DC, (ConformanceCheckFlags::InExpression| ConformanceCheckFlags::SkipConditionalRequirements))) { return recordConformance(*conformance); } break; } default: llvm_unreachable("bad constraint kind"); } if (!shouldAttemptFixes()) return SolutionKind::Error; // See if there's anything we can do to fix the conformance: if (auto optionalObjectType = type->getOptionalObjectType()) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // The underlying type of an optional may conform to the protocol if the // optional doesn't; suggest forcing if that's the case. auto result = simplifyConformsToConstraint( optionalObjectType, protocol, kind, locator.withPathElement(LocatorPathElt::getGenericArgument(0)), subflags); if (result == SolutionKind::Solved) { auto *fix = ForceOptional::create(*this, type, optionalObjectType, getConstraintLocator(locator)); if (recordFix(fix)) { return SolutionKind::Error; } } return result; } // Let's not try to fix missing conformance for Void // and Never because that doesn't really make sense. if (type->isVoid() || type->isUninhabited()) return SolutionKind::Error; // If this is a generic requirement let's try to record that // conformance is missing and consider this a success, which // makes it much easier to diagnose problems like that. { SmallVector path; auto *anchor = locator.getLocatorParts(path); if (path.empty()) return SolutionKind::Error; if (path.back().isTypeParameterRequirement() || path.back().isConditionalRequirement()) { if (path.back().isConditionalRequirement()) { // Drop 'conditional requirement' element, remainder // of the path is going to point to type requirement // this conditional comes from. auto reqPath = ArrayRef(path).drop_back(); // Underlying conformance requirement is itself fixed, // this wouldn't lead to a right solution. if (hasFixFor(getConstraintLocator(anchor, reqPath, /*summaryFlags=*/0))) return SolutionKind::Error; } auto *fix = MissingConformance::forRequirement( *this, type, protocol->getDeclaredType(), getConstraintLocator(locator)); if (!recordFix(fix)) return SolutionKind::Solved; } // If this is an implicit Hashable conformance check generated for each // index argument of the keypath subscript component, we could just treat // it as though it conforms. auto *loc = getConstraintLocator(locator); if (loc->isResultOfKeyPathDynamicMemberLookup() || loc->isKeyPathSubscriptComponent()) { if (protocol == getASTContext().getProtocol(KnownProtocolKind::Hashable)) { auto *fix = TreatKeyPathSubscriptIndexAsHashable::create(*this, type, loc); if (!recordFix(fix)) return SolutionKind::Solved; } } } // There's nothing more we can do; fail. return SolutionKind::Error; } /// Determine the kind of checked cast to perform from the given type to /// the given type. /// /// This routine does not attempt to check whether the cast can actually /// succeed; that's the caller's responsibility. static CheckedCastKind getCheckedCastKind(ConstraintSystem *cs, Type fromType, Type toType) { // Array downcasts are handled specially. if (cs->isArrayType(fromType) && cs->isArrayType(toType)) { return CheckedCastKind::ArrayDowncast; } // Dictionary downcasts are handled specially. if (cs->isDictionaryType(fromType) && cs->isDictionaryType(toType)) { return CheckedCastKind::DictionaryDowncast; } // Set downcasts are handled specially. if (cs->isSetType(fromType) && cs->isSetType(toType)) { return CheckedCastKind::SetDowncast; } return CheckedCastKind::ValueCast; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyCheckedCastConstraint( Type fromType, Type toType, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); /// Form an unresolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::CheckedCast, fromType, toType, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; do { // Dig out the fixed type this type refers to. fromType = getFixedTypeRecursive(fromType, flags, /*wantRValue=*/true); // If we hit a type variable without a fixed type, we can't // solve this yet. if (fromType->isTypeVariableOrMember()) return formUnsolved(); // Dig out the fixed type this type refers to. toType = getFixedTypeRecursive(toType, flags, /*wantRValue=*/true); // If we hit a type variable without a fixed type, we can't // solve this yet. if (toType->isTypeVariableOrMember()) return formUnsolved(); Type origFromType = fromType; Type origToType = toType; // Peel off optionals metatypes from the types, because we might cast through // them. toType = toType->lookThroughAllOptionalTypes(); fromType = fromType->lookThroughAllOptionalTypes(); // Peel off metatypes, since if we can cast two types, we can cast their // metatypes. while (auto toMetatype = toType->getAs()) { auto fromMetatype = fromType->getAs(); if (!fromMetatype) break; toType = toMetatype->getInstanceType(); fromType = fromMetatype->getInstanceType(); } // Peel off a potential layer of existential<->concrete metatype conversion. if (auto toMetatype = toType->getAs()) { if (auto fromMetatype = fromType->getAs()) { toType = toMetatype->getInstanceType(); fromType = fromMetatype->getInstanceType(); } } // We've decomposed the types further, so adopt the subflags. flags = subflags; // If nothing changed, we're done. if (fromType.getPointer() == origFromType.getPointer() && toType.getPointer() == origToType.getPointer()) break; } while (true); auto kind = getCheckedCastKind(this, fromType, toType); switch (kind) { case CheckedCastKind::ArrayDowncast: { auto fromBaseType = *isArrayType(fromType); auto toBaseType = *isArrayType(toType); return simplifyCheckedCastConstraint(fromBaseType, toBaseType, subflags, locator); } case CheckedCastKind::DictionaryDowncast: { Type fromKeyType, fromValueType; std::tie(fromKeyType, fromValueType) = *isDictionaryType(fromType); Type toKeyType, toValueType; std::tie(toKeyType, toValueType) = *isDictionaryType(toType); if (simplifyCheckedCastConstraint(fromKeyType, toKeyType, subflags, locator) == SolutionKind::Error) return SolutionKind::Error; return simplifyCheckedCastConstraint(fromValueType, toValueType, subflags, locator); } case CheckedCastKind::SetDowncast: { auto fromBaseType = *isSetType(fromType); auto toBaseType = *isSetType(toType); return simplifyCheckedCastConstraint(fromBaseType, toBaseType, subflags, locator); } case CheckedCastKind::ValueCast: { // If casting among classes, and there are open // type variables remaining, introduce a subtype constraint to help resolve // them. if (fromType->getClassOrBoundGenericClass() && toType->getClassOrBoundGenericClass() && (fromType->hasTypeVariable() || toType->hasTypeVariable())) { addConstraint(ConstraintKind::Subtype, toType, fromType, getConstraintLocator(locator)); } return SolutionKind::Solved; } case CheckedCastKind::Coercion: case CheckedCastKind::BridgingCoercion: case CheckedCastKind::Unresolved: llvm_unreachable("Not a valid result"); } llvm_unreachable("Unhandled CheckedCastKind in switch."); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyOptionalObjectConstraint( Type first, Type second, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // Resolve the optional type. Type optLValueTy = getFixedTypeRecursive(first, flags, /*wantRValue=*/false); Type optTy = optLValueTy->getRValueType(); if (optTy.getPointer() != optLValueTy.getPointer()) optTy = getFixedTypeRecursive(optTy, /*wantRValue=*/false); if (optTy->isTypeVariableOrMember()) { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::OptionalObject, optLValueTy, second, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; } Type objectTy = optTy->getOptionalObjectType(); // If the base type is not optional, let's attempt a fix (if possible) // and assume that `!` is just not there. if (!objectTy) { // Let's see if we can apply a specific fix here. if (shouldAttemptFixes()) { auto *fix = RemoveUnwrap::create(*this, optTy, getConstraintLocator(locator)); if (recordFix(fix)) return SolutionKind::Error; // If the fix was successful let's record // "fixed" object type and continue. objectTy = optTy; } else { // If fixes are not allowed, no choice but to fail. return SolutionKind::Error; } } // The object type is an lvalue if the optional was. if (optLValueTy->is()) objectTy = LValueType::get(objectTy); // Equate it to the other type in the constraint. addConstraint(ConstraintKind::Bind, objectTy, second, locator); return SolutionKind::Solved; } /// Attempt to simplify a function input or result constraint. ConstraintSystem::SolutionKind ConstraintSystem::simplifyFunctionComponentConstraint( ConstraintKind kind, Type first, Type second, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { auto simplified = simplifyType(first); auto simplifiedCopy = simplified; unsigned unwrapCount = 0; if (shouldAttemptFixes()) { while (auto objectTy = simplified->getOptionalObjectType()) { simplified = objectTy; // Track how many times we do this so that we can record a fix for each. ++unwrapCount; } } if (simplified->isTypeVariableOrMember()) { if (!flags.contains(TMF_GenerateConstraints)) return SolutionKind::Unsolved; addUnsolvedConstraint( Constraint::create(*this, kind, simplified, second, getConstraintLocator(locator))); } else if (auto *funcTy = simplified->getAs()) { // Equate it to the other type in the constraint. Type type; ConstraintLocator::PathElementKind locKind; if (kind == ConstraintKind::FunctionInput) { type = AnyFunctionType::composeInput(getASTContext(), funcTy->getParams(), /*canonicalVararg=*/false); locKind = ConstraintLocator::FunctionArgument; } else if (kind == ConstraintKind::FunctionResult) { type = funcTy->getResult(); locKind = ConstraintLocator::FunctionResult; } else { llvm_unreachable("Bad function component constraint kind"); } addConstraint(ConstraintKind::Bind, type, second, locator.withPathElement(locKind)); } else { return SolutionKind::Error; } if (unwrapCount > 0) { auto *fix = ForceOptional::create(*this, simplifiedCopy, simplifiedCopy->getOptionalObjectType(), getConstraintLocator(locator)); while (unwrapCount-- > 0) { if (recordFix(fix)) return SolutionKind::Error; } } return SolutionKind::Solved; } /// Retrieve the argument labels that are provided for a member /// reference at the given locator. static Optional getArgumentLabels(ConstraintSystem &cs, ConstraintLocatorBuilder locator) { SmallVector parts; Expr *anchor = locator.getLocatorParts(parts); if (!anchor) return None; while (!parts.empty()) { if (parts.back().getKind() == ConstraintLocator::Member || parts.back().getKind() == ConstraintLocator::SubscriptMember) { parts.pop_back(); continue; } if (parts.back().getKind() == ConstraintLocator::ApplyFunction) { if (auto applyExpr = dyn_cast(anchor)) { anchor = applyExpr->getSemanticFn(); } parts.pop_back(); continue; } if (parts.back().getKind() == ConstraintLocator::ConstructorMember) { parts.pop_back(); continue; } break; } if (!parts.empty()) return None; anchor = getArgumentLabelTargetExpr(anchor); auto known = cs.ArgumentLabels.find(cs.getConstraintLocator(anchor)); if (known == cs.ArgumentLabels.end()) return None; return known->second; } /// Return true if the specified type or a super-class/super-protocol has the /// @dynamicMemberLookup attribute on it. This implementation is not /// particularly fast in the face of deep class hierarchies or lots of protocol /// conformances, but this is fine because it doesn't get invoked in the normal /// name lookup path (only when lookup is about to fail). static bool hasDynamicMemberLookupAttribute(Type type, llvm::DenseMap &DynamicMemberLookupCache) { auto canType = type->getCanonicalType(); auto it = DynamicMemberLookupCache.find(canType); if (it != DynamicMemberLookupCache.end()) return it->second; // Calculate @dynamicMemberLookup attribute for composite types with multiple // components (protocol composition types and archetypes). auto calculateForComponentTypes = [&](ArrayRef componentTypes) -> bool { for (auto componentType : componentTypes) if (hasDynamicMemberLookupAttribute(componentType, DynamicMemberLookupCache)) return true; return false; }; auto calculate = [&]() -> bool { // If this is an archetype type, check if any types it conforms to // (superclass or protocols) have the attribute. if (auto archetype = dyn_cast(canType)) { SmallVector componentTypes; for (auto protocolDecl : archetype->getConformsTo()) componentTypes.push_back(protocolDecl->getDeclaredType()); if (auto superclass = archetype->getSuperclass()) componentTypes.push_back(superclass); return calculateForComponentTypes(componentTypes); } // If this is a protocol composition, check if any of its members have the // attribute. if (auto protocolComp = dyn_cast(canType)) return calculateForComponentTypes(protocolComp->getMembers()); // Otherwise, this must be a nominal type. // Dynamic member lookup doesn't work for tuples, etc. auto nominal = canType->getAnyNominal(); if (!nominal) return false; // If this type conforms to a protocol with the attribute, then return true. for (auto p : nominal->getAllProtocols()) if (p->getAttrs().hasAttribute()) return true; // Walk superclasses, if present. llvm::SmallPtrSet visitedDecls; while (1) { // If we found a circular parent class chain, reject this. if (!visitedDecls.insert(nominal).second) return false; // If this type has the attribute on it, then yes! if (nominal->getAttrs().hasAttribute()) return true; // If this is a class with a super class, check super classes as well. if (auto *cd = dyn_cast(nominal)) { if (auto superClass = cd->getSuperclassDecl()) { nominal = superClass; continue; } } return false; } }; auto result = calculate(); // Cache the result if the type does not contain type variables. if (!type->hasTypeVariable()) DynamicMemberLookupCache[canType] = result; return result; } // for IDETypeChecking bool swift::hasDynamicMemberLookupAttribute(Type type) { llvm::DenseMap DynamicMemberLookupCache; return ::hasDynamicMemberLookupAttribute(type, DynamicMemberLookupCache); } /// Given a ValueMember, UnresolvedValueMember, or TypeMember constraint, /// perform a lookup into the specified base type to find a candidate list. /// The list returned includes the viable candidates as well as the unviable /// ones (along with reasons why they aren't viable). /// /// If includeInaccessibleMembers is set to true, this burns compile time to /// try to identify and classify inaccessible members that may be being /// referenced. MemberLookupResult ConstraintSystem:: performMemberLookup(ConstraintKind constraintKind, DeclName memberName, Type baseTy, FunctionRefKind functionRefKind, ConstraintLocator *memberLocator, bool includeInaccessibleMembers) { Type baseObjTy = baseTy->getRValueType(); Type instanceTy = baseObjTy; if (auto baseObjMeta = baseObjTy->getAs()) { instanceTy = baseObjMeta->getInstanceType(); } if (instanceTy->isTypeVariableOrMember() || instanceTy->is()) { MemberLookupResult result; result.OverallResult = MemberLookupResult::Unsolved; return result; } // Okay, start building up the result list. MemberLookupResult result; result.OverallResult = MemberLookupResult::HasResults; // If we're looking for a subscript, consider key path operations. // // TODO: This logic needs to be refactored to make sure that implicit // keypath result is only introduced when it makes sense e.g. if there // is a single argument with `keypath:` label or `\.` syntax is used. if (memberName.isSimpleName() && memberName.getBaseName().getKind() == DeclBaseName::Kind::Subscript && !(memberLocator && memberLocator->isForKeyPathDynamicMemberLookup())) { if (baseTy->isAnyObject()) { result.addUnviable( OverloadChoice(baseTy, OverloadChoiceKind::KeyPathApplication), MemberLookupResult::UR_KeyPathWithAnyObjectRootType); } else { result.ViableCandidates.push_back( OverloadChoice(baseTy, OverloadChoiceKind::KeyPathApplication)); } } // If the base type is a tuple type, look for the named or indexed member // of the tuple. if (auto baseTuple = baseObjTy->getAs()) { // Tuples don't have compound-name members. if (!memberName.isSimpleName() || memberName.isSpecial()) return result; // No result. StringRef nameStr = memberName.getBaseIdentifier().str(); int fieldIdx = -1; // Resolve a number reference into the tuple type. unsigned Value = 0; if (!nameStr.getAsInteger(10, Value) && Value < baseTuple->getNumElements()) { fieldIdx = Value; } else { fieldIdx = baseTuple->getNamedElementId(memberName.getBaseIdentifier()); } if (fieldIdx == -1) return result; // No result. // Add an overload set that selects this field. result.ViableCandidates.push_back(OverloadChoice(baseTy, fieldIdx)); return result; } if (auto *selfTy = instanceTy->getAs()) instanceTy = selfTy->getSelfType(); if (!instanceTy->mayHaveMembers()) return result; // If we have a simple name, determine whether there are argument // labels we can use to restrict the set of lookup results. Optional argumentLabels; if (memberName.isSimpleName()) { argumentLabels = getArgumentLabels(*this, ConstraintLocatorBuilder(memberLocator)); // If we're referencing AnyObject and we have argument labels, put // the argument labels into the name: we don't want to look for // anything else, because the cost of the general search is so // high. if (baseObjTy->isAnyObject() && argumentLabels) { memberName = DeclName(TC.Context, memberName.getBaseName(), argumentLabels->Labels); argumentLabels.reset(); } } // Look for members within the base. LookupResult &lookup = lookupMember(instanceTy, memberName); // If this is true, we're using type construction syntax (Foo()) rather // than an explicit call to `init` (Foo.init()). bool isImplicitInit = false; TypeBase *favoredType = nullptr; if (memberName.isSimpleName(DeclBaseName::createConstructor())) { SmallVector parts; if (auto *anchor = memberLocator->getAnchor()) { auto path = memberLocator->getPath(); if (!path.empty()) if (path.back().getKind() == ConstraintLocator::ConstructorMember) isImplicitInit = true; if (auto applyExpr = dyn_cast(anchor)) { auto argExpr = applyExpr->getArg(); favoredType = getFavoredType(argExpr); if (!favoredType) { optimizeConstraints(argExpr); favoredType = getFavoredType(argExpr); } } } } // If the instance type is String bridged to NSString, compute // the type we'll look in for bridging. Type bridgedType; if (baseObjTy->getAnyNominal() == TC.Context.getStringDecl()) { if (Type classType = TC.Context.getBridgedToObjC(DC, instanceTy)) { bridgedType = classType; } } bool labelMismatch = false; // Local function that adds the given declaration if it is a // reasonable choice. auto addChoice = [&](OverloadChoice candidate) { auto decl = candidate.getDecl(); // If the result is invalid, skip it. TC.validateDecl(decl); if (decl->isInvalid()) { result.markErrorAlreadyDiagnosed(); return; } // FIXME: Deal with broken recursion if (!decl->hasInterfaceType()) return; // Dig out the instance type and figure out what members of the instance type // we are going to see. auto baseTy = candidate.getBaseType(); auto baseObjTy = baseTy->getRValueType(); bool hasInstanceMembers = false; bool hasInstanceMethods = false; bool hasStaticMembers = false; Type instanceTy = baseObjTy; if (baseObjTy->is()) { hasStaticMembers = true; } else if (auto baseObjMeta = baseObjTy->getAs()) { instanceTy = baseObjMeta->getInstanceType(); if (baseObjMeta->is()) { // An instance of an existential metatype is a concrete type conforming // to the existential, say Self. Instance members of the concrete type // have type Self -> T -> U, but we don't know what Self is at compile // time so we cannot refer to them. Static methods are fine, on the other // hand -- we already know that they do not have Self or associated type // requirements, since otherwise we would not be able to refer to the // existential metatype in the first place. hasStaticMembers = true; } else if (instanceTy->isExistentialType()) { // A protocol metatype has instance methods with type P -> T -> U, but // not instance properties or static members -- the metatype value itself // doesn't give us a witness so there's no static method to bind. hasInstanceMethods = true; } else { // Metatypes of nominal types and archetypes have instance methods and // static members, but not instance properties. // FIXME: partial application of properties hasInstanceMethods = true; hasStaticMembers = true; } // If we're at the root of an unevaluated context, we can // reference instance members on the metatype. if (memberLocator && UnevaluatedRootExprs.count(memberLocator->getAnchor())) { hasInstanceMembers = true; } } else { // Otherwise, we can access all instance members. hasInstanceMembers = true; hasInstanceMethods = true; } // If the argument labels for this result are incompatible with // the call site, skip it. // FIXME: The subscript check here forces the use of the // function-application simplification logic to handle labels. if (argumentLabels && (!candidate.isDecl() || !isa(candidate.getDecl())) && !areConservativelyCompatibleArgumentLabels( candidate, argumentLabels->Labels, argumentLabels->HasTrailingClosure)) { labelMismatch = true; result.addUnviable(candidate, MemberLookupResult::UR_LabelMismatch); return; } // If our base is an existential type, we can't make use of any // member whose signature involves associated types. if (instanceTy->isExistentialType()) { if (auto *proto = decl->getDeclContext()->getSelfProtocolDecl()) { if (!proto->isAvailableInExistential(decl)) { result.addUnviable(candidate, MemberLookupResult::UR_UnavailableInExistential); return; } } } // If the invocation's argument expression has a favored type, // use that information to determine whether a specific overload for // the candidate should be favored. if (isa(decl) && favoredType && result.FavoredChoice == ~0U) { auto *ctor = cast(decl); // Only try and favor monomorphic initializers. if (!ctor->isGenericContext()) { auto args = ctor->getMethodInterfaceType() ->castTo()->getParams(); auto argType = AnyFunctionType::composeInput(getASTContext(), args, /*canonicalVarargs=*/false); if (argType->isEqual(favoredType)) if (!decl->getAttrs().isUnavailable(getASTContext())) result.FavoredChoice = result.ViableCandidates.size(); } } // See if we have an instance method, instance member or static method, // and check if it can be accessed on our base type. if (decl->isInstanceMember()) { if ((isa(decl) && !hasInstanceMethods) || (!isa(decl) && !hasInstanceMembers)) { // `AnyObject` has special semantics, so let's just let it be. // Otherwise adjust base type and reference kind to make it // look as if lookup was done on the instance, that helps // with diagnostics. auto choice = instanceTy->isAnyObject() ? candidate : OverloadChoice(instanceTy, decl, FunctionRefKind::SingleApply); result.addUnviable(choice, MemberLookupResult::UR_InstanceMemberOnType); return; } // If the underlying type of a typealias is fully concrete, it is legal // to access the type with a protocol metatype base. } else if (instanceTy->isExistentialType() && isa(decl) && !cast(decl)->getInterfaceType()->hasTypeParameter()) { /* We're OK */ } else { if (!hasStaticMembers) { result.addUnviable(candidate, MemberLookupResult::UR_TypeMemberOnInstance); return; } } // If we have an rvalue base, make sure that the result isn't 'mutating' // (only valid on lvalues). if (!baseTy->is() && !baseTy->is() && decl->isInstanceMember()) { if (auto *FD = dyn_cast(decl)) if (FD->isMutating()) { result.addUnviable(candidate, MemberLookupResult::UR_MutatingMemberOnRValue); return; } // Subscripts and computed properties are ok on rvalues so long // as the getter is nonmutating. if (auto storage = dyn_cast(decl)) { if (storage->isGetterMutating()) { result.addUnviable(candidate, MemberLookupResult::UR_MutatingGetterOnRValue); return; } } } // Check whether this is overload choice found via keypath // based dynamic member lookup. Since it's unknown upfront // what kind of declaration lookup is going to find, let's // double check here that given keypath is appropriate for it. if (memberLocator && memberLocator->isForKeyPathDynamicMemberLookup()) { auto path = memberLocator->getPath(); auto *keyPath = path.back().getKeyPath(); if (auto *storage = dyn_cast(decl)) { // If this is an attempt to access read-only member via // writable key path, let's fail this choice early. if (isReadOnlyKeyPathComponent(storage) && keyPath == getASTContext().getWritableKeyPathDecl()) { result.addUnviable( candidate, MemberLookupResult::UR_WritableKeyPathOnReadOnlyMember); return; } // A nonmutating setter indicates a reference-writable base, // on the other hand if setter is mutating there is no point // of attempting `ReferenceWritableKeyPath` overload. if (storage->isSetterMutating() && keyPath == getASTContext().getReferenceWritableKeyPathDecl()) { result.addUnviable( candidate, MemberLookupResult::UR_ReferenceWritableKeyPathOnMutatingMember); return; } } } // Otherwise, we're good, add the candidate to the list. result.addViable(candidate); }; // Local function that turns a ValueDecl into a properly configured // OverloadChoice. auto getOverloadChoice = [&](ValueDecl *cand, bool isBridged, bool isUnwrappedOptional) -> OverloadChoice { // If we're looking into an existential type, check whether this // result was found via dynamic lookup. if (instanceTy->isAnyObject()) { assert(cand->getDeclContext()->isTypeContext() && "Dynamic lookup bug"); // We found this declaration via dynamic lookup, record it as such. return OverloadChoice::getDeclViaDynamic(baseTy, cand, functionRefKind); } // If we have a bridged type, we found this declaration via bridging. if (isBridged) return OverloadChoice::getDeclViaBridge(bridgedType, cand, functionRefKind); // If we got the choice by unwrapping an optional type, unwrap the base // type. if (isUnwrappedOptional) { auto ovlBaseTy = MetatypeType::get(baseTy->castTo() ->getInstanceType() ->getOptionalObjectType()); return OverloadChoice::getDeclViaUnwrappedOptional(ovlBaseTy, cand, functionRefKind); } // While looking for subscript choices it's possible to find // `subscript(dynamicMember: {Writable}KeyPath)` on types // marked as `@dynamicMemberLookup`, let's mark this candidate // as representing "dynamic lookup" unless it's a direct call // to such subscript (in that case label is expected to match). if (auto *subscript = dyn_cast(cand)) { if (::hasDynamicMemberLookupAttribute(instanceTy, DynamicMemberLookupCache) && isValidKeyPathDynamicMemberLookup(subscript, TC)) { auto info = getArgumentLabels(*this, ConstraintLocatorBuilder(memberLocator)); if (!(info && info->Labels.size() == 1 && info->Labels[0] == getASTContext().Id_dynamicMember)) { return OverloadChoice::getDynamicMemberLookup( baseTy, subscript, TC.Context.getIdentifier("subscript"), /*isKeyPathBased=*/true); } } } return OverloadChoice(baseTy, cand, functionRefKind); }; // Add all results from this lookup. retry_after_fail: labelMismatch = false; for (auto result : lookup) addChoice(getOverloadChoice(result.getValueDecl(), /*isBridged=*/false, /*isUnwrappedOptional=*/false)); // Backward compatibility hack. In Swift 4, `init` and init were // the same name, so you could write "foo.init" to look up a // method or property named `init`. if (!TC.Context.isSwiftVersionAtLeast(5) && memberName.getBaseName() == DeclBaseName::createConstructor() && !isImplicitInit) { auto &compatLookup = lookupMember(instanceTy, TC.Context.getIdentifier("init")); for (auto result : compatLookup) addChoice(getOverloadChoice(result.getValueDecl(), /*isBridged=*/false, /*isUnwrappedOptional=*/false)); } // If the instance type is a bridged to an Objective-C type, perform // a lookup into that Objective-C type. if (bridgedType) { LookupResult &bridgedLookup = lookupMember(bridgedType, memberName); ModuleDecl *foundationModule = nullptr; for (auto result : bridgedLookup) { // Ignore results from the Objective-C "Foundation" // module. Those core APIs are explicitly provided by the // Foundation module overlay. auto module = result.getValueDecl()->getModuleContext(); if (foundationModule) { if (module == foundationModule) continue; } else if (ClangModuleUnit::hasClangModule(module) && module->getName().str() == "Foundation") { // Cache the foundation module name so we don't need to look // for it again. foundationModule = module; continue; } addChoice(getOverloadChoice(result.getValueDecl(), /*isBridged=*/true, /*isUnwrappedOptional=*/false)); } } // If we're looking into a metatype for an unresolved member lookup, look // through optional types. // // FIXME: The short-circuit here is lame. if (result.ViableCandidates.empty() && baseObjTy->is() && constraintKind == ConstraintKind::UnresolvedValueMember) { if (auto objectType = instanceTy->getOptionalObjectType()) { if (objectType->mayHaveMembers()) { LookupResult &optionalLookup = lookupMember(objectType, memberName); for (auto result : optionalLookup) addChoice(getOverloadChoice(result.getValueDecl(), /*bridged*/false, /*isUnwrappedOptional=*/true)); } } } // If we're about to fail lookup, but we are looking for members in a type // with the @dynamicMemberLookup attribute, then we resolve a reference // to a `subscript(dynamicMember:)` method and pass the member name as a // string parameter. if (result.ViableCandidates.empty() && constraintKind == ConstraintKind::ValueMember && memberName.isSimpleName() && !memberName.isSpecial()) { auto name = memberName.getBaseIdentifier(); if (::hasDynamicMemberLookupAttribute(instanceTy, DynamicMemberLookupCache)) { auto &ctx = getASTContext(); // Recursively look up `subscript(dynamicMember:)` methods in this type. auto subscriptName = DeclName(ctx, DeclBaseName::createSubscript(), ctx.Id_dynamicMember); auto subscripts = performMemberLookup(constraintKind, subscriptName, baseTy, functionRefKind, memberLocator, includeInaccessibleMembers); // Reflect the candidates found as `DynamicMemberLookup` results. for (auto candidate : subscripts.ViableCandidates) { auto *SD = cast(candidate.getDecl()); bool isKeyPathBased = isValidKeyPathDynamicMemberLookup(SD, TC); if (isValidStringDynamicMemberLookup(SD, DC, TC) || isKeyPathBased) result.addViable(OverloadChoice::getDynamicMemberLookup( baseTy, SD, name, isKeyPathBased)); } for (auto index : indices(subscripts.UnviableCandidates)) { auto *SD = cast(subscripts.UnviableCandidates[index].getDecl()); auto choice = OverloadChoice::getDynamicMemberLookup( baseTy, SD, name, isValidKeyPathDynamicMemberLookup(SD, TC)); result.addUnviable(choice, subscripts.UnviableReasons[index]); } } } // If we rejected some possibilities due to an argument-label // mismatch and ended up with nothing, try again ignoring the // labels. This allows us to perform typo correction on the labels. if (result.ViableCandidates.empty() && labelMismatch && shouldAttemptFixes()){ argumentLabels.reset(); goto retry_after_fail; } // If we have no viable or unviable candidates, and we're generating, // diagnostics, rerun the query with inaccessible members included, so we can // include them in the unviable candidates list. if (result.ViableCandidates.empty() && result.UnviableCandidates.empty() && includeInaccessibleMembers) { NameLookupOptions lookupOptions = defaultMemberLookupOptions; // Ignore access control so we get candidates that might have been missed // before. lookupOptions |= NameLookupFlags::IgnoreAccessControl; // This is only used for diagnostics, so always use KnownPrivate. lookupOptions |= NameLookupFlags::KnownPrivate; auto lookup = TC.lookupMember(DC, instanceTy, memberName, lookupOptions); for (auto entry : lookup) { auto *cand = entry.getValueDecl(); // If the result is invalid, skip it. TC.validateDecl(cand); if (cand->isInvalid()) { result.markErrorAlreadyDiagnosed(); return result; } // FIXME: Deal with broken recursion if (!cand->hasInterfaceType()) continue; result.addUnviable(getOverloadChoice(cand, /*isBridged=*/false, /*isUnwrappedOptional=*/false), MemberLookupResult::UR_Inaccessible); } } return result; } /// Determine whether the given type refers to a non-final class (or /// dynamic self of one). static bool isNonFinalClass(Type type) { if (auto dynamicSelf = type->getAs()) type = dynamicSelf->getSelfType(); if (auto classDecl = type->getClassOrBoundGenericClass()) return !classDecl->isFinal(); if (auto archetype = type->getAs()) if (auto super = archetype->getSuperclass()) return isNonFinalClass(super); return type->isExistentialType(); } /// Determine whether given constructor reference is valid or does it require /// any fixes e.g. when base is a protocol metatype. static ConstraintFix *validateInitializerRef(ConstraintSystem &cs, ConstructorDecl *init, ConstraintLocator *locator) { auto *anchor = locator->getAnchor(); if (!anchor) return nullptr; auto getType = [&cs](const Expr *expr) -> Type { return cs.simplifyType(cs.getType(expr))->getRValueType(); }; auto locatorEndsWith = [](ConstraintLocator *locator, ConstraintLocator::PathElementKind eltKind) -> bool { auto path = locator->getPath(); return !path.empty() && path.back().getKind() == eltKind; }; Expr *baseExpr = nullptr; Type baseType; // Explicit initializer reference e.g. `T.init(...)` or `T.init`. if (auto *UDE = dyn_cast(anchor)) { baseExpr = UDE->getBase(); baseType = getType(baseExpr); if (baseType->is()) { auto instanceType = baseType->getAs() ->getInstanceType() ->getWithoutParens(); if (!cs.isTypeReference(baseExpr) && instanceType->isExistentialType()) { return AllowInvalidInitRef::onProtocolMetatype( cs, baseType, init, /*isStaticallyDerived=*/true, baseExpr->getSourceRange(), locator); } } // Initializer call e.g. `T(...)` } else if (auto *CE = dyn_cast(anchor)) { baseExpr = CE->getFn(); baseType = getType(baseExpr); // If this is an initializer call without explicit mention // of `.init` on metatype value. if (auto *AMT = baseType->getAs()) { auto instanceType = AMT->getInstanceType()->getWithoutParens(); if (!cs.isTypeReference(baseExpr)) { if (baseType->is() && instanceType->isAnyExistentialType()) { return AllowInvalidInitRef::onProtocolMetatype( cs, baseType, init, cs.isStaticallyDerivedMetatype(baseExpr), baseExpr->getSourceRange(), locator); } if (!instanceType->isExistentialType() || instanceType->isAnyExistentialType()) { return AllowInvalidInitRef::onNonConstMetatype(cs, baseType, init, locator); } } } // Initializer reference which requires contextual base type e.g. // `.init(...)`. } else if (auto *UME = dyn_cast(anchor)) { // We need to find type variable which represents contextual base. auto *baseLocator = cs.getConstraintLocator( UME, locatorEndsWith(locator, ConstraintLocator::ConstructorMember) ? ConstraintLocator::UnresolvedMember : ConstraintLocator::MemberRefBase); // FIXME: Type variables responsible for contextual base could be cached // in the constraint system to speed up lookup. auto result = llvm::find_if( cs.getTypeVariables(), [&baseLocator](const TypeVariableType *typeVar) { return typeVar->getImpl().getLocator() == baseLocator; }); assert(result != cs.getTypeVariables().end()); baseType = cs.simplifyType(*result)->getRValueType(); // Constraint for member base is formed as '$T.Type[.is()) { bool applicable = false; // Special case -- in a protocol extension initializer with a class // constrainted Self type, 'self' has archetype type, and only // required initializers can be called. if (baseExpr && !baseExpr->isSuperExpr()) { auto &ctx = cs.getASTContext(); if (auto *DRE = dyn_cast(baseExpr->getSemanticsProvidingExpr())) { if (DRE->getDecl()->getFullName() == ctx.Id_self) { if (getType(DRE)->is()) applicable = true; } } } if (!applicable) return nullptr; } auto instanceType = baseType->getMetatypeInstanceType(); bool isStaticallyDerived = true; // If this is expression like `.init(...)` where base type is // determined by a contextual type. if (!baseExpr) { isStaticallyDerived = !(instanceType->is() || instanceType->is()); // Otherwise this is something like `T.init(...)` } else { isStaticallyDerived = cs.isStaticallyDerivedMetatype(baseExpr); } auto baseRange = baseExpr ? baseExpr->getSourceRange() : SourceRange(); // FIXME: The "hasClangNode" check here is a complete hack. if (isNonFinalClass(instanceType) && !isStaticallyDerived && !init->hasClangNode() && !(init->isRequired() || init->getDeclContext()->getSelfProtocolDecl())) { return AllowInvalidInitRef::dynamicOnMetatype(cs, baseType, init, baseRange, locator); // Constructors cannot be called on a protocol metatype, because there is no // metatype to witness it. } else if (baseType->is() && instanceType->isExistentialType()) { return AllowInvalidInitRef::onProtocolMetatype( cs, baseType, init, isStaticallyDerived, baseRange, locator); } return nullptr; } static ConstraintFix * fixMemberRef(ConstraintSystem &cs, Type baseTy, DeclName memberName, const OverloadChoice &choice, ConstraintLocator *locator, Optional reason = None) { // Not all of the choices handled here are going // to refer to a declaration. if (auto *decl = choice.getDeclOrNull()) { if (auto *CD = dyn_cast(decl)) { if (auto *fix = validateInitializerRef(cs, CD, locator)) return fix; } if (locator->isForKeyPathDynamicMemberLookup()) { if (auto *fix = AllowInvalidRefInKeyPath::forRef(cs, decl, locator)) return fix; } } if (reason) { switch (*reason) { case MemberLookupResult::UR_InstanceMemberOnType: case MemberLookupResult::UR_TypeMemberOnInstance: { return choice.isDecl() ? AllowTypeOrInstanceMember::create( cs, baseTy, choice.getDecl(), memberName, locator) : nullptr; } case MemberLookupResult::UR_Inaccessible: assert(choice.isDecl()); return AllowInaccessibleMember::create(cs, choice.getDecl(), locator); case MemberLookupResult::UR_MutatingMemberOnRValue: case MemberLookupResult::UR_MutatingGetterOnRValue: case MemberLookupResult::UR_LabelMismatch: case MemberLookupResult::UR_UnavailableInExistential: // TODO(diagnostics): Add a new fix that is suggests to // add `subscript(dynamicMember: {Writable}KeyPath)` // overload here, that would help if such subscript has // not been provided. case MemberLookupResult::UR_WritableKeyPathOnReadOnlyMember: case MemberLookupResult::UR_ReferenceWritableKeyPathOnMutatingMember: break; case MemberLookupResult::UR_KeyPathWithAnyObjectRootType: return AllowAnyObjectKeyPathRoot::create(cs, locator); } } return nullptr; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyMemberConstraint( ConstraintKind kind, Type baseTy, DeclName member, Type memberTy, DeclContext *useDC, FunctionRefKind functionRefKind, ArrayRef outerAlternatives, TypeMatchOptions flags, ConstraintLocatorBuilder locatorB) { // We'd need to record original base type because it might be a type // variable representing another missing member. auto origBaseTy = baseTy; // Resolve the base type, if we can. If we can't resolve the base type, // then we can't solve this constraint. baseTy = simplifyType(baseTy, flags); Type baseObjTy = baseTy->getRValueType(); auto locator = getConstraintLocator(locatorB); MemberLookupResult result = performMemberLookup(kind, member, baseTy, functionRefKind, locator, /*includeInaccessibleMembers*/ shouldAttemptFixes()); switch (result.OverallResult) { case MemberLookupResult::Unsolved: // If requested, generate a constraint. if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::createMemberOrOuterDisjunction(*this, kind, baseTy, memberTy, member, useDC, functionRefKind, outerAlternatives, locator)); return SolutionKind::Solved; } return SolutionKind::Unsolved; case MemberLookupResult::ErrorAlreadyDiagnosed: return SolutionKind::Error; case MemberLookupResult::HasResults: // Keep going! break; } SmallVector candidates; // If we found viable candidates, then we're done! if (!result.ViableCandidates.empty()) { generateConstraints( candidates, memberTy, result.ViableCandidates, useDC, locator, result.getFavoredIndex(), /*requiresFix=*/false, [&](unsigned, const OverloadChoice &choice) { return fixMemberRef(*this, baseTy, member, choice, locator); }); if (!outerAlternatives.empty()) { // If local scope has a single choice, // it should always be preferred. if (candidates.size() == 1) candidates.front()->setFavored(); generateConstraints(candidates, memberTy, outerAlternatives, useDC, locator); } } if (!result.UnviableCandidates.empty()) { // Generate constraints for unvailable choices if they have a fix, // and disable them by default, they'd get picked up in the "salvage" mode. generateConstraints( candidates, memberTy, result.UnviableCandidates, useDC, locator, /*favoredChoice=*/None, /*requiresFix=*/true, [&](unsigned idx, const OverloadChoice &choice) { return fixMemberRef(*this, baseTy, member, choice, locator, result.UnviableReasons[idx]); }); } if (!candidates.empty()) { addOverloadSet(candidates, locator); return SolutionKind::Solved; } // If the lookup found no hits at all (either viable or unviable), diagnose it // as such and try to recover in various ways. if (shouldAttemptFixes()) { // Let's record missing member in constraint system, this helps to prevent // stacking up fixes for the same member, because e.g. if its base was of // optional type, we'd re-introduce member constraint with optional stripped // off to see if the problem is related to base not being explicitly unwrapped. if (!MissingMembers.insert(locator)) return SolutionKind::Error; if (baseObjTy->getOptionalObjectType()) { // If the base type was an optional, look through it. // If the base type is optional because we haven't chosen to force an // implicit optional, don't try to fix it. The IUO will be forced instead. if (auto dotExpr = dyn_cast(locator->getAnchor())) { auto baseExpr = dotExpr->getBase(); auto resolvedOverload = getResolvedOverloadSets(); while (resolvedOverload) { if (resolvedOverload->Locator->getAnchor() == baseExpr) { if (resolvedOverload->Choice .isImplicitlyUnwrappedValueOrReturnValue()) return SolutionKind::Error; break; } resolvedOverload = resolvedOverload->Previous; } } // The result of the member access can either be the expected member type // (for '!' or optional members with '?'), or the original member type // with one extra level of optionality ('?' with non-optional members). auto innerTV = createTypeVariable(locator, TVO_CanBindToLValue | TVO_CanBindToNoEscape); Type optTy = getTypeChecker().getOptionalType( locator->getAnchor()->getSourceRange().Start, innerTV); SmallVector optionalities; auto nonoptionalResult = Constraint::createFixed( *this, ConstraintKind::Bind, UnwrapOptionalBase::create(*this, member, locator), innerTV, memberTy, locator); auto optionalResult = Constraint::createFixed( *this, ConstraintKind::Bind, UnwrapOptionalBase::createWithOptionalResult(*this, member, locator), optTy, memberTy, locator); optionalities.push_back(nonoptionalResult); optionalities.push_back(optionalResult); addDisjunctionConstraint(optionalities, locator); // Look through one level of optional. addValueMemberConstraint(baseObjTy->getOptionalObjectType(), member, innerTV, useDC, functionRefKind, outerAlternatives, locator); return SolutionKind::Solved; } auto solveWithNewBaseOrName = [&](Type baseType, DeclName memberName) -> SolutionKind { // Let's re-enable fixes for this member, because // the base or member name has been changed. MissingMembers.remove(locator); return simplifyMemberConstraint(kind, baseType, memberName, memberTy, useDC, functionRefKind, outerAlternatives, flags, locatorB); }; if (auto *funcType = baseTy->getAs()) { // We can't really suggest anything useful unless // function takes no arguments, otherwise it // would make sense to report this a missing member. if (funcType->getNumParams() == 0) { auto result = solveWithNewBaseOrName(funcType->getResult(), member); // If there is indeed a member with given name in result type // let's return, otherwise let's fall-through and report // this problem as a missing member. if (result == SolutionKind::Solved) return recordFix(InsertExplicitCall::create(*this, locator)) ? SolutionKind::Error : SolutionKind::Solved; } } // Instead of using subscript operator spelled out `subscript` directly. if (member.getBaseName() == getTokenText(tok::kw_subscript)) { auto result = solveWithNewBaseOrName(baseTy, DeclBaseName::createSubscript()); // Looks like it was indeed meant to be a subscript operator. if (result == SolutionKind::Solved) return recordFix(UseSubscriptOperator::create(*this, locator)) ? SolutionKind::Error : SolutionKind::Solved; } // FIXME(diagnostics): This is more of a hack than anything. // Let's not try to suggest that there is no member related to an // obscure underscored type, the real problem would be somewhere // else. This helps to diagnose pattern matching cases. { if (auto *metatype = baseTy->getAs()) { auto instanceTy = metatype->getInstanceType(); if (auto *NTD = instanceTy->getAnyNominal()) { if (NTD->getName() == getASTContext().Id_OptionalNilComparisonType) return SolutionKind::Error; } } } // FIXME(diagnostics): Errors related to `AnyObject` could be diagnosed // better in the future, relevant failure information has to be extracted // from `performMemberLookup` result, in order to figure out if it was a // simple labeling or # of arguments mismatch, or member with requested name // really doesn't exist. if (baseTy->isAnyObject()) return SolutionKind::Error; result = performMemberLookup(kind, member, baseTy, functionRefKind, locator, /*includeInaccessibleMembers*/ true); // FIXME(diagnostics): If there were no viable results, but there are // unviable ones, we'd have to introduce fix for each specific problem. if (!result.UnviableCandidates.empty()) return SolutionKind::Error; // Since member with given base and name doesn't exist, let's try to // fake its presence based on use, that makes it possible to diagnose // problems related to member lookup more precisely. auto *fix = DefineMemberBasedOnUse::create(*this, origBaseTy, member, locator); if (recordFix(fix)) return SolutionKind::Error; // Allow member type to default to `Any` to make it possible to form // solutions when contextual type of the result cannot be deduced e.g. // `let _ = x.foo`. addConstraint(ConstraintKind::Defaultable, memberTy, getASTContext().TheAnyType, locator); return SolutionKind::Solved; } return SolutionKind::Error; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyDefaultableConstraint( Type first, Type second, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { first = getFixedTypeRecursive(first, flags, true); if (first->isTypeVariableOrMember()) { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::Defaultable, first, second, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; } // Otherwise, any type is fine. return SolutionKind::Solved; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyDynamicTypeOfConstraint( Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // Local function to form an unsolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::DynamicTypeOf, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; // Solve forward. type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); if (!type2->isTypeVariableOrMember()) { Type dynamicType2; if (type2->isAnyExistentialType()) { dynamicType2 = ExistentialMetatypeType::get(type2); } else { dynamicType2 = MetatypeType::get(type2); } return matchTypes(type1, dynamicType2, ConstraintKind::Bind, subflags, locator); } // Okay, can't solve forward. See what we can do backwards. type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true); if (type1->isTypeVariableOrMember()) return formUnsolved(); // If we have an existential metatype, that's good enough to solve // the constraint. if (auto metatype1 = type1->getAs()) return matchTypes(metatype1->getInstanceType(), type2, ConstraintKind::Bind, subflags, locator); // If we have a normal metatype, we can't solve backwards unless we // know what kind of object it is. if (auto metatype1 = type1->getAs()) { Type instanceType1 = getFixedTypeRecursive(metatype1->getInstanceType(), true); if (instanceType1->isTypeVariableOrMember()) return formUnsolved(); return matchTypes(instanceType1, type2, ConstraintKind::Bind, subflags, locator); } // It's definitely not either kind of metatype, so we can // report failure right away. return SolutionKind::Error; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyOpaqueUnderlyingTypeConstraint(Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // Open the second type, which must be an opaque archetype, to try to // infer the first type using its constraints. auto opaque2 = type2->castTo(); // Open the generic signature of the opaque decl, and bind the "outer" generic // params to our context. The remaining axes of freedom on the type variable // corresponding to the underlying type should be the constraints on the // underlying return type. OpenedTypeMap replacements; openGeneric(nullptr, DC, opaque2->getBoundSignature(), /*skip self*/ false, locator, replacements); auto underlyingTyVar = openType(opaque2->getInterfaceType(), replacements); assert(underlyingTyVar); if (auto dcSig = DC->getGenericSignatureOfContext()) { for (auto param : dcSig->getGenericParams()) { addConstraint(ConstraintKind::Bind, openType(param, replacements), DC->mapTypeIntoContext(param), locator); } } addConstraint(ConstraintKind::Equal, type1, underlyingTyVar, locator); return getTypeMatchSuccess(); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyBridgingConstraint(Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); /// Form an unresolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::BridgingConversion, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; // Local function to look through optional types. It produces the // fully-unwrapped type and a count of the total # of optional types that were // unwrapped. auto unwrapType = [&](Type type) -> std::pair { unsigned count = 0; while (Type objectType = type->getOptionalObjectType()) { ++count; TypeMatchOptions unusedOptions; type = getFixedTypeRecursive(objectType, unusedOptions, /*wantRValue=*/true); } return { type, count }; }; type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true); type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); if (type1->isTypeVariableOrMember() || type2->isTypeVariableOrMember()) return formUnsolved(); Type unwrappedFromType; unsigned numFromOptionals; std::tie(unwrappedFromType, numFromOptionals) = unwrapType(type1); Type unwrappedToType; unsigned numToOptionals; std::tie(unwrappedToType, numToOptionals) = unwrapType(type2); if (unwrappedFromType->isTypeVariableOrMember() || unwrappedToType->isTypeVariableOrMember()) return formUnsolved(); // Update the score. increaseScore(SK_UserConversion); // FIXME: Use separate score kind? if (worseThanBestSolution()) { return SolutionKind::Error; } // Local function to count the optional injections that will be performed // after the bridging conversion. auto countOptionalInjections = [&] { if (numToOptionals > numFromOptionals) increaseScore(SK_ValueToOptional, numToOptionals - numFromOptionals); }; // Anything can be explicitly converted to AnyObject using the universal // bridging conversion. This allows both extraneous optionals in the source // (because optionals themselves can be boxed for AnyObject) and in the // destination (we'll perform the extra injections at the end). if (unwrappedToType->isAnyObject()) { countOptionalInjections(); return SolutionKind::Solved; } // The source cannot be more optional than the destination, because bridging // conversions don't allow us to implicitly check for a value in the optional. if (numFromOptionals > numToOptionals) { return SolutionKind::Error; } // Explicit bridging from a value type to an Objective-C class type. if (unwrappedFromType->isPotentiallyBridgedValueType() && (unwrappedToType->isBridgeableObjectType() || (unwrappedToType->isExistentialType() && !unwrappedToType->isAny()))) { countOptionalInjections(); if (Type classType = TC.Context.getBridgedToObjC(DC, unwrappedFromType)) { return matchTypes(classType, unwrappedToType, ConstraintKind::Conversion, subflags, locator); } } // Bridging from an Objective-C class type to a value type. // Note that specifically require a class or class-constrained archetype // here, because archetypes cannot be bridged. if (unwrappedFromType->mayHaveSuperclass() && unwrappedToType->isPotentiallyBridgedValueType()) { Type bridgedValueType; if (auto objcClass = TC.Context.getBridgedToObjC(DC, unwrappedToType, &bridgedValueType)) { // Bridging NSNumber to NSValue is one-way, since there are multiple Swift // value types that bridge to those object types. It requires a checked // cast to get back. if (TC.Context.isObjCClassWithMultipleSwiftBridgedTypes(objcClass)) return SolutionKind::Error; // If the bridged value type is generic, the generic arguments // must either match or be bridged. // FIXME: This should be an associated type of the protocol. if (auto fromBGT = unwrappedToType->getAs()) { if (fromBGT->getDecl() == TC.Context.getArrayDecl()) { // [AnyObject] addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0], TC.Context.getAnyObjectType(), getConstraintLocator( locator.withPathElement( LocatorPathElt::getGenericArgument(0)))); } else if (fromBGT->getDecl() == TC.Context.getDictionaryDecl()) { // [NSObject : AnyObject] auto NSObjectType = TC.getNSObjectType(DC); if (!NSObjectType) { // Not a bridging case. Should we detect this earlier? return SolutionKind::Error; } addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0], NSObjectType, getConstraintLocator( locator.withPathElement( LocatorPathElt::getGenericArgument(0)))); addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[1], TC.Context.getAnyObjectType(), getConstraintLocator( locator.withPathElement( LocatorPathElt::getGenericArgument(1)))); } else if (fromBGT->getDecl() == TC.Context.getSetDecl()) { auto NSObjectType = TC.getNSObjectType(DC); if (!NSObjectType) { // Not a bridging case. Should we detect this earlier? return SolutionKind::Error; } addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0], NSObjectType, getConstraintLocator( locator.withPathElement( LocatorPathElt::getGenericArgument(0)))); } else { // Nothing special to do; matchTypes will match generic arguments. } } // Make sure we have the bridged value type. if (matchTypes(unwrappedToType, bridgedValueType, ConstraintKind::Bind, subflags, locator).isFailure()) return SolutionKind::Error; countOptionalInjections(); return matchTypes(unwrappedFromType, objcClass, ConstraintKind::Subtype, subflags, locator); } } // Bridging the elements of an array. if (auto fromElement = isArrayType(unwrappedFromType)) { if (auto toElement = isArrayType(unwrappedToType)) { countOptionalInjections(); return simplifyBridgingConstraint( *fromElement, *toElement, subflags, locator.withPathElement( LocatorPathElt::getGenericArgument(0))); } } // Bridging the keys/values of a dictionary. if (auto fromKeyValue = isDictionaryType(unwrappedFromType)) { if (auto toKeyValue = isDictionaryType(unwrappedToType)) { addExplicitConversionConstraint(fromKeyValue->first, toKeyValue->first, /*allowFixes=*/false, locator.withPathElement( LocatorPathElt::getGenericArgument(0))); addExplicitConversionConstraint(fromKeyValue->second, toKeyValue->second, /*allowFixes=*/false, locator.withPathElement( LocatorPathElt::getGenericArgument(0))); countOptionalInjections(); return SolutionKind::Solved; } } // Bridging the elements of a set. if (auto fromElement = isSetType(unwrappedFromType)) { if (auto toElement = isSetType(unwrappedToType)) { countOptionalInjections(); return simplifyBridgingConstraint( *fromElement, *toElement, subflags, locator.withPathElement( LocatorPathElt::getGenericArgument(0))); } } return SolutionKind::Error; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyEscapableFunctionOfConstraint( Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // Local function to form an unsolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::EscapableFunctionOf, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); if (auto fn2 = type2->getAs()) { // Solve forward by binding the other type variable to the escapable // variation of this type. auto fn1 = fn2->withExtInfo(fn2->getExtInfo().withNoEscape(false)); return matchTypes(type1, fn1, ConstraintKind::Bind, subflags, locator); } if (!type2->isTypeVariableOrMember()) // We definitely don't have a function, so bail. return SolutionKind::Error; type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true); if (auto fn1 = type1->getAs()) { // We should have the escaping end of the relation. if (fn1->getExtInfo().isNoEscape()) return SolutionKind::Error; // Solve backward by binding the other type variable to the noescape // variation of this type. auto fn2 = fn1->withExtInfo(fn1->getExtInfo().withNoEscape(true)); return matchTypes(type2, fn2, ConstraintKind::Bind, subflags, locator); } if (!type1->isTypeVariableOrMember()) // We definitely don't have a function, so bail. return SolutionKind::Error; return formUnsolved(); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyOpenedExistentialOfConstraint( Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); if (type2->isAnyExistentialType()) { // We have the existential side. Produce an opened archetype and bind // type1 to it. bool isMetatype = false; auto instanceTy = type2; if (auto metaTy = type2->getAs()) { isMetatype = true; instanceTy = metaTy->getInstanceType(); } assert(instanceTy->isExistentialType()); Type openedTy = OpenedArchetypeType::get(instanceTy); if (isMetatype) openedTy = MetatypeType::get(openedTy, TC.Context); return matchTypes(type1, openedTy, ConstraintKind::Bind, subflags, locator); } if (!type2->isTypeVariableOrMember()) // We definitely don't have an existential, so bail. return SolutionKind::Error; // If type1 is constrained to anything concrete, the constraint fails. // It can only be bound to a type we opened for it. type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true); if (!type1->isTypeVariableOrMember()) return SolutionKind::Error; if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::OpenedExistentialOf, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyKeyPathConstraint(Type keyPathTy, Type rootTy, Type valueTy, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { auto subflags = getDefaultDecompositionOptions(flags); // The constraint ought to have been anchored on a KeyPathExpr. auto keyPath = cast(locator.getBaseLocator()->getAnchor()); // Gather overload choices for any key path components associated with this // key path. SmallVector choices; choices.resize(keyPath->getComponents().size()); for (auto resolvedItem = resolvedOverloadSets; resolvedItem; resolvedItem = resolvedItem->Previous) { auto locator = resolvedItem->Locator; if (locator->getAnchor() == keyPath && locator->getPath().size() <= 2 && locator->getPath()[0].getKind() == ConstraintLocator::KeyPathComponent) { choices[locator->getPath()[0].getValue()] = resolvedItem->Choice; } } keyPathTy = getFixedTypeRecursive(keyPathTy, /*want rvalue*/ true); auto tryMatchRootAndValueFromKeyPathType = [&](BoundGenericType *bgt, bool allowPartial) -> SolutionKind { Type boundRoot, boundValue; // We can get root and value from a concrete key path type. if (bgt->getDecl() == getASTContext().getKeyPathDecl() || bgt->getDecl() == getASTContext().getWritableKeyPathDecl() || bgt->getDecl() == getASTContext().getReferenceWritableKeyPathDecl()) { boundRoot = bgt->getGenericArgs()[0]; boundValue = bgt->getGenericArgs()[1]; } else if (bgt->getDecl() == getASTContext().getPartialKeyPathDecl()) { if (allowPartial) { // We can still get the root from a PartialKeyPath. boundRoot = bgt->getGenericArgs()[0]; boundValue = Type(); } else { return SolutionKind::Error; } } else { // We can't bind anything from this type. return SolutionKind::Solved; } if (matchTypes(boundRoot, rootTy, ConstraintKind::Bind, subflags, locator).isFailure()) return SolutionKind::Error; if (boundValue && matchTypes(boundValue, valueTy, ConstraintKind::Bind, subflags, locator).isFailure()) return SolutionKind::Error; return SolutionKind::Solved; }; // If we're fixed to a bound generic type, trying harvesting context from it. // However, we don't want a solution that fixes the expression type to // PartialKeyPath; we'd rather that be represented using an upcast conversion. auto keyPathBGT = keyPathTy->getAs(); if (keyPathBGT) { if (tryMatchRootAndValueFromKeyPathType(keyPathBGT, /*allowPartial*/false) == SolutionKind::Error) return SolutionKind::Error; } // If the expression has contextual type information, try using that too. if (auto contextualTy = getContextualType(keyPath)) { if (auto contextualBGT = contextualTy->getAs()) { if (tryMatchRootAndValueFromKeyPathType(contextualBGT, /*allowPartial*/true) == SolutionKind::Error) return SolutionKind::Error; } } // See if we resolved overloads for all the components involved. enum { ReadOnly, Writable, ReferenceWritable } capability = Writable; for (unsigned i : indices(keyPath->getComponents())) { auto &component = keyPath->getComponents()[i]; switch (component.getKind()) { case KeyPathExpr::Component::Kind::Invalid: case KeyPathExpr::Component::Kind::Identity: break; case KeyPathExpr::Component::Kind::Property: case KeyPathExpr::Component::Kind::Subscript: case KeyPathExpr::Component::Kind::UnresolvedProperty: case KeyPathExpr::Component::Kind::UnresolvedSubscript: { // If no choice was made, leave the constraint unsolved. if (choices[i].isInvalid()) { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint(Constraint::create(*this, ConstraintKind::KeyPath, keyPathTy, rootTy, valueTy, locator.getBaseLocator())); return SolutionKind::Solved; } return SolutionKind::Unsolved; } // tuple elements do not change the capability of the key path if (choices[i].getKind() == OverloadChoiceKind::TupleIndex) { continue; } // Discarded unsupported non-decl member lookups. if (!choices[i].isDecl()) { return SolutionKind::Error; } auto storage = dyn_cast(choices[i].getDecl()); auto *componentLoc = getConstraintLocator( locator.withPathElement(LocatorPathElt::getKeyPathComponent(i))); if (auto *fix = AllowInvalidRefInKeyPath::forRef( *this, choices[i].getDecl(), componentLoc)) { if (!shouldAttemptFixes() || recordFix(fix)) return SolutionKind::Error; // If this was a method reference let's mark it as read-only. if (!storage) { capability = ReadOnly; continue; } } if (!storage) return SolutionKind::Error; if (isReadOnlyKeyPathComponent(storage)) { capability = ReadOnly; continue; } // A nonmutating setter indicates a reference-writable base. if (!storage->isSetterMutating()) { capability = ReferenceWritable; continue; } // Otherwise, the key path maintains its current capability. break; } case KeyPathExpr::Component::Kind::OptionalChain: // Optional chains force the entire key path to be read-only. capability = ReadOnly; goto done; case KeyPathExpr::Component::Kind::OptionalForce: // Forcing an optional preserves its lvalue-ness. break; case KeyPathExpr::Component::Kind::OptionalWrap: // An optional chain should already have forced the entire key path to // be read-only. assert(capability == ReadOnly); break; case KeyPathExpr::Component::Kind::TupleElement: llvm_unreachable("not implemented"); break; } } done: // Resolve the type. NominalTypeDecl *kpDecl; switch (capability) { case ReadOnly: kpDecl = getASTContext().getKeyPathDecl(); break; case Writable: kpDecl = getASTContext().getWritableKeyPathDecl(); break; case ReferenceWritable: kpDecl = getASTContext().getReferenceWritableKeyPathDecl(); break; } // FIXME: Allow the type to be upcast if the type system has a concrete // KeyPath type assigned to the expression already. if (keyPathBGT) { if (keyPathBGT->getDecl() == getASTContext().getKeyPathDecl()) kpDecl = getASTContext().getKeyPathDecl(); else if (keyPathBGT->getDecl() == getASTContext().getWritableKeyPathDecl() && capability >= Writable) kpDecl = getASTContext().getWritableKeyPathDecl(); } auto resolvedKPTy = BoundGenericType::get(kpDecl, nullptr, {rootTy, valueTy}); // Let's check whether deduced key path type would match // expected contextual one. return matchTypes(resolvedKPTy, keyPathTy, ConstraintKind::Bind, subflags, locator.withPathElement(ConstraintLocator::ContextualType)); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyKeyPathApplicationConstraint( Type keyPathTy, Type rootTy, Type valueTy, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); keyPathTy = getFixedTypeRecursive(keyPathTy, flags, /*wantRValue=*/true); auto unsolved = [&]() -> SolutionKind { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint(Constraint::create(*this, ConstraintKind::KeyPathApplication, keyPathTy, rootTy, valueTy, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; if (auto clas = keyPathTy->getAs()) { if (clas->getDecl() == getASTContext().getAnyKeyPathDecl()) { // Read-only keypath, whose projected value is upcast to `Any?`. // The root type can be anything. Type resultTy = ProtocolCompositionType::get(getASTContext(), {}, /*explicit AnyObject*/ false); resultTy = OptionalType::get(resultTy); return matchTypes(resultTy, valueTy, ConstraintKind::Bind, subflags, locator); } } if (auto bgt = keyPathTy->getAs()) { // We have the key path type. Match it to the other ends of the constraint. auto kpRootTy = bgt->getGenericArgs()[0]; // Try to match the root type. rootTy = getFixedTypeRecursive(rootTy, flags, /*wantRValue=*/false); auto matchRoot = [&](ConstraintKind kind) -> bool { auto rootMatches = matchTypes(rootTy, kpRootTy, kind, subflags, locator); switch (rootMatches) { case SolutionKind::Error: return false; case SolutionKind::Solved: return true; case SolutionKind::Unsolved: llvm_unreachable("should have generated constraints"); } llvm_unreachable("unhandled match"); }; if (bgt->getDecl() == getASTContext().getPartialKeyPathDecl()) { // Read-only keypath, whose projected value is upcast to `Any`. auto resultTy = ProtocolCompositionType::get(getASTContext(), {}, /*explicit AnyObject*/ false); if (!matchRoot(ConstraintKind::Conversion)) return SolutionKind::Error; return matchTypes(resultTy, valueTy, ConstraintKind::Bind, subflags, locator); } if (bgt->getGenericArgs().size() < 2) return SolutionKind::Error; auto kpValueTy = bgt->getGenericArgs()[1]; /// Solve for an rvalue base. auto solveRValue = [&]() -> ConstraintSystem::SolutionKind { // An rvalue base can be converted to a supertype. return matchTypes(kpValueTy, valueTy, ConstraintKind::Bind, subflags, locator); }; /// Solve for a base whose lvalueness is to be determined. auto solveUnknown = [&]() -> ConstraintSystem::SolutionKind { if (matchTypes(kpValueTy, valueTy, ConstraintKind::Equal, subflags, locator).isFailure()) return SolutionKind::Error; return unsolved(); }; /// Solve for an lvalue base. auto solveLValue = [&]() -> ConstraintSystem::SolutionKind { return matchTypes(LValueType::get(kpValueTy), valueTy, ConstraintKind::Bind, subflags, locator); }; if (bgt->getDecl() == getASTContext().getKeyPathDecl()) { // Read-only keypath. if (!matchRoot(ConstraintKind::Conversion)) return SolutionKind::Error; return solveRValue(); } if (bgt->getDecl() == getASTContext().getWritableKeyPathDecl()) { // Writable keypath. The result can be an lvalue if the root was. // We can't convert the base without giving up lvalue-ness, though. if (!matchRoot(ConstraintKind::Equal)) return SolutionKind::Error; if (rootTy->is()) return solveLValue(); if (rootTy->isTypeVariableOrMember()) // We don't know whether the value is an lvalue yet. return solveUnknown(); return solveRValue(); } if (bgt->getDecl() == getASTContext().getReferenceWritableKeyPathDecl()) { if (!matchRoot(ConstraintKind::Conversion)) return SolutionKind::Error; // Reference-writable keypath. The result can always be an lvalue. return solveLValue(); } // Otherwise, we don't have a key path type at all. return SolutionKind::Error; } if (!keyPathTy->isTypeVariableOrMember()) return SolutionKind::Error; return unsolved(); } Type ConstraintSystem::simplifyAppliedOverloads( TypeVariableType *fnTypeVar, const FunctionType *argFnType, Optional argumentLabels, ConstraintLocatorBuilder locator) { Type fnType(fnTypeVar); // Always work on the representation. fnTypeVar = getRepresentative(fnTypeVar); // Dig out the disjunction that describes this overload. unsigned numOptionalUnwraps = 0; auto disjunction = getUnboundBindOverloadDisjunction(fnTypeVar, &numOptionalUnwraps); if (!disjunction) return fnType; /// The common result type amongst all function overloads. Type commonResultType; auto updateCommonResultType = [&](Type choiceType) { auto markFailure = [&] { commonResultType = ErrorType::get(getASTContext()); }; auto choiceFnType = choiceType->getAs(); if (!choiceFnType) return markFailure(); // For now, don't attempt to establish a common result type when there // are type parameters. Type choiceResultType = choiceFnType->getResult(); if (choiceResultType->hasTypeParameter()) return markFailure(); // If we haven't seen a common result type yet, record what we found. if (!commonResultType) { commonResultType = choiceResultType; return; } // If we found something different, fail. if (!commonResultType->isEqual(choiceResultType)) return markFailure(); }; // Consider each of the constraints in the disjunction. retry_after_fail: bool hasUnhandledConstraints = false; bool labelMismatch = false; auto filterResult = filterDisjunction(disjunction, /*restoreOnFail=*/shouldAttemptFixes(), [&](Constraint *constraint) { assert(constraint->getKind() == ConstraintKind::BindOverload); auto choice = constraint->getOverloadChoice(); // Determine whether the argument labels we have conflict with those of // this overload choice. if (argumentLabels && !areConservativelyCompatibleArgumentLabels( choice, argumentLabels->Labels, argumentLabels->HasTrailingClosure)) { labelMismatch = true; return false; } // Determine the type that this choice will have. Type choiceType = getEffectiveOverloadType(choice, /*allowMembers=*/true, constraint->getOverloadUseDC()); if (!choiceType) { hasUnhandledConstraints = true; return true; } // Account for any optional unwrapping/binding for (unsigned i : range(numOptionalUnwraps)) { (void)i; if (Type objectType = choiceType->getOptionalObjectType()) choiceType = objectType; } // If we have a function type, we can compute a common result type. updateCommonResultType(choiceType); return true; }); switch (filterResult) { case SolutionKind::Error: if (labelMismatch && shouldAttemptFixes()) { argumentLabels = None; goto retry_after_fail; } return Type(); case SolutionKind::Solved: // We should now have a type for the one remaining overload. fnType = getFixedTypeRecursive(fnType, /*wantRValue=*/true); break; case SolutionKind::Unsolved: break; } // If there was a constraint that we couldn't reason about, don't use the // results of any common-type computations. if (hasUnhandledConstraints) return fnType; // If we have a common result type, bind the expected result type to it. if (commonResultType && !commonResultType->is()) { ASTContext &ctx = getASTContext(); if (ctx.LangOpts.DebugConstraintSolver) { auto &log = ctx.TypeCheckerDebug->getStream(); log.indent(solverState ? solverState->depth * 2 + 2 : 0) << "(common result type for $T" << fnTypeVar->getID() << " is " << commonResultType.getString() << ")\n"; } // FIXME: Could also rewrite fnType to include this result type. addConstraint(ConstraintKind::Bind, argFnType->getResult(), commonResultType, locator); } return fnType; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyApplicableFnConstraint( Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // By construction, the left hand side is a type that looks like the // following: $T1 -> $T2. auto func1 = type1->castTo(); // Let's check if this member couldn't be found and is fixed // to exist based on its usage. if (auto *memberTy = type2->getAs()) { auto *locator = memberTy->getImpl().getLocator(); if (MissingMembers.count(locator)) { auto *funcTy = type1->castTo(); // Bind type variable associated with member to a type of argument // application, which makes it seem like member exists with the // types of the parameters matching argument types exactly. addConstraint(ConstraintKind::Bind, memberTy, funcTy, locator); // There might be no contextual type for result of the application, // in cases like `let _ = x.foo()`, so let's default result to `Any` // to make expressions like that type-check. addConstraint(ConstraintKind::Defaultable, funcTy->getResult(), getASTContext().TheAnyType, locator); return SolutionKind::Solved; } } // Drill down to the concrete type on the right hand side. type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); auto desugar2 = type2->getDesugaredType(); TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); SmallVector parts; Expr *anchor = locator.getLocatorParts(parts); bool isOperator = (isa(anchor) || isa(anchor) || isa(anchor)); auto hasInOut = [&]() { for (auto param : func1->getParams()) if (param.isInOut()) return true; return false; }; // If the types are obviously equivalent, we're done. This optimization // is not valid for operators though, where an inout parameter does not // have an explicit inout argument. if (type1.getPointer() == desugar2) { if (!isOperator || !hasInOut()) return SolutionKind::Solved; } // Local function to form an unsolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::ApplicableFunction, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; // If the right-hand side is a type variable, try to simplify the overload // set. if (auto typeVar = desugar2->getAs()) { auto argumentLabels = getArgumentLabels(*this, locator); Type newType2 = simplifyAppliedOverloads(typeVar, func1, argumentLabels, locator); if (!newType2) return SolutionKind::Error; desugar2 = newType2->getDesugaredType(); } // If right-hand side is a type variable, the constraint is unsolved. if (desugar2->isTypeVariableOrMember()) return formUnsolved(); // Strip the 'ApplyFunction' off the locator. // FIXME: Perhaps ApplyFunction can go away entirely? assert(!parts.empty() && "Nonsensical applicable-function locator"); assert(parts.back().getKind() == ConstraintLocator::ApplyFunction); assert(parts.back().getNewSummaryFlags() == 0); parts.pop_back(); ConstraintLocatorBuilder outerLocator = getConstraintLocator(anchor, parts, locator.getSummaryFlags()); // Before stripping optional types, save original type for handling // @dynamicCallable applications. This supports the fringe case where // `Optional` itself is extended with @dynamicCallable functionality. auto origType2 = desugar2; unsigned unwrapCount = 0; if (shouldAttemptFixes()) { // If we have an optional type, try forcing it to see if that // helps. Note that we only deal with function and metatype types // below, so there is no reason not to attempt to strip these off // immediately. while (auto objectType2 = desugar2->getOptionalObjectType()) { type2 = objectType2; desugar2 = type2->getDesugaredType(); // Track how many times we do this so that we can record a fix for each. ++unwrapCount; } } // For a function, bind the output and convert the argument to the input. if (auto func2 = dyn_cast(desugar2)) { ConstraintKind subKind = (isOperator ? ConstraintKind::OperatorArgumentConversion : ConstraintKind::ArgumentConversion); // The argument type must be convertible to the input type. if (::matchCallArguments( *this, func1->getParams(), func2->getParams(), subKind, outerLocator.withPathElement(ConstraintLocator::ApplyArgument)) .isFailure()) return SolutionKind::Error; // The result types are equivalent. if (matchTypes(func1->getResult(), func2->getResult(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::FunctionResult)).isFailure()) return SolutionKind::Error; if (unwrapCount == 0) return SolutionKind::Solved; // Record any fixes we attempted to get to the correct solution. auto *fix = ForceOptional::create(*this, origType2, origType2->getOptionalObjectType(), getConstraintLocator(locator)); while (unwrapCount-- > 0) { if (recordFix(fix)) return SolutionKind::Error; } return SolutionKind::Solved; } // For a metatype, perform a construction. if (auto meta2 = dyn_cast(desugar2)) { auto instance2 = getFixedTypeRecursive(meta2->getInstanceType(), true); if (instance2->isTypeVariableOrMember()) return formUnsolved(); // Construct the instance from the input arguments. auto simplified = simplifyConstructionConstraint(instance2, func1, subflags, /*FIXME?*/ DC, FunctionRefKind::SingleApply, getConstraintLocator(outerLocator)); // Record any fixes we attempted to get to the correct solution. if (simplified == SolutionKind::Solved) { if (unwrapCount == 0) return SolutionKind::Solved; auto *fix = ForceOptional::create(*this, origType2, origType2->getOptionalObjectType(), getConstraintLocator(locator)); while (unwrapCount-- > 0) { if (recordFix(fix)) return SolutionKind::Error; } } return simplified; } // Handle applications of @dynamicCallable types. return simplifyDynamicCallableApplicableFnConstraint(type1, origType2, subflags, locator); } /// Looks up and returns the @dynamicCallable required methods (if they exist) /// implemented by a type. static llvm::DenseSet lookupDynamicCallableMethods(Type type, ConstraintSystem &CS, const ConstraintLocatorBuilder &locator, Identifier argumentName, bool hasKeywordArgs) { auto &ctx = CS.getASTContext(); auto decl = type->getAnyNominal(); auto methodName = DeclName(ctx, ctx.Id_dynamicallyCall, { argumentName }); auto matches = CS.performMemberLookup(ConstraintKind::ValueMember, methodName, type, FunctionRefKind::SingleApply, CS.getConstraintLocator(locator), /*includeInaccessibleMembers*/ false); // Filter valid candidates. auto candidates = matches.ViableCandidates; auto filter = [&](OverloadChoice choice) { auto cand = cast(choice.getDecl()); return !isValidDynamicCallableMethod(cand, decl, CS.TC, hasKeywordArgs); }; candidates.erase( std::remove_if(candidates.begin(), candidates.end(), filter), candidates.end()); llvm::DenseSet methods; for (auto candidate : candidates) methods.insert(cast(candidate.getDecl())); return methods; } /// Looks up and returns the @dynamicCallable required methods (if they exist) /// implemented by a type. This function should not be called directly: /// instead, call `getDynamicCallableMethods` which performs caching. static DynamicCallableMethods lookupDynamicCallableMethods(Type type, ConstraintSystem &CS, const ConstraintLocatorBuilder &locator) { auto &ctx = CS.getASTContext(); DynamicCallableMethods methods; methods.argumentsMethods = lookupDynamicCallableMethods(type, CS, locator, ctx.Id_withArguments, /*hasKeywordArgs*/ false); methods.keywordArgumentsMethods = lookupDynamicCallableMethods(type, CS, locator, ctx.Id_withKeywordArguments, /*hasKeywordArgs*/ true); return methods; } /// Returns the @dynamicCallable required methods (if they exist) implemented /// by a type. /// This function may be slow for deep class hierarchies and multiple protocol /// conformances, but it is invoked only after other constraint simplification /// rules fail. static DynamicCallableMethods getDynamicCallableMethods(Type type, ConstraintSystem &CS, const ConstraintLocatorBuilder &locator) { auto canType = type->getCanonicalType(); auto it = CS.DynamicCallableCache.find(canType); if (it != CS.DynamicCallableCache.end()) return it->second; // Calculate @dynamicCallable methods for composite types with multiple // components (protocol composition types and archetypes). auto calculateForComponentTypes = [&](ArrayRef componentTypes) -> DynamicCallableMethods { DynamicCallableMethods methods; for (auto componentType : componentTypes) { auto tmp = getDynamicCallableMethods(componentType, CS, locator); methods.argumentsMethods.insert(tmp.argumentsMethods.begin(), tmp.argumentsMethods.end()); methods.keywordArgumentsMethods.insert( tmp.keywordArgumentsMethods.begin(), tmp.keywordArgumentsMethods.end()); } return methods; }; // Calculate @dynamicCallable methods. auto calculate = [&]() -> DynamicCallableMethods { // If this is an archetype type, check if any types it conforms to // (superclass or protocols) have the attribute. if (auto archetype = dyn_cast(canType)) { SmallVector componentTypes; for (auto protocolDecl : archetype->getConformsTo()) componentTypes.push_back(protocolDecl->getDeclaredType()); if (auto superclass = archetype->getSuperclass()) componentTypes.push_back(superclass); return calculateForComponentTypes(componentTypes); } // If this is a protocol composition, check if any of its members have the // attribute. if (auto protocolComp = dyn_cast(canType)) return calculateForComponentTypes(protocolComp->getMembers()); // Otherwise, this must be a nominal type. // Dynamic calling doesn't work for tuples, etc. auto nominal = canType->getAnyNominal(); if (!nominal) return DynamicCallableMethods(); // If this type conforms to a protocol which has the attribute, then // look up the methods. for (auto p : nominal->getAllProtocols()) if (p->getAttrs().hasAttribute()) return lookupDynamicCallableMethods(type, CS, locator); // Walk superclasses, if present. llvm::SmallPtrSet visitedDecls; while (1) { // If we found a circular parent class chain, reject this. if (!visitedDecls.insert(nominal).second) return DynamicCallableMethods(); // If this type has the attribute on it, then look up the methods. if (nominal->getAttrs().hasAttribute()) return lookupDynamicCallableMethods(type, CS, locator); // If this type is a class with a superclass, check superclasses. if (auto *cd = dyn_cast(nominal)) { if (auto superClass = cd->getSuperclassDecl()) { nominal = superClass; continue; } } return DynamicCallableMethods(); } }; auto result = calculate(); // Cache the result if the type does not contain type variables. if (!type->hasTypeVariable()) CS.DynamicCallableCache[canType] = result; return result; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyDynamicCallableApplicableFnConstraint( Type type1, Type type2, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { auto &ctx = getASTContext(); // By construction, the left hand side is a function type: $T1 -> $T2. assert(type1->is()); // Drill down to the concrete type on the right hand side. type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true); auto desugar2 = type2->getDesugaredType(); TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); // If the types are obviously equivalent, we're done. if (type1.getPointer() == desugar2) return SolutionKind::Solved; // Local function to form an unsolved result. auto formUnsolved = [&] { if (flags.contains(TMF_GenerateConstraints)) { addUnsolvedConstraint( Constraint::create(*this, ConstraintKind::DynamicCallableApplicableFunction, type1, type2, getConstraintLocator(locator))); return SolutionKind::Solved; } return SolutionKind::Unsolved; }; // If right-hand side is a type variable, the constraint is unsolved. if (desugar2->isTypeVariableOrMember()) return formUnsolved(); // If right-hand side is a function type, it must be a valid // `dynamicallyCall` method type. Bind the output and convert the argument // to the input. auto func1 = type1->castTo(); if (auto func2 = dyn_cast(desugar2)) { // The argument type must be convertible to the input type. assert(func1->getParams().size() == 1 && func2->getParams().size() == 1 && "Expected `dynamicallyCall` method with one parameter"); assert((func2->getParams()[0].getLabel() == ctx.Id_withArguments || func2->getParams()[0].getLabel() == ctx.Id_withKeywordArguments) && "Expected 'dynamicallyCall' method argument label 'withArguments' " "or 'withKeywordArguments'"); if (matchTypes(func1->getParams()[0].getPlainType(), func2->getParams()[0].getPlainType(), ConstraintKind::ArgumentConversion, subflags, locator.withPathElement( ConstraintLocator::ApplyArgument)).isFailure()) return SolutionKind::Error; // The result types are equivalent. if (matchTypes(func1->getResult(), func2->getResult(), ConstraintKind::Bind, subflags, locator.withPathElement( ConstraintLocator::FunctionResult)).isFailure()) return SolutionKind::Error; return SolutionKind::Solved; } // If the right-hand side is not a function type, it must be a valid // @dynamicCallable type. Attempt to get valid `dynamicallyCall` methods. auto methods = getDynamicCallableMethods(desugar2, *this, locator); if (!methods.isValid()) return SolutionKind::Error; // Determine whether to call a `withArguments` method or a // `withKeywordArguments` method. bool useKwargsMethod = methods.argumentsMethods.empty(); useKwargsMethod |= llvm::any_of( func1->getParams(), [](AnyFunctionType::Param p) { return p.hasLabel(); }); auto candidates = useKwargsMethod ? methods.keywordArgumentsMethods : methods.argumentsMethods; // Create a type variable for the `dynamicallyCall` method. auto loc = getConstraintLocator(locator); auto tv = createTypeVariable(loc, TVO_CanBindToLValue | TVO_CanBindToNoEscape); // Record the 'dynamicallyCall` method overload set. SmallVector choices; for (auto candidate : candidates) { TC.validateDecl(candidate); if (candidate->isInvalid()) continue; choices.push_back( OverloadChoice(type2, candidate, FunctionRefKind::SingleApply)); } if (choices.empty()) return SolutionKind::Error; addOverloadSet(tv, choices, DC, loc); // Create a type variable for the argument to the `dynamicallyCall` method. auto tvParam = createTypeVariable(loc, TVO_CanBindToNoEscape); AnyFunctionType *funcType = FunctionType::get({ AnyFunctionType::Param(tvParam) }, func1->getResult()); addConstraint(ConstraintKind::DynamicCallableApplicableFunction, funcType, tv, locator); // Get argument type for the `dynamicallyCall` method. Type argumentType; if (!useKwargsMethod) { auto arrayLitProto = ctx.getProtocol(KnownProtocolKind::ExpressibleByArrayLiteral); addConstraint(ConstraintKind::ConformsTo, tvParam, arrayLitProto->getDeclaredType(), locator); auto elementAssocType = cast( arrayLitProto->lookupDirect(ctx.Id_ArrayLiteralElement).front()); argumentType = DependentMemberType::get(tvParam, elementAssocType); } else { auto dictLitProto = ctx.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral); addConstraint(ConstraintKind::ConformsTo, tvParam, dictLitProto->getDeclaredType(), locator); auto valueAssocType = cast( dictLitProto->lookupDirect(ctx.Id_Value).front()); argumentType = DependentMemberType::get(tvParam, valueAssocType); } // Argument type can default to `Any`. addConstraint(ConstraintKind::Defaultable, argumentType, ctx.TheAnyType, locator); // All dynamic call parameter types must be convertible to the argument type. for (auto i : indices(func1->getParams())) { auto param = func1->getParams()[i]; auto paramType = param.getPlainType(); auto locatorBuilder = locator.withPathElement(LocatorPathElt::getTupleElement(i)); addConstraint(ConstraintKind::ArgumentConversion, paramType, argumentType, locatorBuilder); } return SolutionKind::Solved; } static Type getBaseTypeForPointer(ConstraintSystem &cs, TypeBase *type) { if (Type unwrapped = type->getOptionalObjectType()) type = unwrapped.getPointer(); auto pointeeTy = type->getAnyPointerElementType(); assert(pointeeTy); return pointeeTy; } void ConstraintSystem::addRestrictedConstraint( ConstraintKind kind, ConversionRestrictionKind restriction, Type first, Type second, ConstraintLocatorBuilder locator) { (void)simplifyRestrictedConstraint(restriction, first, second, kind, TMF_GenerateConstraints, locator); } /// Given that we have a conversion constraint between two types, and /// that the given constraint-reduction rule applies between them at /// the top level, apply it and generate any necessary recursive /// constraints. ConstraintSystem::SolutionKind ConstraintSystem::simplifyRestrictedConstraintImpl( ConversionRestrictionKind restriction, Type type1, Type type2, ConstraintKind matchKind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { assert(!type1->isTypeVariableOrMember() && !type2->isTypeVariableOrMember()); // Add to the score based on context. auto addContextualScore = [&] { // Okay, we need to perform one or more conversions. If this // conversion will cause a function conversion, score it as worse. // This induces conversions to occur within closures instead of // outside of them wherever possible. if (locator.isFunctionConversion()) { increaseScore(SK_FunctionConversion); } }; TypeMatchOptions subflags = getDefaultDecompositionOptions(flags); switch (restriction) { // for $< in { <, (T_i...) $< (U_i...) case ConversionRestrictionKind::DeepEquality: return matchDeepEqualityTypes(type1, type2, locator); case ConversionRestrictionKind::Superclass: addContextualScore(); return matchSuperclassTypes(type1, type2, subflags, locator); // for $< in { <, T $< protocol case ConversionRestrictionKind::Existential: addContextualScore(); return matchExistentialTypes(type1, type2, ConstraintKind::SelfObjectOfProtocol, subflags, locator); // for $< in { <, T.Protocol $< Q.Type // for P protocol, Q protocol, // P $< Q ===> P.Type $< Q.Type case ConversionRestrictionKind::MetatypeToExistentialMetatype: addContextualScore(); return matchExistentialTypes( type1->castTo()->getInstanceType(), type2->castTo()->getInstanceType(), ConstraintKind::ConformsTo, subflags, locator.withPathElement(ConstraintLocator::InstanceType)); // for $< in { <, (P & C).Type $< D.Type case ConversionRestrictionKind::ExistentialMetatypeToMetatype: { addContextualScore(); auto instance1 = type1->castTo()->getInstanceType(); auto instance2 = type2->castTo()->getInstanceType(); auto superclass1 = instance1->getSuperclass(); if (!superclass1) return SolutionKind::Error; return matchTypes( superclass1, instance2, ConstraintKind::Subtype, subflags, locator.withPathElement(ConstraintLocator::InstanceType)); } // for $< in { <, T $< U? case ConversionRestrictionKind::ValueToOptional: { addContextualScore(); increaseScore(SK_ValueToOptional); assert(matchKind >= ConstraintKind::Subtype); if (auto generic2 = type2->getAs()) { if (generic2->getDecl()->isOptionalDecl()) { return matchTypes(type1, generic2->getGenericArgs()[0], matchKind, subflags, locator.withPathElement( ConstraintLocator::OptionalPayload)); } } return SolutionKind::Error; } // for $< in { <, T? $< U? // T $< U ===> T! $< U! // T $< U ===> T! $< U? // also: // T T? = ConstraintKind::Subtype); if (auto generic1 = type1->getAs()) { if (auto generic2 = type2->getAs()) { if (generic1->getDecl()->isOptionalDecl() && generic2->getDecl()->isOptionalDecl()) return matchTypes(generic1->getGenericArgs()[0], generic2->getGenericArgs()[0], matchKind, subflags, locator.withPathElement( LocatorPathElt::getGenericArgument(0))); } } return SolutionKind::Error; } case ConversionRestrictionKind::ClassMetatypeToAnyObject: case ConversionRestrictionKind::ExistentialMetatypeToAnyObject: case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: { // Nothing more to solve. addContextualScore(); return SolutionKind::Solved; } // T

T[] case ConversionRestrictionKind::ArrayToPointer: { addContextualScore(); // Unwrap an inout type. auto obj1 = type1->getInOutObjectType(); obj1 = getFixedTypeRecursive(obj1, false); auto t2 = type2->getDesugaredType(); auto baseType1 = getFixedTypeRecursive(*isArrayType(obj1), false); auto baseType2 = getBaseTypeForPointer(*this, t2); increaseScore(ScoreKind::SK_ValueToPointerConversion); return matchTypes(baseType1, baseType2, ConstraintKind::BindToPointerType, subflags, locator); } // String ===> UnsafePointer<[U]Int8> case ConversionRestrictionKind::StringToPointer: { addContextualScore(); auto baseType2 = getBaseTypeForPointer(*this, type2->getDesugaredType()); // The pointer element type must be void or a byte-sized type. // TODO: Handle different encodings based on pointer element type, such as // UTF16 for [U]Int16 or UTF32 for [U]Int32. For now we only interop with // Int8 pointers using UTF8 encoding. baseType2 = getFixedTypeRecursive(baseType2, false); // If we haven't resolved the element type, generate constraints. if (baseType2->isTypeVariableOrMember()) { if (flags.contains(TMF_GenerateConstraints)) { increaseScore(ScoreKind::SK_ValueToPointerConversion); auto int8Con = Constraint::create(*this, ConstraintKind::Bind, baseType2, TC.getInt8Type(DC), getConstraintLocator(locator)); auto uint8Con = Constraint::create(*this, ConstraintKind::Bind, baseType2, TC.getUInt8Type(DC), getConstraintLocator(locator)); auto voidCon = Constraint::create(*this, ConstraintKind::Bind, baseType2, TC.Context.TheEmptyTupleType, getConstraintLocator(locator)); Constraint *disjunctionChoices[] = {int8Con, uint8Con, voidCon}; addDisjunctionConstraint(disjunctionChoices, locator); return SolutionKind::Solved; } return SolutionKind::Unsolved; } if (!isStringCompatiblePointerBaseType(TC, DC, baseType2)) { return SolutionKind::Error; } increaseScore(ScoreKind::SK_ValueToPointerConversion); return SolutionKind::Solved; } // T

inout T case ConversionRestrictionKind::InoutToPointer: { addContextualScore(); auto t2 = type2->getDesugaredType(); auto baseType1 = type1->getInOutObjectType(); auto baseType2 = getBaseTypeForPointer(*this, t2); // Set up the disjunction for the array or scalar cases. increaseScore(ScoreKind::SK_ValueToPointerConversion); return matchTypes(baseType1, baseType2, ConstraintKind::BindToPointerType, subflags, locator); } // T

UnsafeMutablePointer case ConversionRestrictionKind::PointerToPointer: { auto t1 = type1->getDesugaredType(); auto t2 = type2->getDesugaredType(); Type baseType1 = getBaseTypeForPointer(*this, t1); Type baseType2 = getBaseTypeForPointer(*this, t2); return matchTypes(baseType1, baseType2, ConstraintKind::BindToPointerType, subflags, locator); } // T < U or T is bridged to V where V < U ===> Array case ConversionRestrictionKind::ArrayUpcast: { Type baseType1 = *isArrayType(type1); Type baseType2 = *isArrayType(type2); increaseScore(SK_CollectionUpcastConversion); return matchTypes(baseType1, baseType2, matchKind, subflags, locator.withPathElement( ConstraintLocator::PathElement::getGenericArgument(0))); } // K1 < K2 && V1 < V2 || K1 bridges to K2 && V1 bridges to V2 ===> // Dictionary case ConversionRestrictionKind::DictionaryUpcast: { auto t1 = type1->getDesugaredType(); Type key1, value1; std::tie(key1, value1) = *isDictionaryType(t1); auto t2 = type2->getDesugaredType(); Type key2, value2; std::tie(key2, value2) = *isDictionaryType(t2); auto subMatchKind = matchKind; // TODO: Restrict this? increaseScore(SK_CollectionUpcastConversion); // The source key and value types must be subtypes of the destination // key and value types, respectively. auto result = matchTypes(key1, key2, subMatchKind, subflags, locator.withPathElement( ConstraintLocator::PathElement::getGenericArgument(0))); if (result.isFailure()) return result; switch (matchTypes(value1, value2, subMatchKind, subflags, locator.withPathElement( ConstraintLocator::PathElement::getGenericArgument(1)))) { case SolutionKind::Solved: return result; case SolutionKind::Unsolved: return SolutionKind::Unsolved; case SolutionKind::Error: return SolutionKind::Error; } } // T1 < T2 || T1 bridges to T2 ===> Set case ConversionRestrictionKind::SetUpcast: { Type baseType1 = *isSetType(type1); Type baseType2 = *isSetType(type2); increaseScore(SK_CollectionUpcastConversion); return matchTypes(baseType1, baseType2, matchKind, subflags, locator.withPathElement( ConstraintLocator::PathElement::getGenericArgument(0))); } // T1 T1 getRValueType()->lookThroughAllOptionalTypes())) { return SolutionKind::Error; } addContextualScore(); increaseScore(SK_UserConversion); // FIXME: Use separate score kind? if (worseThanBestSolution()) { return SolutionKind::Error; } auto hashableProtocol = TC.Context.getProtocol(KnownProtocolKind::Hashable); if (!hashableProtocol) return SolutionKind::Error; auto constraintLocator = getConstraintLocator(locator); auto tv = createTypeVariable(constraintLocator, TVO_PrefersSubtypeBinding | TVO_CanBindToNoEscape); addConstraint(ConstraintKind::ConformsTo, tv, hashableProtocol->getDeclaredType(), constraintLocator); return matchTypes(type1, tv, ConstraintKind::Conversion, subflags, locator); } // T' < U and T a toll-free-bridged to T' ===> T' getClassOrBoundGenericClass(); auto bridgedObjCClass = nativeClass->getAttrs().getAttribute()->getObjCClass(); return matchTypes(bridgedObjCClass->getDeclaredInterfaceType(), type2, ConstraintKind::Subtype, subflags, locator); } // T < U' and U a toll-free-bridged to U' ===> T getClassOrBoundGenericClass(); auto bridgedObjCClass = nativeClass->getAttrs().getAttribute()->getObjCClass(); return matchTypes(type1, bridgedObjCClass->getDeclaredInterfaceType(), ConstraintKind::Subtype, subflags, locator); } } llvm_unreachable("bad conversion restriction"); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyRestrictedConstraint( ConversionRestrictionKind restriction, Type type1, Type type2, ConstraintKind matchKind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { switch (simplifyRestrictedConstraintImpl(restriction, type1, type2, matchKind, flags, locator)) { case SolutionKind::Solved: ConstraintRestrictions.push_back(std::make_tuple(type1, type2, restriction)); return SolutionKind::Solved; case SolutionKind::Unsolved: return SolutionKind::Unsolved; case SolutionKind::Error: return SolutionKind::Error; } llvm_unreachable("Unhandled SolutionKind in switch."); } static bool isAugmentingFix(ConstraintFix *fix) { switch (fix->getKind()) { case FixKind::TreatRValueAsLValue: return false; default: return true; } } bool ConstraintSystem::recordFix(ConstraintFix *fix) { auto &ctx = getASTContext(); if (ctx.LangOpts.DebugConstraintSolver) { auto &log = ctx.TypeCheckerDebug->getStream(); log.indent(solverState ? solverState->depth * 2 + 2 : 0) << "(attempting fix "; fix->print(log); log << ")\n"; } // Record the fix. // If this is just a warning it's shouldn't affect the solver. if (!fix->isWarning()) { // Otherswise increase the score. If this would make the current // solution worse than the best solution we've seen already, stop now. increaseScore(SK_Fix); if (worseThanBestSolution()) return true; } if (isAugmentingFix(fix)) { // Always useful, unless duplicate of exactly the same fix and location. // This situation might happen when the same fix kind is applicable to // different overload choices. if (!hasFixFor(fix->getLocator())) Fixes.push_back(fix); } else { // Only useful to record if no pre-existing fix in the subexpr tree. llvm::SmallDenseSet fixExprs; for (auto fix : Fixes) fixExprs.insert(fix->getAnchor()); bool found = false; fix->getAnchor()->forEachChildExpr([&](Expr *subExpr) -> Expr * { found |= fixExprs.count(subExpr) > 0; return subExpr; }); if (!found) Fixes.push_back(fix); } return false; } ConstraintSystem::SolutionKind ConstraintSystem::simplifyFixConstraint( ConstraintFix *fix, Type type1, Type type2, ConstraintKind matchKind, TypeMatchOptions flags, ConstraintLocatorBuilder locator) { // Try with the fix. TypeMatchOptions subflags = getDefaultDecompositionOptions(flags) | TMF_ApplyingFix; switch (fix->getKind()) { case FixKind::ForceOptional: { // Assume that we've unwrapped the first type. auto result = matchTypes(type1->getRValueType()->getOptionalObjectType(), type2, matchKind, subflags, locator); if (result == SolutionKind::Solved) if (recordFix(fix)) return SolutionKind::Error; return result; } case FixKind::UnwrapOptionalBase: case FixKind::UnwrapOptionalBaseWithOptionalResult: { if (recordFix(fix)) return SolutionKind::Error; // First type already appropriately set. return matchTypes(type1, type2, matchKind, subflags, locator); } case FixKind::ForceDowncast: // These work whenever they are suggested. if (recordFix(fix)) return SolutionKind::Error; return SolutionKind::Solved; case FixKind::AddressOf: { // Assume that '&' was applied to the first type, turning an lvalue into // an inout. auto result = matchTypes(InOutType::get(type1->getRValueType()), type2, matchKind, subflags, locator); if (result == SolutionKind::Solved) if (recordFix(fix)) return SolutionKind::Error; return result; } case FixKind::TreatRValueAsLValue: { if (type2->is() || type2->is()) type1 = LValueType::get(type1); else type2 = LValueType::get(type2); auto result = matchTypes(type1, type2, matchKind, subflags, locator); if (result == SolutionKind::Solved) if (recordFix(fix)) return SolutionKind::Error; return result; } case FixKind::AutoClosureForwarding: { if (recordFix(fix)) return SolutionKind::Error; return matchTypes(type1, type2, matchKind, subflags, locator); } case FixKind::InsertCall: case FixKind::RemoveReturn: case FixKind::AddConformance: case FixKind::RemoveAddressOf: case FixKind::SkipSameTypeRequirement: case FixKind::SkipSuperclassRequirement: case FixKind::ContextualMismatch: case FixKind::AddMissingArguments: { return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved; } case FixKind::UseSubscriptOperator: case FixKind::ExplicitlyEscaping: case FixKind::CoerceToCheckedCast: case FixKind::RelabelArguments: case FixKind::RemoveUnwrap: case FixKind::DefineMemberBasedOnUse: case FixKind::AllowTypeOrInstanceMember: case FixKind::AllowInvalidPartialApplication: case FixKind::AllowInvalidInitRef: case FixKind::AllowClosureParameterDestructuring: case FixKind::MoveOutOfOrderArgument: case FixKind::AllowInaccessibleMember: case FixKind::AllowAnyObjectKeyPathRoot: case FixKind::TreatKeyPathSubscriptIndexAsHashable: case FixKind::AllowInvalidRefInKeyPath: llvm_unreachable("handled elsewhere"); } llvm_unreachable("Unhandled FixKind in switch."); } ConstraintSystem::SolutionKind ConstraintSystem::addConstraintImpl(ConstraintKind kind, Type first, Type second, ConstraintLocatorBuilder locator, bool isFavored) { assert(first && "Missing first type"); assert(second && "Missing second type"); TypeMatchOptions subflags = TMF_GenerateConstraints; switch (kind) { case ConstraintKind::Equal: case ConstraintKind::Bind: case ConstraintKind::BindParam: case ConstraintKind::BindToPointerType: case ConstraintKind::Subtype: case ConstraintKind::Conversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::OperatorArgumentConversion: return matchTypes(first, second, kind, subflags, locator); case ConstraintKind::OpaqueUnderlyingType: return simplifyOpaqueUnderlyingTypeConstraint(first, second, subflags, locator); case ConstraintKind::BridgingConversion: return simplifyBridgingConstraint(first, second, subflags, locator); case ConstraintKind::ApplicableFunction: return simplifyApplicableFnConstraint(first, second, subflags, locator); case ConstraintKind::DynamicCallableApplicableFunction: return simplifyDynamicCallableApplicableFnConstraint(first, second, subflags, locator); case ConstraintKind::DynamicTypeOf: return simplifyDynamicTypeOfConstraint(first, second, subflags, locator); case ConstraintKind::EscapableFunctionOf: return simplifyEscapableFunctionOfConstraint(first, second, subflags, locator); case ConstraintKind::OpenedExistentialOf: return simplifyOpenedExistentialOfConstraint(first, second, subflags, locator); case ConstraintKind::ConformsTo: case ConstraintKind::LiteralConformsTo: case ConstraintKind::SelfObjectOfProtocol: return simplifyConformsToConstraint(first, second, kind, locator, subflags); case ConstraintKind::CheckedCast: return simplifyCheckedCastConstraint(first, second, subflags, locator); case ConstraintKind::OptionalObject: return simplifyOptionalObjectConstraint(first, second, subflags, locator); case ConstraintKind::Defaultable: return simplifyDefaultableConstraint(first, second, subflags, locator); case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: return simplifyFunctionComponentConstraint(kind, first, second, subflags, locator); case ConstraintKind::ValueMember: case ConstraintKind::UnresolvedValueMember: case ConstraintKind::BindOverload: case ConstraintKind::Disjunction: case ConstraintKind::KeyPath: case ConstraintKind::KeyPathApplication: llvm_unreachable("Use the correct addConstraint()"); } llvm_unreachable("Unhandled ConstraintKind in switch."); } void ConstraintSystem::addKeyPathApplicationRootConstraint(Type root, ConstraintLocatorBuilder locator) { // If this is a subscript with a KeyPath expression, add a constraint that // connects the subscript's root type to the root type of the KeyPath. SmallVector path; Expr *anchor = locator.getLocatorParts(path); auto subscript = dyn_cast_or_null(anchor); if (!subscript) return; assert(path.size() == 1 && path[0].getKind() == ConstraintLocator::SubscriptMember); auto indexTuple = dyn_cast(subscript->getIndex()); if (!indexTuple || indexTuple->getNumElements() != 1) return; auto keyPathExpr = dyn_cast(indexTuple->getElement(0)); if (!keyPathExpr) return; auto typeVar = getType(keyPathExpr)->getAs(); if (!typeVar) return; llvm::SetVector constraints; CG.gatherConstraints( typeVar, constraints, ConstraintGraph::GatheringKind::EquivalenceClass, [&keyPathExpr](Constraint *constraint) -> bool { return constraint->getKind() == ConstraintKind::KeyPath && constraint->getLocator()->getAnchor() == keyPathExpr; }); for (auto constraint : constraints) { auto keyPathRootTy = constraint->getSecondType(); addConstraint(ConstraintKind::Subtype, root->getWithoutSpecifierType(), keyPathRootTy, locator); } } void ConstraintSystem::addKeyPathApplicationConstraint(Type keypath, Type root, Type value, ConstraintLocatorBuilder locator, bool isFavored) { addKeyPathApplicationRootConstraint(root, locator); switch (simplifyKeyPathApplicationConstraint(keypath, root, value, TMF_GenerateConstraints, locator)) { case SolutionKind::Error: if (shouldAddNewFailingConstraint()) { auto c = Constraint::create(*this, ConstraintKind::KeyPathApplication, keypath, root, value, getConstraintLocator(locator)); if (isFavored) c->setFavored(); addNewFailingConstraint(c); } return; case SolutionKind::Solved: return; case SolutionKind::Unsolved: llvm_unreachable("should have generated constraints"); } } void ConstraintSystem::addKeyPathConstraint(Type keypath, Type root, Type value, ConstraintLocatorBuilder locator, bool isFavored) { switch (simplifyKeyPathConstraint(keypath, root, value, TMF_GenerateConstraints, locator)) { case SolutionKind::Error: if (shouldAddNewFailingConstraint()) { auto c = Constraint::create(*this, ConstraintKind::KeyPath, keypath, root, value, getConstraintLocator(locator)); if (isFavored) c->setFavored(); addNewFailingConstraint(c); } return; case SolutionKind::Solved: return; case SolutionKind::Unsolved: llvm_unreachable("should have generated constraints"); } } void ConstraintSystem::addConstraint(Requirement req, ConstraintLocatorBuilder locator, bool isFavored) { bool conformsToAnyObject = false; Optional kind; switch (req.getKind()) { case RequirementKind::Conformance: kind = ConstraintKind::ConformsTo; break; case RequirementKind::Superclass: conformsToAnyObject = true; kind = ConstraintKind::Subtype; break; case RequirementKind::SameType: kind = ConstraintKind::Bind; break; case RequirementKind::Layout: // Only a class constraint can be modeled as a constraint, and only that can // appear outside of a @_specialize at the moment anyway. if (req.getLayoutConstraint()->isClass()) { conformsToAnyObject = true; break; } return; } auto firstType = req.getFirstType(); if (kind) { addConstraint(*kind, req.getFirstType(), req.getSecondType(), locator, isFavored); } if (conformsToAnyObject) { auto anyObject = getASTContext().getAnyObjectType(); addConstraint(ConstraintKind::ConformsTo, firstType, anyObject, locator); } } void ConstraintSystem::addConstraint(ConstraintKind kind, Type first, Type second, ConstraintLocatorBuilder locator, bool isFavored) { switch (addConstraintImpl(kind, first, second, locator, isFavored)) { case SolutionKind::Error: // Add a failing constraint, if needed. if (shouldAddNewFailingConstraint()) { auto c = Constraint::create(*this, kind, first, second, getConstraintLocator(locator)); if (isFavored) c->setFavored(); addNewFailingConstraint(c); } return; case SolutionKind::Unsolved: llvm_unreachable("should have generated constraints"); case SolutionKind::Solved: return; } } void ConstraintSystem::addExplicitConversionConstraint( Type fromType, Type toType, bool allowFixes, ConstraintLocatorBuilder locator) { SmallVector constraints; auto locatorPtr = getConstraintLocator(locator); // Coercion (the common case). Constraint *coerceConstraint = Constraint::create(*this, ConstraintKind::Conversion, fromType, toType, locatorPtr); coerceConstraint->setFavored(); constraints.push_back(coerceConstraint); // The source type can be explicitly converted to the destination type. Constraint *bridgingConstraint = Constraint::create(*this, ConstraintKind::BridgingConversion, fromType, toType, locatorPtr); constraints.push_back(bridgingConstraint); if (allowFixes && shouldAttemptFixes()) { Constraint *downcastConstraint = Constraint::createFixed(*this, ConstraintKind::CheckedCast, CoerceToCheckedCast::create(*this, locatorPtr), fromType, toType, locatorPtr); constraints.push_back(downcastConstraint); } addDisjunctionConstraint(constraints, locator, allowFixes ? RememberChoice : ForgetChoice); } ConstraintSystem::SolutionKind ConstraintSystem::simplifyConstraint(const Constraint &constraint) { switch (constraint.getKind()) { case ConstraintKind::Bind: case ConstraintKind::Equal: case ConstraintKind::BindParam: case ConstraintKind::BindToPointerType: case ConstraintKind::Subtype: case ConstraintKind::Conversion: case ConstraintKind::ArgumentConversion: case ConstraintKind::OperatorArgumentConversion: case ConstraintKind::OpaqueUnderlyingType: { // Relational constraints. auto matchKind = constraint.getKind(); // If there is a fix associated with this constraint, apply it. if (auto fix = constraint.getFix()) { return simplifyFixConstraint(fix, constraint.getFirstType(), constraint.getSecondType(), matchKind, None, constraint.getLocator()); } // If there is a restriction on this constraint, apply it directly rather // than going through the general \c matchTypes() machinery. if (auto restriction = constraint.getRestriction()) { return simplifyRestrictedConstraint(*restriction, constraint.getFirstType(), constraint.getSecondType(), matchKind, None, constraint.getLocator()); } return matchTypes(constraint.getFirstType(), constraint.getSecondType(), matchKind, None, constraint.getLocator()); } case ConstraintKind::BridgingConversion: return simplifyBridgingConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::ApplicableFunction: return simplifyApplicableFnConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::DynamicCallableApplicableFunction: return simplifyDynamicCallableApplicableFnConstraint( constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::DynamicTypeOf: return simplifyDynamicTypeOfConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::EscapableFunctionOf: return simplifyEscapableFunctionOfConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::OpenedExistentialOf: return simplifyOpenedExistentialOfConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); case ConstraintKind::KeyPath: return simplifyKeyPathConstraint( constraint.getFirstType(), constraint.getSecondType(), constraint.getThirdType(), None, constraint.getLocator()); case ConstraintKind::KeyPathApplication: return simplifyKeyPathApplicationConstraint( constraint.getFirstType(), constraint.getSecondType(), constraint.getThirdType(), None, constraint.getLocator()); case ConstraintKind::BindOverload: if (auto *fix = constraint.getFix()) { if (recordFix(fix)) return SolutionKind::Error; } resolveOverload(constraint.getLocator(), constraint.getFirstType(), constraint.getOverloadChoice(), constraint.getOverloadUseDC()); return SolutionKind::Solved; case ConstraintKind::ConformsTo: case ConstraintKind::LiteralConformsTo: case ConstraintKind::SelfObjectOfProtocol: return simplifyConformsToConstraint( constraint.getFirstType(), constraint.getSecondType(), constraint.getKind(), constraint.getLocator(), None); case ConstraintKind::CheckedCast: { auto result = simplifyCheckedCastConstraint(constraint.getFirstType(), constraint.getSecondType(), None, constraint.getLocator()); // NOTE: simplifyCheckedCastConstraint() may return Unsolved, e.g. if the // subexpression's type is unresolved. Don't record the fix until we // successfully simplify the constraint. if (result == SolutionKind::Solved) { if (auto *fix = constraint.getFix()) { if (recordFix(fix)) { return SolutionKind::Error; } } } return result; } case ConstraintKind::OptionalObject: return simplifyOptionalObjectConstraint(constraint.getFirstType(), constraint.getSecondType(), TMF_GenerateConstraints, constraint.getLocator()); case ConstraintKind::ValueMember: case ConstraintKind::UnresolvedValueMember: return simplifyMemberConstraint(constraint.getKind(), constraint.getFirstType(), constraint.getMember(), constraint.getSecondType(), constraint.getMemberUseDC(), constraint.getFunctionRefKind(), /*outerAlternatives=*/{}, TMF_GenerateConstraints, constraint.getLocator()); case ConstraintKind::Defaultable: return simplifyDefaultableConstraint(constraint.getFirstType(), constraint.getSecondType(), TMF_GenerateConstraints, constraint.getLocator()); case ConstraintKind::FunctionInput: case ConstraintKind::FunctionResult: return simplifyFunctionComponentConstraint(constraint.getKind(), constraint.getFirstType(), constraint.getSecondType(), TMF_GenerateConstraints, constraint.getLocator()); case ConstraintKind::Disjunction: // Disjunction constraints are never solved here. return SolutionKind::Unsolved; } llvm_unreachable("Unhandled ConstraintKind in switch."); } void ConstraintSystem::simplifyDisjunctionChoice(Constraint *choice) { // Simplify this term in the disjunction. switch (simplifyConstraint(*choice)) { case ConstraintSystem::SolutionKind::Error: if (!failedConstraint) failedConstraint = choice; if (solverState) solverState->retireConstraint(choice); break; case ConstraintSystem::SolutionKind::Solved: if (solverState) solverState->retireConstraint(choice); break; case ConstraintSystem::SolutionKind::Unsolved: InactiveConstraints.push_back(choice); CG.addConstraint(choice); break; } // Record this as a generated constraint. if (solverState) solverState->addGeneratedConstraint(choice); }