//===--- SubstitutionMap.cpp - Type substitution map ----------------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// // // This file defines the SubstitutionMap class. A SubstitutionMap packages // together a set of replacement types and protocol conformances for // specializing generic types. // // SubstitutionMaps either have type parameters or archetypes as keys, // based on whether they were built from a GenericSignature or a // GenericEnvironment. // // To specialize a type, call Type::subst() with the right SubstitutionMap. // //===----------------------------------------------------------------------===// #include "swift/AST/SubstitutionMap.h" #include "SubstitutionMapStorage.h" #include "swift/AST/ASTContext.h" #include "swift/AST/Decl.h" #include "swift/AST/GenericEnvironment.h" #include "swift/AST/LazyResolver.h" #include "swift/AST/Module.h" #include "swift/AST/ProtocolConformance.h" #include "swift/AST/Types.h" #include "llvm/Support/Debug.h" using namespace swift; SubstitutionMap::Storage::Storage( GenericSignature *genericSig, ArrayRef replacementTypes, ArrayRef conformances) : genericSig(genericSig), numConformanceRequirements(genericSig->getNumConformanceRequirements()) { assert(replacementTypes.size() == getNumReplacementTypes()); assert(conformances.size() == numConformanceRequirements); std::copy(replacementTypes.begin(), replacementTypes.end(), getReplacementTypes().data()); std::copy(conformances.begin(), conformances.end(), getConformances().data()); populatedAllReplacements = false; } SubstitutionMap::SubstitutionMap( GenericSignature *genericSig, ArrayRef replacementTypes, ArrayRef conformances) : storage(Storage::get(genericSig, replacementTypes, conformances)) { } ArrayRef SubstitutionMap::getReplacementTypesBuffer() const { return storage ? storage->getReplacementTypes() : ArrayRef(); } MutableArrayRef SubstitutionMap::getReplacementTypesBuffer() { return storage ? storage->getReplacementTypes() : MutableArrayRef(); } MutableArrayRef SubstitutionMap::getConformancesBuffer() { return storage ? storage->getConformances() : MutableArrayRef(); } ArrayRef SubstitutionMap::getConformances() const { return storage ? storage->getConformances() : ArrayRef(); } ArrayRef SubstitutionMap::getReplacementTypes() const { if (empty()) return { }; // Make sure we've filled in all of the replacement types. if (!storage->populatedAllReplacements) { for (auto gp : getGenericSignature()->getGenericParams()) { (void)lookupSubstitution(cast(gp->getCanonicalType())); } storage->populatedAllReplacements = true; } return getReplacementTypesBuffer(); } GenericSignature *SubstitutionMap::getGenericSignature() const { return storage ? storage->getGenericSignature() : nullptr; } bool SubstitutionMap::empty() const { return getGenericSignature() == nullptr; } bool SubstitutionMap::hasAnySubstitutableParams() const { auto genericSig = getGenericSignature(); if (!genericSig) return false; return !genericSig->areAllParamsConcrete(); } bool SubstitutionMap::hasArchetypes() const { for (Type replacementTy : getReplacementTypesBuffer()) { if (replacementTy && replacementTy->hasArchetype()) return true; } return false; } bool SubstitutionMap::hasOpenedExistential() const { for (Type replacementTy : getReplacementTypesBuffer()) { if (replacementTy && replacementTy->hasOpenedExistential()) return true; } return false; } bool SubstitutionMap::hasDynamicSelf() const { for (Type replacementTy : getReplacementTypesBuffer()) { if (replacementTy && replacementTy->hasDynamicSelfType()) return true; } return false; } bool SubstitutionMap::isCanonical() const { if (empty()) return true; if (!getGenericSignature()->isCanonical()) return false; for (Type replacementTy : getReplacementTypesBuffer()) { if (replacementTy && !replacementTy->isCanonical()) return false; } for (auto conf : getConformances()) { if (!conf.isCanonical()) return false; } return true; } SubstitutionMap SubstitutionMap::getCanonical() const { if (empty()) return *this; auto canonicalSig = getGenericSignature()->getCanonicalSignature(); SmallVector replacementTypes; for (Type replacementType : getReplacementTypesBuffer()) { if (replacementType) replacementTypes.push_back(replacementType->getCanonicalType()); else replacementTypes.push_back(nullptr); } SmallVector conformances; for (auto conf : getConformances()) { conformances.push_back(conf.getCanonicalConformanceRef()); } return SubstitutionMap::get(canonicalSig, ArrayRef(replacementTypes), ArrayRef(conformances)); } SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig, SubstitutionMap substitutions) { if (!genericSig) { assert(!substitutions.hasAnySubstitutableParams() && "Shouldn't have substitutions here"); return SubstitutionMap(); } return SubstitutionMap::get(genericSig, [&](SubstitutableType *type) -> Type { return substitutions.lookupSubstitution( CanSubstitutableType(type)); }, LookUpConformanceInSubstitutionMap(substitutions)); } /// Build an interface type substitution map for the given generic signature /// from a type substitution function and conformance lookup function. SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig, TypeSubstitutionFn subs, LookupConformanceFn lookupConformance) { if (!genericSig) { return SubstitutionMap(); } // Form the replacement types. SmallVector replacementTypes; replacementTypes.reserve(genericSig->getGenericParams().size()); genericSig->forEachParam([&](GenericTypeParamType *gp, bool canonical) { // Don't eagerly form replacements for non-canonical generic parameters. if (!canonical) { replacementTypes.push_back(Type()); return; } // Record the replacement. Type replacement = Type(gp).subst(subs, lookupConformance, SubstFlags::UseErrorType); replacementTypes.push_back(replacement); }); // Form the stored conformances. SmallVector conformances; for (const auto &req : genericSig->getRequirements()) { if (req.getKind() != RequirementKind::Conformance) continue; CanType depTy = req.getFirstType()->getCanonicalType(); auto replacement = depTy.subst(subs, lookupConformance, SubstFlags::UseErrorType); auto protoType = req.getSecondType()->castTo(); auto proto = protoType->getDecl(); auto conformance = lookupConformance(depTy, replacement, proto) .getValueOr(ProtocolConformanceRef::forInvalid()); conformances.push_back(conformance); } return SubstitutionMap(genericSig, replacementTypes, conformances); } Type SubstitutionMap::lookupSubstitution(CanSubstitutableType type) const { if (empty()) return Type(); // If we have an archetype, map out of the context so we can compute a // conformance access path. if (auto archetype = dyn_cast(type)) { if (!isa(archetype)) return Type(); type = cast( archetype->getInterfaceType()->getCanonicalType()); } // Find the index of the replacement type based on the generic parameter we // have. auto genericParam = cast(type); auto mutableThis = const_cast(this); auto replacementTypes = mutableThis->getReplacementTypesBuffer(); auto genericSig = getGenericSignature(); assert(genericSig); auto genericParams = genericSig->getGenericParams(); auto replacementIndex = GenericParamKey(genericParam).findIndexIn(genericParams); // If this generic parameter isn't represented, we don't have a replacement // type for it. if (replacementIndex == genericParams.size()) return Type(); // If we already have a replacement type, return it. Type &replacementType = replacementTypes[replacementIndex]; if (replacementType) return replacementType; // The generic parameter may have been made concrete by the generic signature, // substitute into the concrete type. if (auto concreteType = genericSig->getConcreteType(genericParam)){ // Set the replacement type to an error, to block infinite recursion. replacementType = ErrorType::get(concreteType); // Substitute into the replacement type. replacementType = concreteType.subst(*this); // If the generic signature is canonical, canonicalize the replacement type. if (getGenericSignature()->isCanonical()) replacementType = replacementType->getCanonicalType(); return replacementType; } // The generic parameter may not be canonical. Retrieve the canonical // type, which will be dependent. CanType canonicalType = genericSig->getCanonicalTypeInContext(genericParam); // If nothing changed, we don't have a replacement. if (canonicalType == type) return Type(); // If we're left with a substitutable type, substitute into that. // First, set the replacement type to an error, to block infinite recursion. replacementType = ErrorType::get(type); replacementType = lookupSubstitution(cast(canonicalType)); // If the generic signature is canonical, canonicalize the replacement type. if (getGenericSignature()->isCanonical()) replacementType = replacementType->getCanonicalType(); return replacementType; } Optional SubstitutionMap::lookupConformance(CanType type, ProtocolDecl *proto) const { if (empty()) return None; // If we have an archetype, map out of the context so we can compute a // conformance access path. if (auto archetype = dyn_cast(type)) { type = archetype->getInterfaceType()->getCanonicalType(); } // Error path: if we don't have a type parameter, there is no conformance. // FIXME: Query concrete conformances in the generic signature? if (!type->isTypeParameter()) return None; auto genericSig = getGenericSignature(); // Fast path unsigned index = 0; for (auto reqt : genericSig->getRequirements()) { if (reqt.getKind() == RequirementKind::Conformance) { if (reqt.getFirstType()->isEqual(type) && reqt.getSecondType()->isEqual(proto->getDeclaredType())) return getConformances()[index]; index++; } } // Retrieve the starting conformance from the conformance map. auto getInitialConformance = [&](Type type, ProtocolDecl *proto) -> Optional { unsigned conformanceIndex = 0; for (const auto &req : getGenericSignature()->getRequirements()) { if (req.getKind() != RequirementKind::Conformance) continue; // Is this the conformance we're looking for? if (req.getFirstType()->isEqual(type) && req.getSecondType()->castTo()->getDecl() == proto) { return getConformances()[conformanceIndex]; } ++conformanceIndex; } return None; }; // If the type doesn't conform to this protocol, the result isn't formed // from these requirements. if (!genericSig->conformsToProtocol(type, proto)) { // Check whether the superclass conforms. if (auto superclass = genericSig->getSuperclassBound(type)) { return LookUpConformanceInSignature(*getGenericSignature())( type->getCanonicalType(), superclass, proto); } return None; } auto accessPath = genericSig->getConformanceAccessPath(type, proto); // Fall through because we cannot yet evaluate an access path. Optional conformance; for (const auto &step : accessPath) { // For the first step, grab the initial conformance. if (!conformance) { conformance = getInitialConformance(step.first, step.second); if (!conformance) return None; continue; } if (conformance->isInvalid()) return conformance; // If we've hit an abstract conformance, everything from here on out is // abstract. // FIXME: This may not always be true, but it holds for now. if (conformance->isAbstract()) { // FIXME: Rip this out once we can get a concrete conformance from // an archetype. auto *M = proto->getParentModule(); auto substType = type.subst(*this); if (substType && (!substType->is() || substType->castTo()->getSuperclass()) && !substType->isTypeParameter() && !substType->isExistentialType()) { return M->lookupConformance(substType, proto); } return ProtocolConformanceRef(proto); } // For the second step, we're looking into the requirement signature for // this protocol. auto concrete = conformance->getConcrete(); auto normal = concrete->getRootNormalConformance(); // If we haven't set the signature conformances yet, force the issue now. if (normal->getSignatureConformances().empty()) { // If we're in the process of checking the type witnesses, fail // gracefully. // FIXME: Seems like we should be able to get at the intermediate state // to use that. if (normal->getState() == ProtocolConformanceState::CheckingTypeWitnesses) return None; auto lazyResolver = type->getASTContext().getLazyResolver(); if (lazyResolver == nullptr) return None; lazyResolver->resolveTypeWitness(normal, nullptr); // Error case: the conformance is broken, so we cannot handle this // substitution. if (normal->getSignatureConformances().empty()) return None; } // Get the associated conformance. conformance = concrete->getAssociatedConformance(step.first, step.second); } return conformance; } SubstitutionMap SubstitutionMap::mapReplacementTypesOutOfContext() const { return subst(MapTypeOutOfContext(), MakeAbstractConformanceForGenericType()); } SubstitutionMap SubstitutionMap::subst(SubstitutionMap subMap) const { return subst(QuerySubstitutionMap{subMap}, LookUpConformanceInSubstitutionMap(subMap)); } SubstitutionMap SubstitutionMap::subst(TypeSubstitutionFn subs, LookupConformanceFn conformances) const { if (empty()) return SubstitutionMap(); SmallVector newSubs; for (Type type : getReplacementTypes()) { if (!type) { // Non-canonical parameter. newSubs.push_back(Type()); continue; } newSubs.push_back(type.subst(subs, conformances, SubstFlags::UseErrorType)); } SmallVector newConformances; auto oldConformances = getConformances(); auto *genericSig = getGenericSignature(); for (const auto &req : genericSig->getRequirements()) { if (req.getKind() != RequirementKind::Conformance) continue; auto conformance = oldConformances[0]; // Fast path for concrete case -- we don't need to compute substType // at all. if (conformance.isConcrete()) { newConformances.push_back( ProtocolConformanceRef( conformance.getConcrete()->subst(subs, conformances))); } else { auto origType = req.getFirstType(); auto substType = origType.subst(*this, SubstFlags::UseErrorType); newConformances.push_back( conformance.subst(substType, subs, conformances)); } oldConformances = oldConformances.slice(1); } assert(oldConformances.empty()); return SubstitutionMap(genericSig, newSubs, newConformances); } SubstitutionMap SubstitutionMap::getProtocolSubstitutions(ProtocolDecl *protocol, Type selfType, ProtocolConformanceRef conformance) { auto protocolSelfType = protocol->getSelfInterfaceType(); return get( protocol->getGenericSignature(), [&](SubstitutableType *type) -> Type { if (type->isEqual(protocolSelfType)) return selfType; // This will need to change if we ever support protocols // inside generic types. return Type(); }, [&](CanType origType, Type replacementType, ProtocolDecl *protoType) -> Optional { if (origType->isEqual(protocolSelfType) && protoType == protocol) return conformance; // This will need to change if we ever support protocols // inside generic types. return None; }); } SubstitutionMap SubstitutionMap::getOverrideSubstitutions( const ValueDecl *baseDecl, const ValueDecl *derivedDecl, Optional derivedSubs) { // For overrides within a protocol hierarchy, substitute the Self type. if (auto baseProto = baseDecl->getDeclContext()->getSelfProtocolDecl()) { if (auto derivedProtoSelf = derivedDecl->getDeclContext()->getSelfInterfaceType()) { return SubstitutionMap::getProtocolSubstitutions( baseProto, derivedProtoSelf, ProtocolConformanceRef(baseProto)); } return SubstitutionMap(); } auto *baseClass = baseDecl->getDeclContext()->getSelfClassDecl(); auto *derivedClass = derivedDecl->getDeclContext()->getSelfClassDecl(); auto *baseSig = baseDecl->getInnermostDeclContext() ->getGenericSignatureOfContext(); auto *derivedSig = derivedDecl->getInnermostDeclContext() ->getGenericSignatureOfContext(); return getOverrideSubstitutions(baseClass, derivedClass, baseSig, derivedSig, derivedSubs); } SubstitutionMap SubstitutionMap::getOverrideSubstitutions(const ClassDecl *baseClass, const ClassDecl *derivedClass, GenericSignature *baseSig, GenericSignature *derivedSig, Optional derivedSubs) { if (baseSig == nullptr) return SubstitutionMap(); auto *M = baseClass->getParentModule(); unsigned baseDepth = 0; SubstitutionMap baseSubMap; if (auto *baseClassSig = baseClass->getGenericSignature()) { baseDepth = baseClassSig->getGenericParams().back()->getDepth() + 1; auto derivedClassTy = derivedClass->getDeclaredInterfaceType(); if (derivedSubs) derivedClassTy = derivedClassTy.subst(*derivedSubs); auto baseClassTy = derivedClassTy->getSuperclassForDecl(baseClass); if (baseClassTy->is()) return SubstitutionMap(); baseSubMap = baseClassTy->getContextSubstitutionMap(M, baseClass); } unsigned origDepth = 0; if (auto *derivedClassSig = derivedClass->getGenericSignature()) origDepth = derivedClassSig->getGenericParams().back()->getDepth() + 1; SubstitutionMap origSubMap; if (derivedSubs) origSubMap = *derivedSubs; else if (derivedSig) { origSubMap = get( derivedSig, [](SubstitutableType *type) -> Type { return type; }, MakeAbstractConformanceForGenericType()); } return combineSubstitutionMaps(baseSubMap, origSubMap, CombineSubstitutionMaps::AtDepth, baseDepth, origDepth, baseSig); } SubstitutionMap SubstitutionMap::combineSubstitutionMaps(SubstitutionMap firstSubMap, SubstitutionMap secondSubMap, CombineSubstitutionMaps how, unsigned firstDepthOrIndex, unsigned secondDepthOrIndex, GenericSignature *genericSig) { auto &ctx = genericSig->getASTContext(); auto replaceGenericParameter = [&](Type type) -> Type { if (auto gp = type->getAs()) { if (how == CombineSubstitutionMaps::AtDepth) { if (gp->getDepth() < firstDepthOrIndex) return Type(); return GenericTypeParamType::get( gp->getDepth() + secondDepthOrIndex - firstDepthOrIndex, gp->getIndex(), ctx); } assert(how == CombineSubstitutionMaps::AtIndex); if (gp->getIndex() < firstDepthOrIndex) return Type(); return GenericTypeParamType::get( gp->getDepth(), gp->getIndex() + secondDepthOrIndex - firstDepthOrIndex, ctx); } return type; }; return get( genericSig, [&](SubstitutableType *type) { auto replacement = replaceGenericParameter(type); if (replacement) return Type(replacement).subst(secondSubMap); return Type(type).subst(firstSubMap); }, [&](CanType type, Type substType, ProtocolDecl *conformedProtocol) { auto replacement = type.transform(replaceGenericParameter); if (replacement) return secondSubMap.lookupConformance(replacement->getCanonicalType(), conformedProtocol); return firstSubMap.lookupConformance(type, conformedProtocol); }); } void SubstitutionMap::verify() const { #ifndef NDEBUG if (empty()) return; unsigned conformanceIndex = 0; for (const auto &req : getGenericSignature()->getRequirements()) { if (req.getKind() != RequirementKind::Conformance) continue; auto substType = req.getFirstType().subst(*this, SubstFlags::UseErrorType); if (substType->isTypeParameter() || substType->is() || substType->isTypeVariableOrMember() || substType->is() || substType->hasError()) continue; auto conformance = getConformances()[conformanceIndex]; if (conformance.isInvalid()) continue; // An existential type can have an abstract conformance to // AnyObject or an @objc protocol. if (conformance.isAbstract() && substType->isExistentialType()) { auto *proto = conformance.getRequirement(); if (!proto->isObjC()) { llvm::dbgs() << "Existential type conforms to something:\n"; substType->dump(); llvm::dbgs() << "SubstitutionMap:\n"; dump(llvm::dbgs()); llvm::dbgs() << "\n"; } assert(proto->isObjC() && "an existential type can conform only to an " "@objc-protocol"); continue; } // All of the conformances should be concrete. if (!conformance.isConcrete()) { llvm::dbgs() << "Concrete substType type:\n"; substType->dump(llvm::dbgs()); llvm::dbgs() << "SubstitutionMap:\n"; dump(llvm::dbgs()); llvm::dbgs() << "\n"; } assert(conformance.isConcrete() && "Conformance should be concrete"); ++conformanceIndex; } #endif } void SubstitutionMap::profile(llvm::FoldingSetNodeID &id) const { id.AddPointer(storage); }