//===--- CapturePromotion.cpp - Promotes closure captures -----------------===// // // This source file is part of the Swift.org open source project // // Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors // Licensed under Apache License v2.0 with Runtime Library Exception // // See https://swift.org/LICENSE.txt for license information // See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors // //===----------------------------------------------------------------------===// /// /// \file /// /// Promotes captures from 'inout' (i.e. by-reference) to by-value /// ============================================================== /// /// Swift's closure model is that all local variables are capture by reference. /// This produces a very simple programming model which is great to use, but /// relies on the optimizer to promote by-ref captures to by-value (i.e. by-copy) /// captures for decent performance. Consider this simple example: /// /// func foo(a : () -> ()) {} // assume this has an unknown body /// /// func bar() { /// var x = 42 /// /// foo({ print(x) }) /// } /// /// Since x is captured by-ref by the closure, x must live on the heap. By /// looking at bar without any knowledge of foo, we can know that it is safe to /// promote this to a by-value capture, allowing x to live on the stack under the /// following conditions: /// /// 1. If x is not modified in the closure body and is only loaded. /// 2. If we can prove that all mutations to x occur before the closure is /// formed. /// /// Under these conditions if x is loadable then we can even load the given value /// and pass it as a scalar instead of an address. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sil-capture-promotion" #include "swift/SILOptimizer/PassManager/Passes.h" #include "swift/SILOptimizer/Utils/SpecializationMangler.h" #include "swift/SIL/Mangle.h" #include "swift/SIL/SILCloner.h" #include "swift/SIL/TypeSubstCloner.h" #include "swift/SILOptimizer/PassManager/Transforms.h" #include "swift/AST/GenericEnvironment.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include using namespace swift; typedef llvm::SmallSet IndicesSet; typedef llvm::DenseMap PartialApplyIndicesMap; STATISTIC(NumCapturesPromoted, "Number of captures promoted"); namespace { /// \brief Transient reference to a block set within ReachabilityInfo. /// /// This is a bitset that conveniently flattens into a matrix allowing bit-wise /// operations without masking. /// /// TODO: If this sticks around, maybe we'll make a BitMatrix ADT. class ReachingBlockSet { public: enum { BITWORD_SIZE = (unsigned)sizeof(uint64_t) * CHAR_BIT }; static size_t numBitWords(unsigned NumBlocks) { return (NumBlocks + BITWORD_SIZE - 1) / BITWORD_SIZE; } /// \brief Transient reference to a reaching block matrix. struct ReachingBlockMatrix { uint64_t *Bits; unsigned NumBitWords; // Words per row. ReachingBlockMatrix() : Bits(nullptr), NumBitWords(0) {} bool empty() const { return !Bits; } }; static ReachingBlockMatrix allocateMatrix(unsigned NumBlocks) { ReachingBlockMatrix M; M.NumBitWords = numBitWords(NumBlocks); M.Bits = new uint64_t[NumBlocks * M.NumBitWords]; memset(M.Bits, 0, NumBlocks * M.NumBitWords * sizeof(uint64_t)); return M; } static void deallocateMatrix(ReachingBlockMatrix &M) { delete [] M.Bits; M.Bits = nullptr; M.NumBitWords = 0; } static ReachingBlockSet allocateSet(unsigned NumBlocks) { ReachingBlockSet S; S.NumBitWords = numBitWords(NumBlocks); S.Bits = new uint64_t[S.NumBitWords]; return S; } static void deallocateSet(ReachingBlockSet &S) { delete [] S.Bits; S.Bits = nullptr; S.NumBitWords = 0; } private: uint64_t *Bits; unsigned NumBitWords; public: ReachingBlockSet() : Bits(nullptr), NumBitWords(0) {} ReachingBlockSet(unsigned BlockID, ReachingBlockMatrix &M) : Bits(&M.Bits[BlockID * M.NumBitWords]), NumBitWords(M.NumBitWords) {} bool test(unsigned ID) const { assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds"); unsigned int modulus = ID % BITWORD_SIZE; long shifted = 1L << modulus; return Bits[ID / BITWORD_SIZE] & shifted; } void set(unsigned ID) { unsigned int modulus = ID % BITWORD_SIZE; long shifted = 1L << modulus; assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds"); Bits[ID / BITWORD_SIZE] |= shifted; } ReachingBlockSet &operator|=(const ReachingBlockSet &RHS) { for (size_t i = 0, e = NumBitWords; i != e; ++i) Bits[i] |= RHS.Bits[i]; return *this; } void clear() { memset(Bits, 0, NumBitWords * sizeof(uint64_t)); } bool operator==(const ReachingBlockSet &RHS) const { assert(NumBitWords == RHS.NumBitWords && "mismatched sets"); for (size_t i = 0, e = NumBitWords; i != e; ++i) { if (Bits[i] != RHS.Bits[i]) return false; } return true; } bool operator!=(const ReachingBlockSet &RHS) const { return !(*this == RHS); } const ReachingBlockSet &operator=(const ReachingBlockSet &RHS) { assert(NumBitWords == RHS.NumBitWords && "mismatched sets"); for (size_t i = 0, e = NumBitWords; i != e; ++i) Bits[i] = RHS.Bits[i]; return *this; } }; /// \brief Store the reachability matrix: ToBlock -> FromBlocks. class ReachabilityInfo { SILFunction *F; llvm::DenseMap BlockMap; ReachingBlockSet::ReachingBlockMatrix Matrix; public: ReachabilityInfo(SILFunction *f) : F(f) {} ~ReachabilityInfo() { ReachingBlockSet::deallocateMatrix(Matrix); } bool isComputed() const { return !Matrix.empty(); } bool isReachable(SILBasicBlock *From, SILBasicBlock *To); private: void compute(); }; } // end anonymous namespace namespace { /// \brief A SILCloner subclass which clones a closure function while converting /// one or more captures from 'inout' (by-reference) to by-value. class ClosureCloner : public TypeSubstCloner { public: friend class SILVisitor; friend class SILCloner; ClosureCloner(SILFunction *Orig, IsFragile_t Fragile, StringRef ClonedName, SubstitutionMap &InterfaceSubs, SubstitutionList ApplySubs, IndicesSet &PromotableIndices); void populateCloned(); SILFunction *getCloned() { return &getBuilder().getFunction(); } protected: // FIXME: We intentionally call SILClonerWithScopes here to ensure // the debug scopes are set correctly for cloned // functions. TypeSubstCloner, SILClonerWithScopes, and // SILCloner desperately need refactoring and/or combining so // that the obviously right things are happening for cloning // vs. inlining. void postProcess(SILInstruction *Orig, SILInstruction *Cloned) { SILClonerWithScopes::postProcess(Orig, Cloned); } private: static SILFunction *initCloned(SILFunction *Orig, IsFragile_t Fragile, StringRef ClonedName, SubstitutionMap &InterfaceSubs, IndicesSet &PromotableIndices); void visitDebugValueAddrInst(DebugValueAddrInst *Inst); void visitStrongReleaseInst(StrongReleaseInst *Inst); void visitStructElementAddrInst(StructElementAddrInst *Inst); void visitLoadInst(LoadInst *Inst); void visitProjectBoxInst(ProjectBoxInst *Inst); SILFunction *Orig; IndicesSet &PromotableIndices; llvm::DenseMap BoxArgumentMap; llvm::DenseMap ProjectBoxArgumentMap; }; } // end anonymous namespace /// \brief Compute ReachabilityInfo so that it can answer queries about /// whether a given basic block in a function is reachable from another basic /// block in the function. /// /// FIXME: Computing global reachability requires initializing an N^2 /// bitset. This could be avoided by computing reachability on-the-fly /// for each alloc_box by walking backward from mutations. void ReachabilityInfo::compute() { assert(!isComputed() && "already computed"); unsigned N = 0; for (auto &BB : *F) BlockMap.insert({ &BB, N++ }); Matrix = ReachingBlockSet::allocateMatrix(N); ReachingBlockSet NewSet = ReachingBlockSet::allocateSet(N); DEBUG(llvm::dbgs() << "Computing Reachability for " << F->getName() << " with " << N << " blocks.\n"); // Iterate to a fix point, two times for a topological DAG. bool Changed; do { Changed = false; // Visit all blocks in a predictable order, hopefully close to topological. for (auto &BB : *F) { ReachingBlockSet CurSet(BlockMap[&BB], Matrix); if (!Changed) { // If we have not detected a change yet, then calculate new // reachabilities into a new bit vector so we can determine if any // change has occurred. NewSet = CurSet; for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) { unsigned PredID = BlockMap[*PI]; ReachingBlockSet PredSet(PredID, Matrix); NewSet |= PredSet; NewSet.set(PredID); } if (NewSet != CurSet) { CurSet = NewSet; Changed = true; } } else { // Otherwise, just update the existing reachabilities in-place. for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) { unsigned PredID = BlockMap[*PI]; ReachingBlockSet PredSet(PredID, Matrix); CurSet |= PredSet; CurSet.set(PredID); } } DEBUG(llvm::dbgs() << " Block " << BlockMap[&BB] << " reached by "; for (unsigned i = 0; i < N; ++i) { if (CurSet.test(i)) llvm::dbgs() << i << " "; } llvm::dbgs() << "\n"); } } while (Changed); ReachingBlockSet::deallocateSet(NewSet); } /// \brief Return true if the To basic block is reachable from the From basic /// block. A block is considered reachable from itself only if its entry can be /// recursively reached from its own exit. bool ReachabilityInfo::isReachable(SILBasicBlock *From, SILBasicBlock *To) { if (!isComputed()) compute(); auto FI = BlockMap.find(From), TI = BlockMap.find(To); assert(FI != BlockMap.end() && TI != BlockMap.end()); ReachingBlockSet FromSet(TI->second, Matrix); return FromSet.test(FI->second); } ClosureCloner::ClosureCloner(SILFunction *Orig, IsFragile_t Fragile, StringRef ClonedName, SubstitutionMap &InterfaceSubs, SubstitutionList ApplySubs, IndicesSet &PromotableIndices) : TypeSubstCloner( *initCloned(Orig, Fragile, ClonedName, InterfaceSubs, PromotableIndices), *Orig, ApplySubs), Orig(Orig), PromotableIndices(PromotableIndices) { assert(Orig->getDebugScope()->Parent != getCloned()->getDebugScope()->Parent); } /// Compute the SILParameterInfo list for the new cloned closure. /// /// Our goal as a result of this transformation is to: /// /// 1. Let through all arguments not related to a promotable box. /// 2. Replace container box value arguments for the cloned closure with the /// transformed address or value argument. static void computeNewArgInterfaceTypes(SILFunction *F, IndicesSet &PromotableIndices, SmallVectorImpl &OutTys) { auto fnConv = F->getConventions(); auto Parameters = fnConv.funcTy->getParameters(); DEBUG(llvm::dbgs() << "Preparing New Args!\n"); // For each parameter in the old function... for (unsigned Index : indices(Parameters)) { auto ¶m = Parameters[Index]; // The PromotableIndices index is expressed as the argument index (num // indirect result + param index). Add back the num indirect results to get // the arg index when working with PromotableIndices. unsigned ArgIndex = Index + fnConv.getSILArgIndexOfFirstParam(); DEBUG(llvm::dbgs() << "Index: " << Index << "; PromotableIndices: " << (PromotableIndices.count(ArgIndex)?"yes":"no") << " Param: "; param.dump()); if (!PromotableIndices.count(ArgIndex)) { OutTys.push_back(param); continue; } // Perform the proper conversions and then add it to the new parameter list // for the type. assert(!param.isFormalIndirect()); auto paramTy = param.getSILStorageType(); auto paramBoxTy = paramTy.castTo(); assert(paramBoxTy->getLayout()->getFields().size() == 1 && "promoting compound box not implemented yet"); auto paramBoxedTy = paramBoxTy->getFieldType(F->getModule(), 0); auto ¶mTL = F->getModule().Types.getTypeLowering(paramBoxedTy); ParameterConvention convention; if (paramTL.isFormallyPassedIndirectly()) { convention = ParameterConvention::Indirect_In; } else if (paramTL.isTrivial()) { convention = ParameterConvention::Direct_Unowned; } else { convention = ParameterConvention::Direct_Owned; } OutTys.push_back(SILParameterInfo(paramBoxedTy.getSwiftRValueType(), convention)); } } static std::string getSpecializedName(SILFunction *F, IsFragile_t Fragile, IndicesSet &PromotableIndices) { Mangle::Mangler M; auto P = Demangle::SpecializationPass::CapturePromotion; FunctionSignatureSpecializationMangler OldFSSM(P, M, Fragile, F); NewMangling::FunctionSignatureSpecializationMangler NewFSSM(P, Fragile, F); auto fnConv = F->getConventions(); for (unsigned argIdx = 0, endIdx = fnConv.getNumSILArguments(); argIdx < endIdx; ++argIdx) { if (!PromotableIndices.count(argIdx)) continue; OldFSSM.setArgumentBoxToValue(argIdx); NewFSSM.setArgumentBoxToValue(argIdx); } OldFSSM.mangle(); std::string Old = M.finalize(); std::string New = NewFSSM.mangle(); return NewMangling::selectMangling(Old, New); } /// \brief Create the function corresponding to the clone of the original /// closure with the signature modified to reflect promotable captures (which /// are given by PromotableIndices, such that each entry in the set is the /// index of the box containing the variable in the closure's argument list, and /// the address of the box's contents is the argument immediately following each /// box argument); does not actually clone the body of the function /// /// *NOTE* PromotableIndices only contains the container value of the box, not /// the address value. SILFunction* ClosureCloner::initCloned(SILFunction *Orig, IsFragile_t Fragile, StringRef ClonedName, SubstitutionMap &InterfaceSubs, IndicesSet &PromotableIndices) { SILModule &M = Orig->getModule(); // Compute the arguments for our new function. SmallVector ClonedInterfaceArgTys; computeNewArgInterfaceTypes(Orig, PromotableIndices, ClonedInterfaceArgTys); SILFunctionType *OrigFTI = Orig->getLoweredFunctionType(); // Create the thin function type for the cloned closure. auto ClonedTy = SILFunctionType::get( OrigFTI->getGenericSignature(), OrigFTI->getExtInfo(), OrigFTI->getCalleeConvention(), ClonedInterfaceArgTys, OrigFTI->getResults(), OrigFTI->getOptionalErrorResult(), M.getASTContext()); auto SubstTy = SILType::substFuncType(M, InterfaceSubs, ClonedTy, /* dropGenerics = */ false); assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation()) && "SILFunction missing location"); assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope()) && "SILFunction missing DebugScope"); assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned"); auto *Fn = M.createFunction( Orig->getLinkage(), ClonedName, SubstTy, Orig->getGenericEnvironment(), Orig->getLocation(), Orig->isBare(), IsNotTransparent, Fragile, Orig->isThunk(), Orig->getClassVisibility(), Orig->getInlineStrategy(), Orig->getEffectsKind(), Orig, Orig->getDebugScope()); for (auto &Attr : Orig->getSemanticsAttrs()) Fn->addSemanticsAttr(Attr); if (Orig->hasUnqualifiedOwnership()) { Fn->setUnqualifiedOwnership(); } return Fn; } /// \brief Populate the body of the cloned closure, modifying instructions as /// necessary to take into consideration the promoted capture(s) void ClosureCloner::populateCloned() { SILFunction *Cloned = getCloned(); // Create arguments for the entry block SILBasicBlock *OrigEntryBB = &*Orig->begin(); SILBasicBlock *ClonedEntryBB = Cloned->createBasicBlock(); unsigned ArgNo = 0; auto I = OrigEntryBB->args_begin(), E = OrigEntryBB->args_end(); while (I != E) { if (PromotableIndices.count(ArgNo)) { // Handle the case of a promoted capture argument. auto BoxTy = (*I)->getType().castTo(); assert(BoxTy->getLayout()->getFields().size() == 1 && "promoting compound box not implemented"); auto BoxedTy = BoxTy->getFieldType(Cloned->getModule(),0).getObjectType(); SILValue MappedValue = ClonedEntryBB->createFunctionArgument(BoxedTy, (*I)->getDecl()); BoxArgumentMap.insert(std::make_pair(*I, MappedValue)); // Track the projections of the box. for (auto *Use : (*I)->getUses()) { if (auto Proj = dyn_cast(Use->getUser())) { ProjectBoxArgumentMap.insert(std::make_pair(Proj, MappedValue)); } } } else { // Otherwise, create a new argument which copies the original argument SILValue MappedValue = ClonedEntryBB->createFunctionArgument( (*I)->getType(), (*I)->getDecl()); ValueMap.insert(std::make_pair(*I, MappedValue)); } ++ArgNo; ++I; } getBuilder().setInsertionPoint(ClonedEntryBB); BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB)); // Recursively visit original BBs in depth-first preorder, starting with the // entry block, cloning all instructions other than terminators. visitSILBasicBlock(OrigEntryBB); // Now iterate over the BBs and fix up the terminators. for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) { getBuilder().setInsertionPoint(BI->second); visit(BI->first->getTerminator()); } } /// Handle a debug_value_addr instruction during cloning of a closure; /// if its operand is the promoted address argument then lower it to a /// debug_value, otherwise it is handled normally. void ClosureCloner::visitDebugValueAddrInst(DebugValueAddrInst *Inst) { SILValue Operand = Inst->getOperand(); if (auto *A = dyn_cast(Operand)) { auto I = ProjectBoxArgumentMap.find(A); if (I != ProjectBoxArgumentMap.end()) { getBuilder().setCurrentDebugScope(getOpScope(Inst->getDebugScope())); getBuilder().createDebugValue(Inst->getLoc(), I->second, Inst->getVarInfo()); return; } } SILCloner::visitDebugValueAddrInst(Inst); } /// \brief Handle a strong_release instruction during cloning of a closure; if /// it is a strong release of a promoted box argument, then it is replaced with /// a ReleaseValue of the new object type argument, otherwise it is handled /// normally. void ClosureCloner::visitStrongReleaseInst(StrongReleaseInst *Inst) { SILValue Operand = Inst->getOperand(); if (SILArgument *A = dyn_cast(Operand)) { auto I = BoxArgumentMap.find(A); if (I != BoxArgumentMap.end()) { // Releases of the box arguments get replaced with ReleaseValue of the new // object type argument. SILFunction &F = getBuilder().getFunction(); auto &typeLowering = F.getModule().getTypeLowering(I->second->getType()); SILBuilderWithPostProcess B(this, Inst); typeLowering.emitDestroyValue(B, Inst->getLoc(), I->second); return; } } SILCloner::visitStrongReleaseInst(Inst); } /// \brief Handle a struct_element_addr instruction during cloning of a closure; /// if its operand is the promoted address argument then ignore it, otherwise it /// is handled normally. void ClosureCloner::visitStructElementAddrInst(StructElementAddrInst *Inst) { SILValue Operand = Inst->getOperand(); if (auto *A = dyn_cast(Operand)) { auto I = ProjectBoxArgumentMap.find(A); if (I != ProjectBoxArgumentMap.end()) return; } SILCloner::visitStructElementAddrInst(Inst); } /// project_box of captured boxes can be eliminated. void ClosureCloner::visitProjectBoxInst(ProjectBoxInst *I) { if (auto Arg = dyn_cast(I->getOperand())) if (BoxArgumentMap.count(Arg)) return; SILCloner::visitProjectBoxInst(I); } /// \brief Handle a load instruction during cloning of a closure; the two /// relevant cases are a direct load from a promoted address argument or a load /// of a struct_element_addr of a promoted address argument. void ClosureCloner::visitLoadInst(LoadInst *Inst) { SILValue Operand = Inst->getOperand(); if (auto *A = dyn_cast(Operand)) { auto I = ProjectBoxArgumentMap.find(A); if (I != ProjectBoxArgumentMap.end()) { // Loads of the address argument get eliminated completely; the uses of // the loads get mapped to uses of the new object type argument. ValueMap.insert(std::make_pair(Inst, I->second)); return; } } else if (auto *SEAI = dyn_cast(Operand)) { if (auto *A = dyn_cast(SEAI->getOperand())) { auto I = ProjectBoxArgumentMap.find(A); if (I != ProjectBoxArgumentMap.end()) { // Loads of a struct_element_addr of an argument get replaced with // struct_extract of the new object type argument. SILBuilderWithPostProcess B(this, Inst); SILValue V = B.emitStructExtract(Inst->getLoc(), I->second, SEAI->getField(), Inst->getType()); ValueMap.insert(std::make_pair(Inst, V)); return; } } } SILCloner::visitLoadInst(Inst); } static SILArgument *getBoxFromIndex(SILFunction *F, unsigned Index) { assert(F->isDefinition() && "Expected definition not external declaration!"); auto &Entry = F->front(); return Entry.getArgument(Index); } /// \brief Given a partial_apply instruction and the argument index into its /// callee's argument list of a box argument (which is followed by an argument /// for the address of the box's contents), return true if the closure is known /// not to mutate the captured variable. static bool isNonmutatingCapture(SILArgument *BoxArg) { SmallVector Projections; // Conservatively do not allow any use of the box argument other than a // strong_release or projection, since this is the pattern expected from // SILGen. for (auto *O : BoxArg->getUses()) { if (isa(O->getUser())) continue; if (auto Projection = dyn_cast(O->getUser())) { Projections.push_back(Projection); continue; } return false; } // Only allow loads of projections, either directly or via // struct_element_addr instructions. // // TODO: This seems overly limited. Why not projections of tuples and other // stuff? Also, why not recursive struct elements? This should be a helper // function that mirrors isNonEscapingUse. for (auto *Projection : Projections) { for (auto *O : Projection->getUses()) { if (auto *SEAI = dyn_cast(O->getUser())) { for (auto *UO : SEAI->getUses()) if (!isa(UO->getUser())) return false; continue; } if (!isa(O->getUser()) && !isa(O->getUser()) && !isa(O->getUser())) return false; } } return true; } /// \brief Given a use of an alloc_box instruction, return true if the use /// definitely does not allow the box to escape; also, if the use is an /// instruction which possibly mutates the contents of the box, then add it to /// the Mutations vector. static bool isNonescapingUse(Operand *O, SmallVectorImpl &Mutations) { auto *U = O->getUser(); if (U->isTypeDependentOperand(*O)) return true; // Marking the boxed value as escaping is OK. It's just a DI annotation. if (isa(U)) return true; // A store or assign is ok if the alloc_box is the destination. if (isa(U) || isa(U)) { if (O->getOperandNumber() != 1) return false; Mutations.push_back(cast(U)); return true; } // copy_addr is ok, but counts as a mutation if the use is as the // destination or the copy_addr is a take. if (auto *CAI = dyn_cast(U)) { if (O->getOperandNumber() == 1 || CAI->isTakeOfSrc()) Mutations.push_back(CAI); return true; } // Recursively see through struct_element_addr, tuple_element_addr, and // open_existential_addr instructions. if (isa(U) || isa(U) || isa(U) || isa(U) || isa(U)) { // UncheckedTakeEnumDataAddr is additionally a mutation. if (isa(U)) Mutations.push_back(U); for (auto *UO : U->getUses()) if (!isNonescapingUse(UO, Mutations)) return false; return true; } // An apply is ok if the argument is used as an inout parameter or an // indirect return, but counts as a possible mutation in both cases. if (auto *AI = dyn_cast(U)) { auto argIndex = O->getOperandNumber()-1; SILFunctionConventions substConv(AI->getSubstCalleeType(), AI->getModule()); auto convention = substConv.getSILArgumentConvention(argIndex); if (convention.isIndirectConvention()) { Mutations.push_back(AI); return true; } return false; } // These instructions are ok but count as mutations. if (isa(U)) { Mutations.push_back(cast(U)); return true; } // These remaining instructions are ok and don't count as mutations. if (isa(U) || isa(U) || isa(U)) return true; return false; } static bool signatureHasDependentTypes(SILFunction *Callee) { SILFunctionConventions conventions = Callee->getConventions(); if (conventions.getSILResultType().hasTypeParameter()) return true; for (auto Param : conventions.funcTy->getParameters()) if (conventions.getSILType(Param).hasTypeParameter()) return true; return false; } /// \brief Examine an alloc_box instruction, returning true if at least one /// capture of the boxed variable is promotable. If so, then the pair of the /// partial_apply instruction and the index of the box argument in the closure's /// argument list is added to IM. static bool examineAllocBoxInst(AllocBoxInst *ABI, ReachabilityInfo &RI, llvm::DenseMap &IM) { SmallVector Mutations; // Scan the box for interesting uses. for (Operand *O : ABI->getUses()) { if (auto *PAI = dyn_cast(O->getUser())) { unsigned OpNo = O->getOperandNumber(); assert(OpNo != 0 && "Alloc box used as callee of partial apply?"); // If we've already seen this partial apply, then it means the same alloc // box is being captured twice by the same closure, which is odd and // unexpected: bail instead of trying to handle this case. if (IM.count(PAI)) return false; // Bail if the signature has any dependent types as we do not // currently support these. if (signatureHasDependentTypes(PAI->getCalleeFunction())) return false; SILModule &M = PAI->getModule(); auto closureType = PAI->getType().castTo(); SILFunctionConventions closureConv(closureType, M); // Calculate the index into the closure's argument list of the captured // box pointer (the captured address is always the immediately following // index so is not stored separately); unsigned Index = OpNo - 1 + closureConv.getNumSILArguments(); auto *Fn = PAI->getReferencedFunction(); if (!Fn || !Fn->isDefinition()) return false; SILArgument *BoxArg = getBoxFromIndex(Fn, Index); // For now, return false is the address argument is an address-only type, // since we currently handle loadable types only. // TODO: handle address-only types auto BoxTy = BoxArg->getType().castTo(); assert(BoxTy->getLayout()->getFields().size() == 1 && "promoting compound box not implemented yet"); if (BoxTy->getFieldType(M, 0).isAddressOnly(M)) return false; // Verify that this closure is known not to mutate the captured value; if // it does, then conservatively refuse to promote any captures of this // value. if (!isNonmutatingCapture(BoxArg)) return false; // Record the index and continue. IM.insert(std::make_pair(PAI, Index)); continue; } if (auto *PBI = dyn_cast(O->getUser())) { // Check for mutations of the address component. SILValue Addr = PBI; // If the AllocBox is used by a mark_uninitialized, scan the MUI for // interesting uses. if (Addr->hasOneUse()) { SILInstruction *SingleAddrUser = Addr->use_begin()->getUser(); if (isa(SingleAddrUser)) Addr = SILValue(SingleAddrUser); } for (Operand *AddrOp : Addr->getUses()) { if (!isNonescapingUse(AddrOp, Mutations)) return false; } continue; } // Verify that this use does not otherwise allow the alloc_box to // escape. if (!isNonescapingUse(O, Mutations)) return false; } // Helper lambda function to determine if instruction b is strictly after // instruction a, assuming both are in the same basic block. auto isAfter = [](SILInstruction *a, SILInstruction *b) { auto fIter = b->getParent()->begin(); auto bIter = b->getIterator(); auto aIter = a->getIterator(); while (bIter != fIter) { --bIter; if (aIter == bIter) return true; } return false; }; // Loop over all mutations to possibly invalidate captures. for (auto *I : Mutations) { auto Iter = IM.begin(); while (Iter != IM.end()) { auto *PAI = Iter->first; // The mutation invalidates a capture if it occurs in a block reachable // from the block the partial_apply is in, or if it is in the same // block is after the partial_apply. if (RI.isReachable(PAI->getParent(), I->getParent()) || (PAI->getParent() == I->getParent() && isAfter(PAI, I))) { auto Prev = Iter++; IM.erase(Prev); continue; } ++Iter; } // If there are no valid captures left, then stop. if (IM.empty()) return false; } return true; } static SILFunction * constructClonedFunction(PartialApplyInst *PAI, FunctionRefInst *FRI, IndicesSet &PromotableIndices) { SILFunction *F = PAI->getFunction(); // Create the substitution maps. auto ApplySubs = PAI->getSubstitutions(); SubstitutionMap InterfaceSubs; if (auto genericSig = PAI->getOrigCalleeType()->getGenericSignature()) InterfaceSubs = genericSig->getSubstitutionMap(ApplySubs); // Create the Cloned Name for the function. SILFunction *Orig = FRI->getReferencedFunction(); IsFragile_t Fragile = IsNotFragile; if (F->isFragile() && Orig->isFragile()) Fragile = IsFragile; auto ClonedName = getSpecializedName(Orig, Fragile, PromotableIndices); // If we already have such a cloned function in the module then just use it. if (auto *PrevF = F->getModule().lookUpFunction(ClonedName)) { assert(PrevF->isFragile() == Fragile); return PrevF; } // Otherwise, create a new clone. ClosureCloner cloner(Orig, Fragile, ClonedName, InterfaceSubs, ApplySubs, PromotableIndices); cloner.populateCloned(); return cloner.getCloned(); } /// \brief Given a partial_apply instruction and a set of promotable indices, /// clone the closure with the promoted captures and replace the partial_apply /// with a partial_apply of the new closure, fixing up reference counting as /// necessary. Also, if the closure is cloned, the cloned function is added to /// the worklist. static void processPartialApplyInst(PartialApplyInst *PAI, IndicesSet &PromotableIndices, SmallVectorImpl &Worklist) { SILModule &M = PAI->getModule(); auto *FRI = dyn_cast(PAI->getCallee()); // Clone the closure with the given promoted captures. SILFunction *ClonedFn = constructClonedFunction(PAI, FRI, PromotableIndices); Worklist.push_back(ClonedFn); // Initialize a SILBuilder and create a function_ref referencing the cloned // closure. SILBuilderWithScope B(PAI); SILValue FnVal = B.createFunctionRef(PAI->getLoc(), ClonedFn); SILType FnTy = FnVal->getType(); // Populate the argument list for a new partial_apply instruction, taking into // consideration any captures. auto CalleeFunctionTy = PAI->getCallee()->getType().castTo(); SILFunctionConventions calleeConv(CalleeFunctionTy, M); auto CalleePInfo = CalleeFunctionTy->getParameters(); SILFunctionConventions paConv(PAI->getType().castTo(), M); unsigned FirstIndex = paConv.getNumSILArguments(); unsigned OpNo = 1, OpCount = PAI->getNumOperands(); SmallVector Args; auto NumIndirectResults = calleeConv.getNumIndirectSILResults(); while (OpNo != OpCount) { unsigned Index = OpNo - 1 + FirstIndex; if (PromotableIndices.count(Index)) { SILValue BoxValue = PAI->getOperand(OpNo); AllocBoxInst *ABI = cast(BoxValue); SILParameterInfo CPInfo = CalleePInfo[Index - NumIndirectResults]; assert(calleeConv.getSILType(CPInfo) == BoxValue->getType() && "SILType of parameter info does not match type of parameter"); // Cleanup the captured argument. releasePartialApplyCapturedArg(B, PAI->getLoc(), BoxValue, CPInfo); // Load and copy from the address value, passing the result as an argument // to the new closure. SILValue Addr; for (Operand *BoxUse : ABI->getUses()) { auto *PBI = dyn_cast(BoxUse->getUser()); // If the address is marked uninitialized, load through the mark, so // that DI can reason about it. if (PBI && PBI->hasOneUse()) { SILInstruction *PBIUser = PBI->use_begin()->getUser(); if (isa(PBIUser)) Addr = PBIUser; break; } } // We only reuse an existing project_box if it directly follows the // alloc_box. This makes sure that the project_box dominates the // partial_apply. if (!Addr) Addr = getOrCreateProjectBox(ABI, 0); auto &typeLowering = M.getTypeLowering(Addr->getType()); Args.push_back( typeLowering.emitLoadOfCopy(B, PAI->getLoc(), Addr, IsNotTake)); ++NumCapturesPromoted; } else { Args.push_back(PAI->getOperand(OpNo)); } ++OpNo; } auto SubstFnTy = FnTy.substGenericArgs(M, PAI->getSubstitutions()); // Create a new partial apply with the new arguments. auto *NewPAI = B.createPartialApply(PAI->getLoc(), FnVal, SubstFnTy, PAI->getSubstitutions(), Args, PAI->getType()); PAI->replaceAllUsesWith(NewPAI); PAI->eraseFromParent(); if (FRI->use_empty()) { FRI->eraseFromParent(); // TODO: If this is the last use of the closure, and if it has internal // linkage, we should remove it from the SILModule now. } } static void constructMapFromPartialApplyToPromotableIndices(SILFunction *F, PartialApplyIndicesMap &Map) { ReachabilityInfo RS(F); // This is a map from each partial apply to a single index which is a // promotable box variable for the alloc_box currently being considered. llvm::DenseMap IndexMap; // Consider all alloc_box instructions in the function. for (auto &BB : *F) { for (auto &I : BB) { if (auto *ABI = dyn_cast(&I)) { IndexMap.clear(); if (examineAllocBoxInst(ABI, RS, IndexMap)) { // If we are able to promote at least one capture of the alloc_box, // then add the promotable index to the main map. for (auto &IndexPair : IndexMap) Map[IndexPair.first].insert(IndexPair.second); } } } } } static void processFunction(SILFunction *F, SmallVectorImpl &Worklist) { // This is a map from each partial apply to a set of indices of promotable // box variables. PartialApplyIndicesMap IndicesMap; constructMapFromPartialApplyToPromotableIndices(F, IndicesMap); // Do the actual promotions; all promotions on a single partial_apply are // handled together. for (auto &IndicesPair : IndicesMap) processPartialApplyInst(IndicesPair.first, IndicesPair.second, Worklist); } namespace { class CapturePromotionPass : public SILModuleTransform { /// The entry point to the transformation. void run() override { SmallVector Worklist; for (auto &F : *getModule()) processFunction(&F, Worklist); if (!Worklist.empty()) { invalidateAnalysis(SILAnalysis::InvalidationKind::Everything); } while (!Worklist.empty()) processFunction(Worklist.pop_back_val(), Worklist); } StringRef getName() override { return "Capture Promotion"; } }; } // end anonymous namespace SILTransform *swift::createCapturePromotion() { return new CapturePromotionPass(); }